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ABSTRACT

When a very broad wave-packet propagates in non-linear media, small perturbations

sometimes grow on top of such a beam, modulating its shape. These kinds of instabilities are

very common for non-linear wave propagation. My research investigates non-linear wave

systems in several physical systems, with one unifying theme: instabilities. All of these studies

relate to universal phenomena that are not material-specific, but apply to many non-linear wave

systems in nature, beyond optics and electromagnetism.

In the first two chapters, we present the first stable bright self-trapped beams in (2+1)D

Kerr media, so called necklace beams. We study numerically stability of necklace beams with

respect to noise. We follow up with an analytical study of the dynamics of necklace beams, and

show how one can understand analytically, and control experimentally their radial dynamics.

Building on our work on necklace beams, we propose necklace beams that carry angular

momentum. We study their various properties including: the allowed angular velocities, the

underlying centrifugal force, the slowing-down of angular velocity due to the increase of

moment of inertia, etc. In addition, we propose the first self-trapped beams in optics that carry a

non-integer per-photon angular momentum.

In a following chapter, we explore various kinds of non-linear instabilities to show

theoretically that one can construct fractals in almost any solitonic system in nature. We

demonstrate numerically the generation of statistical fractals in examples of typical physical

systems in optics. Moreover, we demonstrate numerically how one can also use our principle to
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generate exact fractals, which are extremely rare in nature. Finally, we also present experiments

demonstrating our ideas.

In the last part of the dissertation, we demonstrate theoretically the existence of

modulation instability in incoherent wave-systems in non-instantaneous non-linear materials. We

study its properties analytically, and numerically. We show that, in contrast to the well-known

modulation instabilities in all loss-less coherent wave systems, one needs to have non-linearity

above a certain threshold in order to observe the instability. This threshold is specified by the

degree of coherence of the incident waves. Finally, we show first experiments with incoherent

modulation instability which confirm our theoretical predictions.
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CHAPTER 1: INTRODUCTION

1.1. SOLITONS

In linear media, localized wavepackets typically spread as they propagate. However, in

some non-linear materials, non-linearity can under proper conditions stop the spreading, and

such wavepackets do not change their shapes at all as they propagate. These wavepackets are

then called solitons. In 1834, a Scottish scientist John S. Russell observed a "rounded smooth

and well defined heap of water" propagating in a narrow and shallow canal "without change of

form or diminution of speed" [2]. This was the first scientifically documented observation of

solitons in nature. Nevertheless, solitons are quite general non-linear phenomena, and they have

so far been described on surface of black holes [3], plasma waves [4], sound waves in He3 [4],

etc.

1.2. OPTICAL SOLITONS

In optics, the best-studied solitons are temporal and spatial solitons. In temporal solitons,

the linear spreading is in temporal domain (dispersion), while in spatial solitons, the spreading is

in space (diffraction). If one launches a localized pulse into a linear fiber, after some propagation

distance, the temporal width of the pulse is significantly larger than at the input. However, in

some non-linear fibers, if the conditions are just right, the non-linearity can stop the dispersion,

and the pulse propagates without changing its shape. Such temporal solitons are considered as a

main candidate for the next generation optical fiber communications. In spatial solitons, the
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beams are not localized in time; instead, it is their linear diffraction that is balanced by the non-

linearity. High intensity light locally increases the index of refraction, and then this modulation

in the index of refraction acts as a waveguide, guiding the beam that created the modulation

itself. In quite a few cases this self-consistent self-trapping also turns out to be stable, and such a

beam is called an "optical spatial soliton". If the self-trapping occurs both in a spatial, and in the

temporal domain, such pulses are called spatio-temporal solitons.

1.3. OPTICAL SPATIAL SOLITON SPECIES

I briefly review various kinds of optical spatial solitons that have been demonstrated

experimentally [5].

