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Abstract

We have discovered recently that nonlinear systems that support solitons can often, (under

proper conditions,) give rise to Self-Similarity and Fractals on successively smaller scales. Such

fractals can be observed in most soliton-supporting systems in nature. As an example of our

general idea, we present particular examples that theoretically predict Optical Fractals evolving

dynamically from a single input beam (or pulse).
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It has long been claimed that fractals, being one of the most fundamental concepts in

nature, can characterize (and in some cases, describe) natural phenomena [1]. In other words,

there is a large number of objects and processes in nature that can be described in terms of their

fractal properties. Indeed, fractals have been identified in material structures [e.g., polymers,

aggregation, interfaces, etc.], in biology, medicine, electric circuits, computer interconnects,

galactic clusters, and many other non-related and surprising areas, including stock markets [2].

In Optics, Fractals have been recently identified in conjunction with Talbot effect [3] and with

unstable cavity modes [4]. In both cases the system is fully linear and responds in a passive

manner to illumination by constructing fractals through linear diffraction. Here, we show that

nonlinear systems that support solitons can, under proper non-adiabatic conditions, evolve and

give rise to fractals on successively smaller scales. In the most general case, the end result are

statistical fractals, that is, a structure that exhibits self-similarity in its statistical properties on

successively smaller scales. However, for specific choices of parameters, the same system can

give rise to exact (regular) fractals. This is a unique case where exact fractals are a real physical

entity and not just a mathematical example. This capability of soliton-supporting systems to

generate fractals is universal and seems to hold for all systems in nature in which solitons exist,

irrespective of the type of waves (EM, density, etc.), the medium in which they propagate, and

the nonlinearity involved. To illustrate this general idea, we present a specific example that

theoretically predicts optical fractals that evolve from a single input pulse (or beam).

As an example of a soliton-supporting system, consider a system described by the

normalized Nonlinear Schrodinger Equation (NLSE:)

i
∂Ψ
∂z

+
1

2
∇T

2Ψ + f (| Ψ |2 )Ψ = 0 (1)

where the nonlinear term )|(| 2Ψf  is specific to the physical system involved, and ∇T
2  is the

Laplacian transverse to the direction of propagation z (the primary direction along which the
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carrier propagates, for envelope waves). For waves in a single transverse dimension [(1+1)D

NLSE], ∇T
2 =∂2 / ∂x

2 . Equation (1) describes many physical systems, primarily those in which

nonlinear waves propagate in centrosymmetric media [5], where Ψ  describes the slowly varying

envelope that modulates a fast underlying carrier wave. In particular, NLSE describes several

optical systems, [6,7], in which case Ψ  is the slowly varying amplitude of the electric field,

superimposed on an underlying single k vector carrier plane wave. We focus on the (1+1)D

NLSE and on two particular forms of nonlinearity that are common in optics [7]: the Kerr-type

where f (|Ψ |2) =| Ψ |2 , and the saturable type wheref (|Ψ |2 ) =| Ψ |2 /(1+ | Ψ |2 ). Extending our

ideas to other forms of nonlinearities is straightforward, and extending them to higher

dimensions maintains all the main results while adding beauty and complexity to the fractals

generated. The particular systems we discuss are just examples of the general principle we

propose.

Since df (| Ψ |2 )/ d | Ψ |2  > 0, both the Kerr, and the saturable nonlinearity are of the self-

focusing type, i.e., the nonlinearity has a tendency to shrink a pulse. In optical systems, this

happens because the presence of the light pulse increases the local index of refraction, which, in

turn, tends to shrink the pulse. The tendency to shrink competes with diffraction, which tries to

expand the pulse, and, for some NLSEs, these two tendencies can exactly cancel each other,

producing a localized pulse whose shape is stationary as it propagates: a soliton [8]. Solitons are

universal nonlinear phenomena, and they have fascinated scientists of many different fields for

more than 150 years now [9]. They have been described in many systems: on the surface of

shallow water [9], in deep sea water [5], in plasma [10], on the surface of black holes [11], for

torsional waves on DNA molecules [12], for sound waves in superfluid 3He [13], to name a few,

and of course in nonlinear optics, primarily as temporal [6] and as spatial solitons [7]. The
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solitons of the particular NLSEs we discuss in this article are very robust creatures. Even if one

perturbs them slightly from their equilibrium shape, they soon evolve into stable solitons again.

Consider first the (1+1)D Kerr NLSE, of which a fundamental soliton solution is Ψ(x,z).

