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Abstract: Using detailed numerical simulations, and theoretical modeling,
we predict a new super-collimation operation regime which is very sensitive
on frequency. This operation regime is predicted to exist in 2D photonic
crystals of dielectric rods in low index media. We explain the physical
origin of this operation regime, as well as discuss how it could be of interest
for implementation of low-power non-linear devices, novel sensors, as well
as low-threshold lasers.
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1. Introduction

During the last two decades, photonic crystals(PhCs) [1,2] have been used to implement numer-
ous micro optical devices with outstanding performance, in many cases due to their rich and
engineerable dispersion relations. Among them, super-collimation (SC) [3–16], which is as-
sociated with a zero-curvature segment of the equi-frequency-contour (EFC), resulting in non-
diffracting beams, has been intensively studied. SC originates from the fact that group velocities
of Bloch modes are perpendicular to the EFC, so that the modes within the flat EFC segment
all propagate in the same direction, as thus the diffraction is eliminated. As a boundary-less
waveguiding mechanism, SC proved to be promising in implementing micro optical devices:
beam splitters [7–9], interferometers [10], filters [11], polarization splitters [12,13], etc. The ro-
bustness of SC has been verified via centimetre scale experiments in a silicon platform [14–16].
SC has also been found in layered PhCs, as well as in metamaterial systems [17–20].

Generally, SC is strictly valid only at a specific frequency ωsc, where the EFC curvature
is identically zero. Around ωsc, there is a frequency range where the EFC curvature is close
to zero, so that SC is a good approximation also within this frequency range. We define the
frequency sensitivity of SC (FSSC) as the rate of change of EFC curvature with respect to ω

around ωsc. For some applications, large bandwidth approximate-SC has drawn a substantial
interest since it allows transmission of polychromatic light and supports more signal channels
[21–23]. However, for certain other applications, extremely narrow approximate-SC frequency
range, with low group velocity υg is more useful. Examples include devices which explore
interplay between SC and nonlinearity [24–27], or those that explore laser design with SC
[28–30]. In other words, high FSSC is desired: in that case, the curvature of EFCs strongly
deviates from zero when the working frequency ω is even only a little bit different from ωsc.

To appreciate why high FSSC is of interest in the interplay between SC and nonlinearity
consider the following. First, suppose that the PhC comprises a nonlinear material, and that
the incident beam frequency is near ωsc of the PhC. Second, the large intensity of the incident
beam (or external pumping light) can cause a nonlinear index change, so that ωsc is shifted.
Thereby, the curvature values (even their sign) of all the nearby EFSs (which determines the
beam diffraction behavior), could be substantially modulated. Hence, new phenomena and de-
vices could be implemented, such as tunable or self-locked beam-width [25], spatial-temporal
soliton [27] and ultra fast optical switches [28]. Since the nonlinear index change is very small,
one generally needs the EFC curvature around ωsc to be very sensitive to frequency in order
to observe considerable beam-modulation effects. In a similar way, when one aims to explore
low-loss SC beam to design new free-path lasers [28], FSSC will enhance the cavity quality
factor and facilitate the single-mode behavior. Therefore, high FSSC could be quite useful for
light behavior modulation and lasing cavity design near ωsc. Moreover, with high FSSC, other
devices, such as extremely sensitive micro-scale on-chip spectrometers could be implemented.
However, to the best of our knowledge, a detailed study of how to improve FSSC is still lacking.

In this article, we show that SC of an extremely high frequency sensitivity could be achieved
in 2D rectangular lattice PhCs which consist of dielectric rods in air. This phenomena is mainly
caused by saddle-type van Hove singularities [31]. First, we show theoretically that the fre-
quency sensitivity of the EFS curvature close to ωsc is strongly enhanced as the group velocity
becomes small. Second, we demonstrate that saddle-type van Hove singularities, i.e., points
with zero group velocity, can be tuned arbitrarily close to ωsc by reducing the symmetry of the
lattice type and changing the aspect ratio of the lattice constants, so that an extremely-high-
sensitivity SC is obtained. In addition, by analysing the spatial distribution of the Poynting
vectors of the Bloch modes associated with such high FSSC, we can explain why such ex-
tremely sensitive SC can exist widely in the multi-parameter space of PhC design, and why this
phenomenon is very robust. Finally, we propose a few different possible applications of high
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FSSC.