The first spatial soliton was suggested in nonlinear Kerr media in the 1960s [6]. In Kerr

nonlinearities, the index change is given by ∆n = n2I where I is the local intensity, and n2 is a real

constant. Typical ∆n's are of order of 10-4 or smaller. Soon after the theoretical prediction, it

became clear that all bright solitons are unstable in bulk Kerr media [8]. Consequently, spatial

Kerr solitons can be observed only in slab waveguides, and it wasn’t until the mid 1980s that

such solitons were first observed [9]. Thus far, Kerr solitons have been observed in CS2 [9], glass

[10], semiconductor [11] and polymer waveguides [12]. All these experiments were performed in

planar waveguides, which are inherently two-dimensional systems (one direction of propagation

and one direction transverse to it in which the beam self-traps). In bulk (3D) media, although

there are self-trapped solutions to the underlying equations, any perturbations of these solutions

make the beam either shrink to a point or diffract to infinity [7].
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Kerr non-linearity is only one of many different types of nonlinearities known today. As

one increases the intensity, most nonlinearities include some form of saturation of the nonlinear

change in the refractive index, ∆n. An example that captures this physics is ∆n(I) =

∆nsat/[1+I/Isat] = ∆nsat + n2I – n3I
2 + …, which is applicable, e.g., in a homogeneously broadened

2-level system. It turns out that this saturable nonlinearity supports stable self-trapping in bulk

(3D) media. Although the term "soliton" was originally used only associated with a special class

of so-called integrable systems, modern nomenclature now identifies all self-trapped beams as

solitons [1]. In 1974 Bjorkholm and Ashkin demonstrated the first spatial solitons in bulk media

[13], in the close vicinity of an electronic resonant transition of atomic (sodium) vapor. Very

recently, bulk spatial solitons were also observed in semiconductor gain media [14] and

polymers [15].

Another soliton species, appearing in photorefractive materials, was proposed in 1992

[16] and observed experimentally a year later [17]. Photorefractive materials exhibit great

richness of non-linear phenomena, and many diverse nonlinear forms of the intensity-dependent

index changes are observed [18]. For example, in the case of screening solitons [19-22], there are

multiple physical effects involved. These include the liberation of carriers from traps by the

absorption of a photon, the subsequent redistribution of these charges under the influence of

internal and external fields, and finally, generation of self-trapping index changes in response to

the local electric field via the electro-optic effect. Since there is always a limit to the number of

carriers, nonlinearities supporting all photorefractive solitons are saturable and these solitons are

stable in both slab waveguides [22] and in bulk media [18].

I also need to mention "quadratic solitons", consisting of multi-frequency waves coupled

via a second order nonlinearity; these were predicted in the mid-1970s [23] and observed in the



4

1990s [24]. In these solitons, self-trapping occurs due to the rapid exchange of energy between

the multi-frequency waves. This exchange keeps the powers and spatial widths of the two beams

mutually stabilized.  The net result effectively resembles a saturating nonlinearity and quadratic

solitons are stable in both waveguides and bulk media [24]. The simplest example of quadratic

solitons is second harmonic generation, for which there is a fundamental wave and a second

harmonic wave. Both of these waves are locked together in space, propagating without

diffraction. Quadratic solitons due to three wave interactions have also been demonstrated [25].

In all the cases so far described, the time-scale of the nonlinear response of the medium

was not an important consideration. However, many nonlinearities are really non-instantaneous

compared to the relevant time-scales of the system [26]. In some cases, the response to the time-

dependence of a field can be extremely slow (e.g., photorefractive and thermal nonlinearities). In

such media, incoherent solitons have been observed. A necessary prerequisite for incoherent

solitons is that the medium responds only to the time-averaged intensity of the optical fields.

Incoherent solitons are self-trapped wave-packets within which the phase varies randomly as a

function of coordinates. In contrast, in coherent solitons the phase varies in unison with time

everywhere on the beam. Incoherent solitons were first demonstrated in photorefractives, with

monochromatic incoherent light [27].  Recently, they were also observed using incoherent white

light (from an incandescent light bulb) [28].

1.4. OUTLINE OF THE THESIS

If a very broad beam propagates in a sufficiently highly non-linear media, small

perturbations grow on top of the beam as the beam propagates; eventually, the beam

disintegrates. These kinds of instabilities are very common in non-linear media; they are called
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"Modulation Instabilities". During my PhD research, I was interested in the generic properties of

such instabilities; my interest resulted in three separate, mutually related projects. In the first

project, I was interested in suppressing these kinds of instabilities in order to create stable self-

trapped beams (called necklace beams), in a media where they were previously thought not to

exist. In another project, I was interested how such kind of instabilities can be used to create

new, rich, fractal structures. Finally, I was also interested whether these kinds of instabilities can

be observed in incoherent wave systems, that is, in weakly correlated many-particle systems.

In chapter 2, I present the first ever described stable self-trapped bright beams in (2+1)D

Kerr media, so-called "necklace solitons" [8]. Next, I present analytical studies of various

properties of necklace beams. I also show how one can control radial dynamics of necklace

beams [29].