One can obtain a whole family of solitons of Eq. (1) by a simple re-scaling:

Ψ(x,z) → qΨ(qx,q2z) for any real q. According to the definition of self-similarity, this means

that all solitons of the same order of this equation are self-similar to each other [14]. That is, a

simple re-scaling of solitons' coordinates, and their amplitudes relates (and ‘maps’) all solitons to

one another; one can take any soliton of this equation, and by this simple rescaling map it onto

any other soliton, point by point. The physical base for this self-similarity is the fact that the

(1+1)D Kerr NLSE does not have any natural scale built into it. Thereby the physics of this

equation looks the same on all scales.

In contrast with the Kerr nonlinearity, the (1+1)D saturable NLSE does have a natural

scale, because of the number 1 in the denominator of the nonlinear term. However, for

| Ψ |2<< 1, the nonlinearity reduces to the Kerr nonlinearity, so self-similarity can also exist in

the saturable case. Furthermore, if a soliton of (1+1)D saturable NLSE satisfies

| Ψ(x = 0,z) |2>> 1 in the regions where most of the energy of the soliton is contained, we can

capture most of the physics by approximating | Ψ |2 /(1+ | Ψ |2) ≈ 1− (1/ |Ψ |2 ). Of course, this

approximation does not hold at the tails of the soliton. Still, most of the interesting properties

can be captured by studying (1+1)D NLSE with a nonlinearity given by 1− (1/ |Ψ |2 ) ; we call

this nonlinearity the “deep-saturation nonlinearity”. We have checked numerically that if the

condition | Ψ(x = 0,z) |2>> 1 is satisfied, then indeed most of the soliton’s physics is captured by
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studying the (1+1)D Deep-saturation NLSE. If Ψ(x,z) is a solution of the (1+1)D deep-

saturation NLSE, then a whole family of solutions can be obtained by re-scaling

Ψ(x,z) → eiz(1−q 2 )Ψ(qx,q2z)/ q , for any real q. Therefore, all solitons of the same order of

(1+1)D saturable NLSE are related by this simple re-scaling, as long as most of the energy of the

solitons is in the regions where | Ψ |2>> 1; all of these solitons are self-similar to one another in

their physical properties, such as intensity shape etc. This is because the natural scale in the

saturable NLSE is visible only in the margins of the intensity profile of the soliton, and its effect

on the shape is tiny.

We now introduce the concept of the soliton existence curve [15], a two-dimensional

curve that gives the FWHM of the soliton intensity in normalized units, as a function of the peak

amplitude of the corresponding soliton, Ψ0 ≡ Ψ(x = 0,z). The curve is drawn for the set of all

solitons of the same order of a given NLSE, where each soliton is represented by a point on the

graph. This yields a curve, which describes all possible same order soliton solutions in parameter

space: the soliton existence curve. Different NLSEs have different existence curves, and solitons

of different orders of the same NLSE lie on different existence curves. According to the scaling

relation described above, all existence curves (of solitons of all orders) of Kerr NLSEs are

parallel lines of slope -1 on a log-log plot. The existence curves of saturable NLSEs are also

parallel lines of slope -1 on a log-log plot (which coincide with the Kerr curves) in the region

Ψ0 << 1. On the other hand, in deep-saturation where Ψ0 >> 1, the existence curves are parallel

lines of slope 1 on a log-log plot like in Fig. 1. The region in between these two regimes, i.e.,

where Ψ0 ~ 1, we call the valley. All solitons of the same order of a saturable NLSE are to a

large extent self-similar to each other as long as they are all on the same side of the valley.
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The existence curves are a useful physical tool for NLSEs whose solitons are known to

be stable. These curves are helpful in predicting the outcome of collisions in non-integrable

systems [16] and in identifying the spectrum of solutions for multi-mode (vector) solitons [17].

The existence curves can also provide information about the evolution of arbitrary input pulses

into solitons. Consider a pulse of width w and peak amplitude Ψ0, and assume that this pulse

does not have the stationary soliton shape. For example, in optics, one would typically have

Gaussian beams at the input, which is never the same as the stationary lowest order soliton

shape. This pulse is represented by a point with coordinates (Ψο,w) on the existence curve plot.

If this point is close to the curve, then the pulse soon evolves into a stable soliton shape (while

shedding some power in the form of radiation modes or smaller scale solitons). Since the

solitons of the NLSEs we study here are stable, this happens even though their initial shape only

approximates a soliton.