2. Models and theory

We start by analyzing the EFCs close to ωsc in Fig. 1 for the second TE band of two 2D
square-lattice PhCs, whose vertical dimension is assumed to be infinite; from this, we can ob-
tain some clues about the properties of FSSC. Figure 1(a) corresponds to the holes of air in a
dielectric background type (hole-type) PhC and Fig. 1(b) corresponds to the rods of dielectric
in air background type (rod-type) PhC. The radius of both air holes and dielectric rods are the
same in these two examples: r = 0.30a, where a is the lattice constant. The dielectric materi-
als in both PhCs are also the same: nd = 3.4. From Fig. 1, we can roughly estimate that the
FSSC of rod-type PhC is much higher than that of hole-type, since the frequency difference
between the neighbouring EFCs around ωsc in Fig. 1(b) is 0.002(2πc/a), while in Fig. 1(a)
it is 0.02(2πc/a). Notice the presence of saddle-type van Hove singularities, noted as S1 (red
diamonds) in Fig. 1(b); they are absent in Fig. 1(a). In what follows, we will derive a quantita-
tive expression of FSSC and reveal that such singularities are essential for implementing high
FSSC.

From now on, we will denote the central point of SC EFC segment at ΓX axis in Fig. 1 as the
“SC point”, and all the physical values will be defined around the SC point. Within the paraxial
approximation, the physical quantity that measures the strenghth of FSSC is defined as:

γ =
dκ0

dω
|ω=ωsc (1)

where κ0 = (1/2)∂ 2kx/∂ky
2|ky=0 is the EFC curvature along the ΓX axis [32], which can also

be expressed as [33]:
κ0 =

ω,yy

ω,x
|ky=0 (2)

the subscripts after commas denote partial derivatives with respect to k components: e.g. ω,x =
∂ω

∂kx
≡ υgx and ω,yy =

∂ 2ω

∂ky
2 . Substituting Eq. (2) into Eq. (1), we obtain:

γ =
dκ0

dkx
/

∂ω

∂kx
|ky=0,ω=ωsc = (ω,xyy−ω,xx ·κ0)/ω

2
,x|ky=0,ω=ωsc (3)

Because κ0 = 0 for the SC point (with ω = ωsc and ky = 0), it follows that:

γ =
ω,xyy

ω,x2 |ω=ωsc,ky=0 =
ω,xyy

υg2 |ω=ωsc,ky=0 (4)

Since ω,xyy is finite and slowly-varying in our PhCs, Eq. (4) is indicative that FSSC is hugely
enhanced in PhCs in which group velocity is small at the SC point. Using Eq. (4) and applying
finite difference approximation with step ∆kx = 0.002(2πc/a) and ∆ky = 0.01(2πc/a), we com-
pute the values of γ for the hole-type and rod-type PhCs from Fig. 1, which are 75.1(a2/4π2c)
and 1047.4(a2/4π2c), respectively, thus confirming quantitatively that FSSC is substantially
higher in rod-type PhCs. Actually, difference of FSSC between hole-type and rod-type PhCs
is also mentioned for the first TM band previously [34], but the difference is much smaller
compared to ours since both of them are lacking of saddle-type van Hove singularities.

From further numerical investigations of various kinds of PhCs, we noticed that when there
are saddle-type van Hove singularities near the SC frequency, the FSSC is greatly enhanced.
This can be understood from Eq. (4) because the saddle-type van Hove singularity is character-
ized by zero group velocity. We can explore this understanding to propose a strategy for further
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improvement of FSSC. In particular, one way to enhance γ is to bring the saddle-type van Hove
singularities S1 closer to the SC point. However, due to the requirement of symmetry, S1 sin-
gularities of a square lattice are constrained to be on the ΓM axis [31]. Therefore, we need to
reduce the symmetry of the lattice. A simple way to do this is to change the square lattice into
a rectangular lattice, whose lattice constants are a and b, in x and y directions, respectively. We
find that the position of S1 singularities strongly depends on the ratio β = b/a. More signifi-
cantly, with a proper value of β , S1 singularities can even be tuned arbitrarily close to the SC
point, so that an extremely high FSSC can be achieved.
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Fig. 1. Diagrams of EFCs within the half Brillouin zone in the second TE band of two
2D square lattice PhCs. (a) corresponds to air holes PhC in dielectric background, while
(b) corresponds to dielectric rods PhC in air background. In both Figs., the flat segment
of the EFC representing SC is highlighted by a dashed double arrow, and the central point
of such a segment is called the SC point. The red diamond point labelled as S1 in (b) is a
saddle-type van Hove singularity.