In chapter 3, I describe how one can add angular momentum to necklace beams that

makes them a very interesting physical system to study [30]. Finally, I also demonstrate self-

trapped necklace beams that carry angular momentum per-photon which is a non-integer

multiple of ! . These are first such self-trapped beams in optics. The ideas presented in that

chapter are not restricted to Kerr non-linearity, and are easily generalizable to other forms of

non-linearities.

In chapter 4, I present a general principle that allows one to observe fractals in almost any

soliton-supporting system in nature [31]. For definiteness, I concentrate my attention on a few

examples of solitons typical in optics. In general, especially in the presence of significant noise,

the process I describe results in random (statistical) fractals. In addition, I show that the principle

I describe can also be used to generate exact (regular) fractals [32], which are extremely rare in

nature.
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In chapter 5, I demonstrate for the first time [33] modulation instability in systems of

incoherent waves. Modulation instability is a very general and very well understood phenomena

in non-linear systems of coherent waves. Modulation instability can be regarded as being a

precursor of solitons. Thus, the observation of incoherent solitons [28] led us to believe that one

should be able to observe modulation instability in non-linear systems of incoherent waves. This

intuition proved to be correct. Incoherent modulation instability demonstrates some quite

interesting new physical properties, and it conceptually bridges systems as far remote as

gravitational instabilities with modulation instabilities of perfectly coherent light.

In chapter 6, I conclude, and discuss the avenues of further research.
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CHAPTER 2: NECKLACE BEAMS

In this chapter, we present self-trapped bright "necklace"-ring beams that exhibit stable

propagation for very large distances (> 50 diffraction lengths) in Kerr media (for an explanation

of Kerr media, see section 1.3). Material presented in sections 2.1-2.5 appeared in [8], while the

material presented in section 2.6 has been submitted to [29].

The necklace beams are ring-shaped beams whose intensities are azimuthally periodically

modulated (in the form of "pearls"), and their widths are very narrow compared to their radia. A

necklace beam is actually a ring array of (2+1)D quasi-solitons (pearls,) which we find to be

stable for very large distances whenever the azimuthal period length of the ring is smaller or

equal to the width of the ring. Computer simulations indicate that this necklace-ring is stable in

the absolute sense, although we cannot prove this analytically. Preliminary experiments with

self-trapped necklaces have already been reported [34]. The necklace-ring slowly expands, with

a rate of expansion dependent on the number of "pearls" in the ring, the width of the ring, the

initial peak intensity, and ring's diameter. When the number of "pearls" is large, holding the other

parameters of each pearl fixed, the beams are almost fully stationary. In some cases, one can find

approximate analytic solutions for necklace beams. The radial dynamics can be understood

analytically, and controlled experimentally.

In section 2.1, we explain why necklace beams are potentially important. In section 2.2,

we provide some physical intuition helpful for understanding physics of the system we study. In

section 2.3, we describe necklace beams, and explain the intuition that led us to discovery of

necklace beams. In section 2.4, we describe in detail the results of our numerical simulations of
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necklace beams. In section 2.5, we compare necklace beams with other similar creatures in non-

linear optics. In section 2.6, we present detailed analytical study of necklace beams, and their

radial dynamics; further, we describe a procedure that allows one to control the radial dynamics

of necklace beams. We conclude this chapter in section 2.7.

2.1. MOTIVATION FOR NECKLACE BEAMS

Solitons in Kerr media are the most studied solitons in nature. The reason for that is two

fold. First, the Kerr nonlinearity can be found in many systems: it represents a weak symmetric

anaharmonicity, which is equivalent to a weak saturation in a simple harmonic oscillator model.

For electromagnetic waves propagating in a weakly nonlinear centrosymmetric dielectric media,

the Kerr nonlinearity manifests itself in the cubic NLSE, [6] which also describes the envelope of

waves in plasmas, shallow water, deep water, gravity, etc [4]. The second reason is that Kerr

solitons are mathematically elegant: the cubic NLSE is integrable in (1+1) dimensions. Its

solitons can be found analytically and form a closed set; in their collisions, the total power and

momentum in the solitons, and the number of solitons are always conserved [35]. The (2+1)D