As discussed above, Kerr solitons are all exactly self-similar, and deep-saturation solitons

are all approximately self-similar; hence, it is now compelling to ask: "Can solitons of various

scales coexist in the same nonlinear medium simultaneously?" If the answer is positive, can they

coexist within one another in a fractal structure? And, if the answer to this question is also

positive, then how can a nonlinear system be driven to generate solitons organized in a fractal

structure? The answers to all of these questions are in the response of the nonlinear system to a

non-adiabatic change in one (or more) of its properties. As described below, an abrupt change in

the nonlinear coefficient, or in the saturation coefficient (in saturable systems), or in the

dispersion coefficient (for temporal solitons), or in almost any parameter that leads to a large

deviation of the pulse from the soliton existence curve, will lead to the appearance of a fractal

structure driven by soliton dynamics. In our simulations, we observe self-similarity and fractals
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both in the Kerr regime, and in the deep-saturation regime of Eq. (1).

Our goal is to design a physical system that can support many solitons all of different

sizes simultaneously. Since the solitons of the (1+1)D Kerr and saturable NLSEs are robust, if

one starts with a pulse that is close to a soliton shape, the pulse evolves into a stable soliton.

However, if one starts with a pulse whose shape is very far off the existence curve, this pulse is

not able to evolve smoothly into a soliton. Under proper conditions, this input pulse breaks up

into smaller pieces and radiation. Quite often, the pieces resulting from this "explosion" include

many small solitons, all of different sizes. If the nonlinearity is such that these solitons are self-

similar to each other, one can claim to have observed self-similarity.

We distinguish between two scenarios that produce such breakup. The first is driven by

noise and is easier to realize experimentally. Consider a pulse whose initial width is far above

the existence curve launched into a nonlinear medium in the regime that can support self-similar

solitons; the width of the pulse is much larger than the soliton of such peak intensity. Therefore,

small perturbations (initiated by noise) of large wavelengths grow on top of the pulse as it

propagates. After some distance, the energy in these perturbations becomes significant, and the

pulse breaks up into smaller pulses. This phenomenon is known [6] as Modulational Instability

(MI). In many systems, the products of this breakup include many solitons of different sizes. We

call it “MI-induced breakup”. An example of such a breakup in saturable NLSE is given in Fig.

2.

The second breakup scenario is "Dynamics-induced breakup". It is observable in

numerical calculations that inherently have no or very little noise. It is also observable in “clean”
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experimental systems, like temporal solitons in optical fibers [22]. Consider a pulse above the

existence curve launched into a self-focusing medium. The local intensity increases the local

index of refraction, thereby creating a waveguide structure that attracts light to the center of the

induced waveguide. If the initial width of the pulse is much larger than the width of the lowest

guided mode of this induced waveguide, the light coalesces towards the center trying to reach

the solitonic shape, in which diffraction is exactly balanced by self-focusing. However, once the

equilibrium is reached the pulse keeps shrinking because of its inertia. Since the equilibrium

could not have been reached smoothly (the pulse is initially far above the existence curve), the

pulse explodes into smaller pieces, which form smaller solitons of different sizes. For an

example in saturable NLSE, please see the top plot of Fig. 3. Since both the underlying equation

and the initial pulse obey left-right symmetry, the output multi-soliton pulses also obey this

symmetry (in contrast with an MI-induced breakup, since noise obeys no symmetry). At any

rate, Fig. 2, and the top plot in Fig. 3 clearly demonstrate self-similarity in systems that allow for

existence of solitons.

In order to create fractals, one can apply the logic that has caused such breakups in a

repetitive manner. The breakups into self-similar solitons were caused by an abrupt change from

a medium in which the input pulse was stable into a second medium that tried to force the pulse

to be much narrower. In the above examples, the initial medium is free space and the second

medium is a self-focusing medium that supports solitons that are much narrower than the input

pulse, when both have the same peak intensity. The same logic can be applied when the initial

medium is nonlinear, when the abrupt transition is from a medium in which the input pulse is a

stable soliton into a medium that breaks it up into much narrower solitons. In other words, if

after the abrupt transition, the pulse is much wider than the soliton of the same intensity (i.e., the

pulse is far above the existence curve), it cannot evolve smoothly into a single soliton. Instead, it
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explodes into solitons of different scales. In this spirit one can take the output “daughter

solitons” at the end of the top plot in Fig. 3, and make an abrupt change in the nonlinear medium

in which they propagate, and force each one of the “daughter solitons” to break up into a train of

smaller solitons. This happens if the change moves the position of the “daughter-solitons” far

above the existence curve. Such a change in the nonlinear medium can be realized either by

altering the intensity of the pulses abruptly, or by changing the coefficient in front of ∇T
2
 in Eq.