We start with the rod-type PhC from Fig. 1(b), and change b to vary β from 1.0 to 2.0: A
few resulting EFCs around ωsc, as well as the corresponding movement of the singularities are
shown in Fig. 2. As can be seen in Fig. 2(a), with β = 1.2, the S1 singularities start to deviate
away from the ΓM axis and move towards the ΓX1 axis. As we see in Fig. 2(b), a local maximum
point S2 (originating from the Γ point of the square lattice), which is also characterized by zero
group velocity, moves towards the SC point along the ΓX1 axis as β increases. Before they
merge, these three zero-group-velocity points form the basic feature of the EFCs around the
SC segment, which is indicated by the dashed two-arrow lines in Fig 2(a) and Fig. 2(b). Note
that the angle range of the SC is reduced when the three singularities approach the SC point.
In Fig. 2(c) with β = 1.5, all three singularity points are very close to the SC point and the
angle range of SC is very small. We can expect that there is a critical case, when β equals to
a specific critical value βc close to 1.5, such that the singularity points are arbitrarily close to
the SC point. The most interesting phemomena happen when β is larger than βc. For example,
observe the case when β = 1.6 as in Fig 2(d), where the three singularity points have merged
into one saddle-type van Hove point on the ΓX1 axis, resulting in the appearance of SC EFC
which extends through the entire BZ, meaning that the beam can be collimated at all angles [35].
FSSC in Fig. 2(d) is quite high, as the EFC curvature changes considerably even with frequency
change smaller than 0.1%. For even larger β , as in Fig. 2(e) and Fig. 2(f), we can see that FSSC
is subtantially reduced compared with Fig. 2(d), but is still considerably high compared with
typical PhCs.

Figure 3 displays γ and υg at the SC point versus β . As we have theoretically predicted in Eq.
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Fig. 2. Diagrams of EFCs around ωsc, showing van Hove singularities and SC points in the
second TE band of 2D rectangular lattice rod-type PhCs with fixed radius of rods r = 0.30a
and various lattice aspect ratios β . The red diamond points labeled S1 are a saddle-typed
van Hove singularities, and the blue square point labeled S2 is a maximum-type singularity.

(4), it is clear that, as group velocity approaches zero, γ is dramatically enhanced, and becomes
divergent at the critical point with βc = 1.51. If the operating wavelength is assumed to be 1550
nm, the fact that the experimental accuracy of modern semiconductor techniques is about±5nm
implies that the accuracy of experimentally achieving a targeted β is better than 0.01. Hence,
from Fig. 3, we can see that the value of γ could be as high as 107(a2/4π2c), which is 5 orders
of magnitude larger than the common case(e.g. Fig. 1(a)). Even with β = 1.6 as in Fig. 2(d),
γ = 4×104(a2/4π2c) which is about 600 times higher than Fig 1(a).

We need to emphasize that the extremely high FSSC is not an anomalous phenomenon which
only exists in a very small multi-parameter space. Quite on the contrary, we found that it exists
in a very wide range of structures: i.e. rod index 3.4> nd > 3, radius 0.45a> r > 0.2a and lattice
aspect ratio 2.0 > β > 1.3. The fact that this phenomenon exists in such a large multi-parameter
space greatly facilitates the possibility of optimizing designs for different applications.