NLSE, although not integrable, has many conserved quantities, but, in the context of self-

focusing, is haunted by stability problems [35]; (2+1) D bright Kerr solitons are unstable and

undergo catastrophic collapse [7], and (1+1) D bright Kerr solitons in a 3D medium suffer from

transverse instability [36]. These instabilities occur for solitons of all orders, including, e.g.,  the

higher order self-trapped (2+1) D solutions [37]. In optics, bright Kerr solitons are observed only

as temporal solitons [38], which are inherently (1+1) D, or as (1+1) D spatial solitons in single

mode waveguides [10], for which transverse instability is eliminated by stringent boundary

conditions. Thus interactions between bright solitons are restricted to planar systems.
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Consequently, much of the beautiful similarity between solitons and particles is lost: e.g.,

angular momentum has no equivalent in the strictly planar system of bright solitons represented

by the (1+1) D NLSE.

2.2. BACKGROUND AND INTUITION

The normalized cubic (2+1) D NLSE in cartesian coordinates is:

i
∂ψ
∂z

+
1

2

∂ 2ψ
∂x2

+
∂2ψ
∂y2

 
 
 

 
 
 

+ ψ 2ψ = 0. (2.2-1)

One might think that, since omitting the third term in Eq. (2.2-1) reduces it to the (1+1) D

NLSE, the solutions should include all those of the (1+1) D NLSE in x and z that are uniform in

y. However, such solitons are transversely unstable: large length-scale perturbations in y grow

with propagation distance, and the soliton disintegrates [36]. In optical systems, this instability

can be arrested by spatially modifying the refractive index so that n(y) provides waveguiding in

the y, while the self-trapping occurs in x [10]. For this to work, the scale of waveguiding in y

must be smaller (or equal) than the x-width of the soliton. In fact, the first experimental

observation of optical spatial solitons [9] has employed an "effective waveguide", n(y), that was

self-induced (via Kerr nonlinearity) by the same beam that was a soliton in x. This works when

the (1+1) D (x and z) soliton of Eq. (2.2-1) varies in y on a scale smaller than the "wavelength" of

perturbations that make the comparable y-uniform soliton transversely unstable. The length scale

of such perturbations is typically larger or equal to the x-width of the soliton. Therefore, periodic

modulation in y superimposed on a soliton in x, arrests the transverse instability, provided that

the y-period is smaller than the x-width of the soliton [9]. Experimentally, two equivalent sheets

of light were superimposed, both were very long in y and perpendicular to x. The sheets
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propagated mostly along z, with a small angle to one another. The sheets interfered, producing a

sinusoidal pattern in y, whose period was smaller than the x-width of each sheet. This

superposition was launched into a self-focusing Kerr medium. At a high enough power, the

beams evolved into a soliton (in x) while remaining transversely stable (in y.) However, as the

two beams were not experimentally infinite in y, they eventually stopped overlapping and the

system disintegrated.

2.3. OUR IDEA

Encouraged by Ref. [9], we take a (1+1)D soliton (x and z) whose intensity is periodically

modulated in y, and wrap it around its own tail, hoping to find a stable (2+1)D ring array of

quasi-solitons in a self-focusing Kerr medium. We start with Eq. (2.2-1) in cylindrical

coordinates 

i
∂ψ
∂z

+
1

2
∂ 2ψ
∂r 2 +

1

r

∂ψ
∂r

+
1

r2

∂ 2ψ
∂θ 2

 
 
 

 
 
 

+ ψ 2ψ = 0. (2.3-1)

Consider ring-like solutions whose ring thickness w is much smaller than the ring radius

L, such as those in the first row of Fig. 2.3-1. In this case, the third term in Eq. (2.3-1) can be

neglected since it is O(w/L) smaller than the second term. Furthermore, since r varies negligibly

over the ring thickness, 1/r2 can be replaced by 1/L2 in the fourth term. Redefining the variables

as x=r  and y=Lθ   reduces Eq. (2.3-1) to Eq. (2.2-1). Consequently, if the intensity of the beam is

periodically modulated in θ, the system looks much like the one in Ref. [9], apart for a small

curvature. It is, therefore, reasonable to expect that such ring beams are stable. Physically, if the

solitons from Ref. [9] are stable, we do not expect a small curvature to destabilize them; and, the
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experimental evidence from Ref. [9] certainly shows that these solitons without curvature are

stable.

Figure 2.3-1: Examples of evolution of necklace-ring beams with Ω=15, Ω=8, and Ω=4 (first,

second and third rows, respectively). In all cases the initial peak intensity is 1, w=1, and

L/Ω=1.707.  The axes are the same for all plots. Dark color indicates high intensity. In all figures

in this thesis, contrast is enhanced for better clarity.

