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Fractal optics and beyond
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Fractals, shapes comprised of self-similar parts, are not merely prescribed linear structures. A wide class 
of fractals can also arise from the rich dynamics inherent to nonlinear optics.

In 1967, Benoit Mandelbrot published a 
paper that gave birth to the study of fractals, 
entitled “How long is the coast of Britain? 

Statistical self similarity and fractional 
dimension”1. According to Mandelbrot, “a 
fractal is a shape made of parts similar to 
the whole in some way”2. One particularly 
spectacular example of a fractal in nature is 
the Romanescu broccoli (Fig. 1).

Although there are a number of different 
fractal classification systems, one stands 
out rather distinctly: exact (regular) fractals 
versus statistical (random) fractals. An exact 
fractal is “an object which appears self-similar 
under varying degrees of magnification, in 
effect, possessing symmetry across scale, with 
each small part replicating the structure of 
the whole”. Taken literally, when the same 
object replicates itself on successively smaller 
scales, even though the number of scales in 
the physical world is never infinite, we call 
this object an ‘exact fractal’. When, on the 
other hand, the object replicates itself in only 
its statistical properties, it is defined as a 
‘statistical fractal’.

Perhaps the best known example of 
an exact fractal is the Cantor set fractal, a 
shape that can be explained by describing 
its generation. Starting with a single line 
segment, the middle third is removed to leave 
behind two segments, each with a length 
of one-third of the original. From each of 
these segments, the middle third is again 
removed, and so on, ad infinitum. At every 
stage of the process, the result is self-similar 
to the previous stage, which is identical upon 
rescaling. Of course, this ‘triplet set’ is not 
the only possible Cantor set. Any arbitrary 
cascaded removal of portions of the line 
segment may form the repetitive structure of 
an exact fractal. Other famous examples of 
exact fractals are the Sierpinski triangle and 
the Koch snowflake.

Statistical fractals have been observed in 
many physical systems, ranging from material 
structures such as polymers, aggregation 
and interfaces, through to biology, medicine, 
electric circuits, computer interconnects, 
galactic clusters and stock market price 
fluctuations3. Exact fractals, on the other 
hand, seem merely to be mathematical 

constructs, and it is not at all apparent that 
they exist in nature.

In 1993 Mandelbrot won the prestigious 
Wolf Prize for “the widespread occurrence of 
fractals and developing mathematical tools 
for describing them”, which has “changed our 
view of nature”4. This prize was presented 
in the field of physics, not mathematics. It 
is therefore fair to ask the question: has our 
knowledge of fractals really changed the way 
we view nature? The beauty of self-similarity 
is clearly present in exact fractals. But can 
exact fractals be found in physical systems? 
Mandelbrot presented many fascinating 
fractal constructs that look exactly like 
pictures taken by a wonderful photographer, 
or like scenes from a fantasy movie. The 
very fact that mathematical constructs 
can be structured in such artistic ways is 
undoubtedly very pretty. But do exact fractals 
have any true significance in physics?

The field of optics was one of the first 
to demonstrate exact fractals in a physical 
reality. Various optical settings are known 
to generate fractals in space. For example, in 
1979 Michael Berry showed that diffraction 
from fractal structures can give rise to a 
fractal diffraction pattern5. In a similar 
fashion, fractal patterns emerge in many 
other optical settings, ranging from the lasing 

modes of unstable resonators6 through to 
light diffracting from a binary grating7.

Omel Mendoza-Yero and colleagues8 
recently demonstrated an interesting 
application of fractal optics by using an 
intriguingly simple method for forming 
temporal fractals from self-similar spatial 
structures. Their results highlight the 
interplay between time and space that is so 
inherent to coherent electromagnetic fields, 
and also suggest possible applications of 
‘fractal control’ in the important fields of 
arbitrary waveform generation and pulse 
shaping. However, one should note that this is 
a linear system, in which the entire evolution 
is determined by the initial conditions — 
hence the results are not really surprising 
from a fundamental viewpoint. In this sense, 
what would be surprising and indeed much 
more unexpected is a nonlinear dynamical 
system in which the entire dynamics behaves 
as an exact fractal.

This kind of ‘nonlinear thinking’ takes 
us back to early work on self-similarity and 
fractals in nonlinear optics in the 1980s. 
The first suggestion that fractals would 
naturally emerge in nonlinear optical 
systems was made by Sergei Manakov and 
Ildar Gabitov, who studied light propagation 
in an inverted two-level system9,10. A decade 
later, Sunghyuck An and John Sipe suggested 
that the evolution of Hill gratings is self-
similar11, and Curtis Menyuk, Decio Levi 
and Pavel Winternitz proposed that the 
transient regime of stimulated Raman 
scattering gives rise to self-similar pulses12. In 
all of these cases, there were hints from the 
experiments that self-similarity dominates 
the long-term behaviour.

Around a decade later, two of us 
(Mordechai Segev and Marin Soljačić, then at 
Princeton), together with Menyuk, made the 
connection between solitons and fractals13. 
Solitons are self-trapped wavepackets that 
interact with one another in a manner similar 
to the way that particles do. In some cases, 
solitons are self-similar; that is, their shape 
is universal and their amplitude scales with 
their width. This happens, for example, for 
temporal solitons in optical fibres and for 
one-dimensional spatial solitons, both in 

Figure 1 | Many examples of fractal structures, such 
as the Romanescu broccoli displayed here, can be 
found in nature. Experiments are now showing how 
self-similarity and fractals can be observed in both 
linear and nonlinear optical systems.
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Kerr-type nonlinear media. Our idea was 
that nonlinear soliton-supporting systems 
could evolve under non-adiabatic conditions 
to give rise to self-similarity and fractals. 
Such fractals were believed to be observable 
in many systems, in which their existence 
would depend on two requirements13. First, 
the system should possess neither a natural 
length scale (that is, the physics should be 
the same on all scales) nor a natural scale in 
the parameter range of interest. Second, the 
system should undergo abrupt, non-adiabatic 
changes in at least one of its properties. Of 
course, the first requirement could physically 
occur only over a finite range, but that range 
should yield at least several generations of the 
self-similar structure.