3. Origin of high FSSC and the flexible dual-vortex form of Bloch waves

Highly sensitive phenomena in physics are usually not robust, and typically do not exist over
a large multi-parameter space; it is natural to wonder what is the physical origin of high FSSC
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Fig. 3. Sensitivity parameter γ and υg at the SC point as a function of the lattice aspect ratio
β .

that we described in this manuscript. To achieve extremely sensitive and broad-angle SC, there
are two conditions that must be satisfied simultaneously, (i)the group velocity in y-direction has
to be close to zero υgy ≈ 0 along the entire SC EFC even when ky is far from zero, (ii) the group
velocity at the SC point in x-direction has to be very low: υgx << c/n according to Eq. (4).

Group velocity behavior can be understood by analyzing the local Poynting vector S(r) in
a unit cell of PhC, since υg =

∫
d2rS(r)/

∫
d2rU(r) [36], where U(r) is the energy density,

and the integration is over the unit cell. In Fig. 4, we show the spatial distributions S(r) of
two Bloch modes: with ky = 0 (the SC point), and ky = 0.1 ·2π/b, on the SC EFC of the case
in Fig. 2(d), where β = 1.6. For the mode with ky = 0 in Fig. 4(a), one can see formation of
dual-vortex in S: we will show that this is the origin of high FSSC. The requirement υgy = 0
is automatically satisfied because of the up-down symmetry. The reason for the low υgx is also
clear, since the Poynting vector in the central part of the cell (with y ∼ 0) is pointing towards
the left direction, while in the upper and the lower parts it is pointing towards right: this way
they can almost cancel each other. Such cancellation also reveals why is it that we can obtain
an extremely high FSSC by tuning only β . When we increase the lattice constant b in the y-
direction, the existence of dual-votices persists, but the relative area of the upper and the lower
parts increases; in other words, the right-going energy current becomes stronger and stronger.
When the right-going current in the upper and the lower parts cancel the left-going current in
the central part, the group velocity decreases to zero, and the extremely high FSSC appears.

In Fig. 4(b) with ky = 0.1 ·2π/b, the dual-vortex form gets modified by rotation through an
angle since the up-down symmetry is now broken. Such rotation of dual-vortex does not change
much the total energy current in the y-direction, so υgy remains close to zero. Moreover, such a
rotation will increase the total current in the x-direction slowly, so that υgx increases with larger
ky, which can also be seen in Fig. 2(d). We have also investigated modes with even larger ky:
dual-vortex form rotates by an even larger angle. Actually, the dual-vortex form is very typical
for Bloch modes in this band, and this explains the large multi-parameter space in which high
FSSC exists. The flexibility of the dual-vortex form also provides intuition why high FSSC is
so robust. Therefore, we can understand the origin of high FSSC through the existence of the
dual-vorex form of the relevant Bloch modes.
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Fig. 4. Spatial flux distributions within one unit cell, for modes of ωsc in 2D rectangular
rod-typed PhCs with r = 0.30a and β = 1.6. (a) corresponds to the SC point with ky = 0,
while (b) corresponds to ky = 0.1(2π/b). In each Fig., the dashed circle represents the
boundary of the dielectric rod.

4. Summary and discussion

In summary, we have described SC with frequency sensitivity enhanced by several orders of
magnitude, in 2D rectangular lattice PhCs consisting of dielectric rods. This phenomemon can
be mainly attributed to saddle points that are present close to the SC point, which reduce the
group velocity at the SC point. The relation between the group velocity at the SC point and
the frequency sensitivity of SC is revealed by an analytical expression(Eq. (4)). The underlying
physical mechanism that explains why the SC point and the saddle point could be brought
arbitrarily close is well explained by inspecting the dual-vortex spatial flux distribution.

Range of possible applications of SC with very low group velocity and extremely high fre-
quency sensitivity is very wide. As we mentioned before, new nonlinear devices, such as ultra-
fast switches, or self-locked beam modulators could be designed. In these devices, the diffrac-
tion behavior of micro-beams could be modified considerably with even a small nonlinear index
change. Novel low threshold lasers could also be enabled since a low group velocity SC beam
is an ideal base for micro-beam lasers. Sensors with extremely high sensitivity of small index
change could also be implemented, as well as very compact spectrometers.
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