Led by the intuition gained from Ref. [9], we expect that the self-trapped shapes are close

to α sech((r-L)/w) cos(Ωθ)  for some α 's, even as w‘s become comparable to the corresponding
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L’s. In this case the radius of our ring should slowly grow with propagation, because adjacent

bright "spots" on the ring differ in phase by π, that is, neighboring "pearls" repel each other [1].

In a circularly symmetric ring the net force exerted on each "pearl" is radialy outwards, making

the ring expand. However, if we increase L while holding w, α, and L/Ω  constant, the net radial

force vanishes. In the limit of vanishing curvature of the ring, the ring should not grow at all.

The expansion of the necklace-ring beam brings back the stability issue, because the

propagation of the array of (1+1) D solitons in Ref. [9] is stationary, thus different than that of

the necklace-ring. However, as we show below, the expanding necklace-ring seems to be stable.

The intuitive reason for this is that, if ψ(r,θ,z) is a solution of Eq. (2.3-1), then qψ(qr,θ,q2z) is

also a solution for any real q, and both solutions have exactly the same total power. As the radius

of the ring slowly grows, there is always a stable shape reasonably close to the beam’s

instantaneous shape. If the distance needed for the beam to evolve into a stable shape is smaller

than the rate of the expansion, our necklace-ring array of quasi-solitons has a good chance of

being stable.

2.4. NUMERICAL SIMULATIONS OF NECKLACE BEAMS

We have simulated numerically (using standard Split Step beam propagation method) the

propagation of necklace-ring beams and indeed all the above predictions seem correct. We have

checked a large number of case-examples of necklace rings and propagated them over large

distances. We find that all the examples with "pearls" of azimuthal width narrower than (or equal

to) the radial-width of the ring, and radial width much smaller than ring radius, are stable. Within

our computation capability, we find that they remain stable even under fairly large perturbations
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(~ 5%) in the initial widths or powers, and at the presence of random noise (e.g., we have

injected up to 1% of the total power of white noise in the Fourier space every diffraction length).

Typical examples (for Ω = 15, 8, 4) are presented in Fig. 2.3-1, in which the initial shape is

ψ(r,θ,z=0) = α  sech[(r-L)/w] cos(Ωθ), where L>>w , and L/Ω≈w. In the cases presented in Fig.

2.3-1, α =1, w=1 and L/Ω =1.707. As a measure for the propagation distance, we define the

diffraction length, LD =2πnw0
2/λ, where λ  is the carrier wavelength in vacuum, n is the

refractive index, and the minimum waist of a (2+1)D Gaussian beam of width 2 w(z=0)=2w0.

After a few LD's, the initial shape evolves into a stable “necklace” of "pearls" which then slowly

grows in size, via a uniform expansion (scaling) of the entire necklace-ring. As the necklace-ring

beam expands uniformly, the peak intensities of the "pearls" drop roughly with L2(z). Therefore,

the total power within the necklace-ring beam is conserved and does not "escape" to

radiation. This necklace-ring of quasi-solitons remains stable for the propagation distances of

~100 diffraction lengths. In fact, the only thing that prevents us from stating that these necklace-

ring beams are always stable (in the numerical sense), is the fact that, as the necklace-beams

expand, they fill up our computational window and are affected by reflections from the

window’s boundaries and cause some seemingly-artifacts of instability. Finally, we have tested

the stability of these necklace beams under azimuthally-asymmetric variations in input

conditions. We launched the input shapes of Fig. 2.3-1 but with a~2% ellipticity, and found that

these imperfect rings exhibits stable self-trapping, yet they do not evolve into a circular shape.

We conclude that, at least for small azimuthal perturbations, the necklace beam is stable, but its

circular shape is not an “attractor”.

When we launch our necklace beams into a linear medium, they simply diffract within

O(1) LD and the necklace structure is not preserved (e.g., see Fig. 2.4-1 for Ω=4). If we launch a
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single isolated (2+1) D beam with the same dimensions as one of the "pearls" in the necklace-

ring, into this self-focusing Kerr medium, the isolated beam undergoes catastrophic collapse and

disintegrates after O(1) LD, as expected from a single (2+1)D bright beam propagating in Kerr

media [7]. It is precisely the nonlinearity and the presence of the other peaks in our necklace-

ring beam that keeps the whole configuration stable.