(1), or by changing the properties of the nonlinearity (magnitude, saturation, etc.). It is important

that the change in the conditions is abrupt; an adiabatic change does not cause a breakup, but

instead the pulse adapts and evolves smoothly into a narrower soliton, as shown in Fig. 5. When

the change is abrupt and large enough, each of the pulses undergoes a self-similar breakup as

illustrated in the middle plot of Fig. 3, or top plot of Fig. 4. This process can be repeated, in

principle, an infinite number of times, thereby creating a fractal structure. Of course, all the

resulting solitons after each breakup have to be in the regime where they are all self-similar to

each other.

A three stage fractal is presented in Figs. 3, and 4. These breakups are dynamics-induced.

At the input, self-focusing is much stronger than diffraction for a pulse of that width, so the pulse

contracts and eventually breaks up into many self-similar solitons observed at the output of the

upper-left figure. At the plane of the output of the upper-left figure, we change the denominator

in the nonlinear term from 1+ |ψ |2   to 1+ (|ψ |2 / 8). This makes all the pulses at the output of

the upper-left figure have amplitude 8 times smaller than solitons of the same widths have. Then,

we propagate the output of the upper-left figure for a few more diffraction lengths, resulting in a

self-similar breakup of every pulse, as shown in the middle plot of Fig 3. At the output of the

middle plot of Fig. 3, we change the nonlinear term into 1+ (|ψ |2 / 64), and propagate the pulse

further. As shown in the bottom plot of Fig. 3, we observe one more stage of self-similar breakup.

In these simulations, we use the saturable 
|ψ |2

1+ |ψ |2
 nonlinearity, to show when we expect the
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fractal generation process to end in a real system. In this case, the third stage shown by bottom

plot is the final breakup, because most of the end solitons at this stage are of peak intensities on

the order of unity, which cease to be self-similar. As for the other end of this process, i.e., the first

breakup, there is no upper limit: one can start this fractal generation process by literally breaking

up plane waves. In practical systems in nonlinear optics, we expect to observe at least 3-4

breakup stages.

Let us go back now to the definition of a fractal [2] as “an object which appears self-

similar under varying degrees of magnification. In effect, possessing symmetry across scale,

with each small part replicating the structure of the whole”. It is obvious that the structures

described in Fig. 3 are fractals: they are self-similar within  each scale (i.e., the “daughter

solitons” after each breakup), and they are also self-similar over at least three widely separated

scales. Also, as we show by the increasing magnification (Fig. 3), each part breaks up again and

again in a structure replicating the whole. It is obvious that we have found a way to generate

fractals, which are driven by soliton dynamics.

Several topics merit discussion. First, we note that fractals generated through the Kerr

NLSE are exact fractals as they possess an exact and strict self-similarity on all scales. They

have no upper or lower limit on the scale, as long as the underlying equation still describes the

physical process within its approximations. They are self-similar everywhere. On the other

hand, fractals generated through the saturable NLSE are more like natural fractals, because

they are self-similar only at points where the intensity is much greater than unity and are not

self-similar at the tails of each pulse. We want to emphasize the resemblance of our fractals to

Cantor Sets [2]. The fractal structures in Figs. 3, and 4, are actually Randomized Cantor Sets,

because at any given stage self-similar structures (soliton-like pulses) of various scales coexist,
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with the distances between these pulses varying in what looks like a random manner, especially

in the presence of significant noise.

Nevertheless, we have shown recently that the principle we described can be applied to

create exact (regular) fractals as well. We simulated (1+1)D cubic self-focusing NLSE, and

varied the dispersion coefficient in a prescribed manner, so that before each breakup we always

start from the same point above the existence curve. This gives rise to the exact (regular) fractals

shown in Fig 6. In Fig 7, we show the excellent overlap between the outputs of the various

stages in the process (when they are all magnified and stretched to be on the same scale), thereby

demonstrating that our fractals are indeed exact Cantor Sets. This is one of very rare physical

systems in nature that supports exact (regular), as opposed to statistical (random) fractals.

One more issue that merits discussion is the question of the fractal dimensions. In the

case of random fractals, like in Figs. 3, and 4, one can estimate the fractals dimension using box-

counting method. However, in case of exact fractals, like in Fig. 6, one can calculate various

fractal dimensions exactly. For example, one can take a fractal from Fig. 6, and construct a  line-

shaped Cantor set from it by drawing lines connecting the two half-maximum points for each

soliton; these lines form a Cantor Set in the usual sense. The fractal in the left column of Fig. 6

would hence have "similarity dimension" of 0.2702, while the fractal in the right column of Fig.