Immediately after the connection between 
solitons and fractals was made13, we, together 
with our co-workers at Princeton, proposed 
experimental systems in which Cantor set 
soliton fractals might be observable14. The 
goal was to design a system for generating the 
first exact fractals in nonlinear optics, perhaps 
even the first man-made exact fractals in 
nature. The idea involved launching a high-
power pulse into a sequence of pre-designed 
dispersion-managed fibres14. The pulse would 
break up into ‘daughter solitons’ that are 
self-similar to one another in the sense that 
they can be mapped (by a change of scale 
only) onto one another because they all have 
the same shape. If, however, an adequately 
abrupt change is made to a property of the 
medium such as the dispersion coefficient, 
each of the daughter solitons would undergo 
the same breakup experienced by the initial 
mother pulse and generate even smaller 
‘granddaughter solitons’. Successive changes to 
the medium properties thus create successive 
generations of solitons on successively smaller 
scales (Fig. 2). The resulting structure after 
every breakup is self-similar with the products 
of the first breakup. Successive generations of 
breakups lead to a structure that is self-similar 
on widely varying scales, and each part 
breaks up again in a structure that replicates 
the whole. The entire structure is therefore 
a fractal comprised of solitons14. What is 
intriguing in this scheme is that the entire 
dynamics is self-similar; the entire dynamic 
process of pulse breakup repeats successively 
on a smaller and smaller scale, forming a 
‘dynamic nonlinear fractal’. This concept 
of linking fractal behaviour with soliton 
dynamics attracted significant attention from 
the wider physics community. Important early 
results obtained by Jianke Yang and Yu Tan 
from the University of Vermont demonstrated 
that collisions between specific types of 
solitons give rise to a fractal structure15.

The idea of generating soliton fractals was 
so appealing that we (Segev and Soljačić) 
spent quite some time experimenting with 

wavepackets in space and in time, although 
generating exact fractals in nonlinear optics 
remained a challenge. Success was found 
8,707 miles away in Auckland, New Zealand, 
where the third among us (John M. Dudley), 
together with his co-workers, made the first 
successful demonstration of self-similar 
scaling in a fibre amplifier. This development 
facilitated the design and interpretation of 
experiments that are now considered to be the 
first example of fractal scaling in nonlinear 
optics16. Subsequent experiments reported 
self-similar evolution in a wider range of 
fibre systems, and important work led by 
Frank Wise at Cornell University in the USA 
showed how self-similarity can be combined 
with optical feedback to create a self-similar 
laser17. More recent research by Ömer Ilday 
and co-workers at Bilkent University in 
Turkey led to the development of a laser cavity 
that combines two very different classes of 
nonlinear dynamics: self-similar propagation 
in one branch and soliton propagation in 
another18. The resilience of this laser to noise 
(due to the attractive nature of the nonlinear 
propagation in both branches) provides 
greatly improved stability and represents a 
beautiful example of how exploiting nonlinear 
dynamics can yield new technologies that are 
not possible in strictly linear systems.

The study of self-similarity and fractal 
dynamics has now become an important area 
of research in nonlinear fibre optics. New 
classes of fibre and improved measurement 
techniques are now enabling experiments to 
test the early ideas of this field. For instance, 
the development of gas-filled photonic crystal 
fibre has finally allowed theoretical work 
on self-similarity in Raman scattering12 to 
be confirmed experimentally19. Even more 
recently, studies into the higher-order regimes 
of nonlinear modulation instability have 
revealed cascaded pulse splitting20 of a type 
very close to that of the original prediction 
in ref. 14 for the Cantor set fractal. Soliton 
fractals have also been observed in systems 
beyond optics. The first of these was the 

work of Mingzhong Wu, Boris Kalinikos 
and Carl Patton at Colorado State University 
in collaboration with Lincoln Carr at the 
Colorado School of Mines, USA, who 
demonstrated exact fractals with spin-wave 
solitons in magnetic films21. Soliton fractals 
are now also being explored throughout 
various systems in nature. 

We are now 45 years after Mandelbrot 
published his highly influential paper and 
almost 20 years after his Wolf Prize. The 
progress made in nonlinear optics over the 
past decade adds an important flavour to 
fractals because it proves that fractals — 
even exact fractals — can emerge naturally 
by virtue of interactions; that is, the 
nonlinear interplay between systems that is 
manifested in the plethora of light–matter 
interactions underlying nonlinear optics. 
There must be many other natural nonlinear 
systems in which fractals evolve naturally 
with self-similar nonlinear dynamics. In this 
respect, the statement made during the Wolf 
Prize ceremony was not only correct but 
visionary. Fractals are not merely prescribed 
linear structures; rather, nonlinear systems 
can give rise to dynamic fractals in which 
the entire evolution is self-similar on many 
scales. We are confident that the beauty of 
self-similarity has many more features yet to 
be discovered. ☐
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Figure 2 | Nonlinear Cantor set generation was 
first proposed from self-similar patterns of 
soliton-splitting.
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