Figure 2.4-1: Evolution of the same initial shape as in the third row of Fig. 2.3-1, with

nonlinearity set to zero. The beam diffracts within O(1 LD).

We now investigate the expansion dynamics of our necklace-ring beams. The rates of

expansion are much slower for the rings of larger Ω  than for the rings of smaller Ω, keeping w,

L/Ω , and α  constant. One might think that increasing Ω, while keeping w and L constant, would

also decrease the expansion rate because the angle that determines the net radial component of

the repulsion force gets smaller. But, this is not the case because the force between solitons of
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the cubic NLSE increase with increasing the gradient of the intensity (or decreasing distance

between solitons). The final result is that decreasing Ω while keeping everything else constant

typically slows down the ring growth. However, one can not fully stop the expansion by

exploiting Ω’s that are too low, since the transverse (azimuthal) instability occurs if L/Ω>>w .

The expansion dynamics of the relative radii of the necklace beams from Fig. 2.3-1 is shown in

Fig. 2.4-2. In the beginning of the expansion there is a short period of acceleration, as the

intensity peaks speed up in the radial direction. The acceleration diminishes once the "pearls" are

far away from each other since the interaction forces decrease. Eventually, the adjacent peaks

interact only very weakly, and the rate of the expansion becomes constant. Very similar features

are observed in evolution of a ring of equally charged particles, thereby demonstrating again

very picturesquely that solitons indeed behave like particles. Increasing Ω  while holding w, L/Ω,

and α fixed decreases the growth rate as predicted. As Ω→∞, the beams become fully stationary.
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Figure 2.4-2: Growth of ratio (radius)/(initial radius), as a function of propagation distance. In all

the cases the initial peak intensity is 1, w=1, and L/Ω=1.707. Holding these parameters fixed, a

larger Ω implies slower dynamics.

To put things in a physical perspective, it is useful to note how our necklace-rings would

look in a typical experiment. For λ = 500nm, refractive index n=1.5, w=10λ/n, and Ω=45, one

finds w=3.3µm, L=0.21mm, and 60LD=12.6mm. Consequently, the necklace-ring solitons should

be easily observable experimentally. Within 60LD, a necklace-beam with Ω=45 will not change

its shape or size almost at all. On the other hand, when the nonlinearity is "off" (or when the peak

intensity is very low), the ring will undergo natural diffraction within several LD's, say, 200 µm.

Because our necklace beams expand, it is not possible to find a stationary solution for

them in the r,θ,z  frame. However, in the limit wΩ/L << L/w  and  L/Ω<< w , one can find

approximate stationary ring-like solutions to Eq. (2.3-1):

  
ψ(r ,θ, z) = e−iΓz αn,m cos[(2n − 1)Ωθ]sec h(2 m−1)[(r − L)/w]{ }

m=1

∞
∑

n=1

∞
∑ , (2.4-1)
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with Γ(w,L,Ω), αn,m(w,L,Ω), Ω  = integer, where α1,1 is of Ο[(wΩ/L)2]  larger than any other αn,m.

In this limit, ψ(r,θ,z) �α sech((r-L)/w) cos(Ωθ) e-iΓz, with α2=4/(3w2), Γ�(Ω/L)2. The necklace

beam becomes fully stationary as L→∞.  We compare this solution to our simulations and find

that indeed this analytic approximation is excellent. For example, in the case wΩ/L=10 and

L→∞,  the difference between the lowest term in Eq. (2.4-1) and the true numerical self-trapped

shape is only O(1%). This solution also applies to the periodically-modulated (1+1) D soliton

stripe in Ref. [9] with r,θ  replaced by x,y/L. We will have more to say about analytical studies of

necklace beams in section 2.6.

One might think that as w>>L/Ω, the beam might become transversely unstable in the

radial direction. This does not happen because the intensity is just high enough to cause self-

focusing on length scales of w, and not on any smaller scale.

2.5. PERSPECTIVE

It is now instructive to compare our soliton-like necklace beams to other (known) rings

beams. As mentioned earlier, higher order (2+1) D solitons in this media are all unstable [37]. It

is then interesting to study azimuthally-uniform rings. When w<<L , these rings are also

transversely (azimuthally) unstable [40], as shown in Fig. 2.5-1. This is expected since the

azimuthal length scale is much larger than the thickness of the ring; the instability is of the same

origin as in the case of a soliton which is uniform in the y direction. When w~L we find

(numerically) that uniform rings tend to coalesce (rather than disintegrate) and eventually

undergo catastrophic collapse as (2+1) D bright Kerr solitons do. One can also superimpose

some radial “velocity” on a bright ring beam [39], which can provide some control over the rate
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of the inherent tendency to shrink and collapse, and also convert the dynamics to expansion. In

some specific cases the expansion dynamics of such ring can last up to several diffraction lengths

before becoming unstable [39].