6 would have a "similarity dimension" of 0.43175. Of course, the fractal dimension is specific to

the system and the initial conditions used. Another topic has to do with fractals in higher

Euclidian dimensions, e.g., in full 3D. Since the ideas presented are not restricted by

dimensionality, they should be easy to translate into higher dimensions and we envision fractals

that have two different transverse scales, that is, when the width of every pulse in x is much
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different than that in y. However, caution must be taken to make sure that the system can support

(2+1)D soliton structures first. For example, “bright” 2D fractals cannot be generated through

the Kerr NLSE because bright (2+1) D Kerr solitons are highly unstable unless they are

organized in particular “necklace” structures [19]. The saturable NLSE, on the other hand, is

known to support stable bright (2+1)D solitons [20], so we expect it to support 2D fractals as

well.  There are many other new ideas under research, but the main challenge is experimental: to

demonstrate fractals.

In conclusion, we have proposed a general scheme of generating fractals by the dynamics

of solitons that undergo abrupt changes along their propagation paths [21]. This method of

fractal generation is universal and should exist in any nonlinear system that can support solitons.

Interestingly, this is one of the very few cases in which one can generate fractals experimentally

and investigate them theoretically knowing all the physics involved. Furthermore, this is one of

very rare physical systems that can support exact fractals as well. In fact, experiments are

currently carried out in our laboratory to demonstrate fractals from spatial and temporal solitons.
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University.  The work of M.S. and M.S. was supported by the US Army Research Office. S.S.,

D.K., and K.B. acknowledge support from the US Office of Naval Research.
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Figure 1: Existence Curves of Kerr-type solitons (dashed line), solitons in a saturable nonlinear

medium (solid curve), and deep-saturation solitons (dashed-dotted line), all in (1+1) D. The

vertical axis gives the normalized width of the intensity of the soliton, in the x-units of Eq. 1. The

point indicated by  *  describes the input pulse to the fractal-generating process of Fig. 3.
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Figure 2: An example of an MI driven breakup, starting in the deep-saturation regime of (1+1)D

saturable NLSE. The initial pulse was 80 times wider than the soliton of the same peak amplitude,

and there was a significant amount of background noise.
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Figure 3: A 3-stage self-similar dynamics-driven breakup creating a fractal structure starting in

the deep-saturation regime of the (1+1)D saturable NLSE. The initial pulse is given by point * in

Fig. 1. The 1st stage is given in the top plot. A detail of the 2nd stage is given in the middle plot.

Finally, a detail of the 3rd stage is given in the bottom plot.



18

Figure 4: Top view of a 3-stage self-similar breakup creating a fractal structure starting in the

deep-saturation regime of the (1+1)D saturable NLSE. The 1st stage is given in the upper-left plot.

The 2nd stage is given in the upper-right plot. A magnified detail of the 2nd stage is shown in the

lower-left plot. The continuation of evolution of that detail into the 3rd stage is given in the lower-

right plot.
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Figure 5: An adiabatic change of the physical system in which the pulse propagates does not

cause the required breakup. We start with a pulse that is initially a soliton of the (1+1)D cubic

NLSE, and vary the saturation coefficient adiabatically (i.e. the characteristic propagation length

scale on which the coefficient varies is much longer than the characteristic length scale of the

pulse propagation given by the diffraction length of the pulse at any given moment.) Instead of

breaking up, the soliton keeps evolving smoothly into whatever the instantaneous solitonic shape

is. Physically this is expected because solitons of (1+1)D cubic NLSE are very stable creatures.



20

Figure 6: The two columns of the figure represent exact (regular) Cantor set fractal generation

for two particular cases in the (1+1)D cubic self-focusing NLSE. In each case, we start with a

sech-shaped pulse that is significantly higher than the soliton of the same width, as shown in the

first row. The pulses start breaking up, as shown in the second row. When they acquire the shape

depicted in the second row, we abruptly significantly decrease the diffraction coefficients in the

underlying equations. This induces the second stage of the breakup and results in the shapes

shown in the third row. Then, once again we decrease the diffraction coefficient abruptly, and

induce the third stage of the breakup shown in the fourth row. In some cases, the pulses were too

tiny to see at the given magnification, so the insets in the plots show magnified details of their

corresponding plots.
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Figure 7: This illustrates the fact that the fractals we generated in Figure 6 are indeed exact. We

take the shapes of the second row of Figure 6, shift the shapes, rescale them with the appropriate

factors, and superimpose them on the insets of the last row of Figure 6. The doted-lines represent

the rescaled versions of the shapes of the second row of Figure 6, while the full-lines represent the

shapes of the insets of the last row of Figure 6. The overlap in the left plot is so excellent that the

two curves can hardly be distinguished.