Figure 2.5-1: Propagation of an initially azimuthally-uniform ring beam (with L=13.7, w=1, and

initial peak intensity of 1) in Kerr media. In this media, the background numerical noise (only)

destabilizes the ring, and it eventually disintegrates. (a) the initial shape, (b) the shape after z = 24

LD.

Another possibility to seek stable self-trapped ring beams is to multiply an intensity-

uniform ring by e iΩθ [instead of cos(Ωθ), as we did]. These vortex-rings carry angular

momentum [41], in contrast to our necklace-ring beam which is a coherent superposition of two

vortex-rings with equal topological charge but opposite handedness; as such our necklace-ring

beam carries no angular momentum. When launched into a self-focusing Kerr medium, a

vortex (eiΩθ) ring beam disintegrates into filaments [41], which are themselves unstable and

undergo either catastrophic collapse or expansion, as isolated (2+1) D Kerr solitons do [7]. If the
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self-focusing nonlinearity is saturable, the filaments created after the breakup form stable (2+1)D

solitons [41]. Since the initial beam carries angular momentum, after the breakup each of the

solitons shoots off tangentially. This transformation of vortex-ring beams into (2+1)D solitons

seems universal to all saturable self-focusing nonlinearities, including quadratic [41] and

photorefractive [41] media. All of these examples are related to the self-trapped necklace-ring

beam we have found, but have important major differences from it. We have discussed them here

just to clarify what our self-trapped necklace-ring  beam is not.

2.6. DETAILED ANALYTICAL STUDIES OF NECKLACE BEAMS

In this Section, we show analytically how to predict and control the radial dynamics of

necklace beams, and present analytic solutions for necklace beams in several parameter regimes.

This Section is organized as follows. In Sub-Section 2.6.1, we provide a brief introduction to the

radial dynamics of necklace beams. In Sub-Section 2.6.2, we describe a procedure that facilitates

control over the instantaneous radial velocity of any necklace. In Sub-Section 2.6.3, we present

analytical solutions to necklace beams in some specific regimes of parameters, as a function of

the propagation distance. This enables a direct prediction of the radial acceleration of a necklace

when its radial velocity is manipulated. However, this solution works well only in a limited

range of necklace parameters. Consequently, in Sub-Section 2.6.4, we present a different

analytical technique that allows one to predict the dynamics of any necklace as a function of its

initial parameters. This technique can also predict what happens with the dynamics of the

necklace once we manipulate the necklace’s instantaneous radial velocity. However, the

technique from Sub-Section 2.6.4 gives us no information whatsoever about the instantaneous
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necklace shape. In Sub-Section 2.6.5, we conclude this section by summarizing our predictions

and propose new experiments.

2.6.1. A few words about radial dynamics of necklace beams

As we have seen in the previous sections, propagation of a necklace beam is in general

not stationary: the beams exhibit slow radial expansion as they propagate. The expansion is a

result of a net radial "force" that results from the azimuthally alternating phase, and is typically

much slower than diffractive expansion. In some cases the nonlinear expansion is even negligible

over all propagation distances of physical interest.
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Figure 2.6-1: Example of evolution of a necklace beam with initial shape given by

ψ(r,θ,z)=αcos(Ωθ)sech[(r-L)/w], where α=1, w=1, Ω=8, and L/Ω=1.707. The necklace slowly

expands as it propagates. The axes are the same for all plots. Dark color indicates high intensity.

The main feature of necklace beams is that the radial dynamics rate of necklaces is

typically many orders of magnitude slower than the rate at which each of the pearls of the

necklace would suffer catastrophic collapse if it were standing by itself. In other words, the

necklace-ring beam exhibits stationary propagation for a very large distance, during which

neither the ring diameter nor the width of each spot ("pearl") on the ring change significantly.

For, example, consider Figure 2.6-1, where after 55 LD, the radius of the necklace grew by less

than a factor of 2. In contrast, each pearl (if standing by itself) undergoes catastrophic collapse
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(or diffraction) within only a few LD. Therefore, with interactions (collisions) between necklace-

ring "solitons" in mind, two self-trapped necklaces can mutually interact over a large distance

during which they do not change their shapes appreciably. Thereby, one can use necklace-ring

self-trapped beams to explore nonlinear interaction phenomena and collisions, (which are the

most fascinating features of all solitons), in (2+1)D; this was previously thought to be undoable

in (2+1)D self-focusing Kerr media (i.e., in a medium represented by the cubic self-focusing

NLSE).

2.6.2. Controlling the Expansion Rate of the Self-Trapped Necklace Beams

As shown in section 2.3, necklaces typically grow as they propagate. The intuition behind

this growth is that the amplitudes of the neighboring pearls are π out of phase, thereby repelling

each other [1,42]; consequently there is a net radial force outwards on each pearl. For numerous

reasons, it is important to have a means to control the expansion of the necklace-ring self-trapped

beam. For example, it would be nice to be able to stop the expansion, and perhaps even reverse

it, at least for some finite propagation distance. In fact, there is a natural way to obtain precisely

this goal. Namely, one can take the necklace at any given propagation distance z, and multiply

the whole shape with exp(-iΩr), where r is the radial coordinate. Imposing such a radial

(transverse) phase influences the radial velocity of each pearl. If the radial velocity of a pearl

before applying the radial phase is v, then after the application of the phase, the net radial

velocity is roughly v-Ω. Therefore, the instantaneous expansion velocity can be reduced to zero.

Furthermore, one can even reverse this velocity so that the necklace immediately after the

application of the transverse phase initially shrinks. This tool provides control over the

instantaneous necklace radius growth. Such a radial phase structure is trivial to impose
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experimentally: one just shines a necklace through a "sharpened pencil" phase object, made from

glass.

Figure 2.6-2: Stopping the necklace's instantaneous radial velocity. We take the necklace at the

output of Figure 2.6-1, and measure its instantaneous radial velocity, v0. Then, we multiply the

whole shape with exp(-iv0r). The subsequent instantaneous radial velocity drops to 2% of the

initial value.

The fact that we can produce a shrinking necklace in this manner is not inconsistent with

the intuition that the neighboring pearls should repel each other. The procedure we have just

suggested to make a shrinking necklace does not (!) in general make the radial acceleration
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negative, and thus does not turn the repulsion between adjacent "pearls" into attraction. To

illustrate the idea, consider a necklace with 16 pearls, as we show in Figure 2.6-1, and let it

propagate for a while. After 55LD, we measure its instantaneous radial velocity vo, and multiply

the whole shape with exp(-ivor). As one can see in Figure 2.6-2, the instantaneous velocity is

significantly reduced. A more careful measurement shows that the reduction in this particular

case was from vo to approximately -2% of vo. However, the instantaneous radial acceleration

stays positive, so the radial velocity of the necklace keeps increasing even after the application of

the radial phase, as shown in Figure 2.6-2. In the subsequent sub-sections we analyze

analytically what exactly happens with the radial acceleration as a result of the application of

such a radial phase.

2.6.3. Approximate Analytic Solutions

In this sub-section, we use the action minimization approach in order to obtain an

approximate analytical solution to the necklace shape as a function of the propagation distance, z.

The solution we find works well only in certain regimes of necklace parameters. However, in

these regimes it gives an excellent prediction for the radius of a necklace, the shape of the

necklace, and its radial velocity as a function of the propagation distance. It also provides us with

a quantitative understanding about what happens with the necklace once we multiply it with a

radial phase, as proposed in Sub-Section 2.6.2.

We seek an approximate analytic solution in the regime where the radius of the necklace,

L is much larger than its thickness w, as defined in the last plot of Figure 2.6-1. In addition, we

consider only the cases where the thickness of the necklace w, is much larger than the rate of the

azimuthal variation, Lπ/4Ω. (Note that since we are comparing the width of the typical feature in
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the azimuthal direction with the thickness in the radial direction, Lπ/4Ω  is the correct measure of

the characteristic size of the azimuthal variation.) In this regime, the (2+1)D cubic self-focusing

NLSE:
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can be approximated as:
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Thus, one can attempt to write a solution to Eq. (2.6-2) as:

ψ (r,θ,z) = e− iΓz α n, mcos[(2n−1)Ωθ] ∗sech2m−1[(r − L) / w]{ }
m=1

∞

∑
n=1

∞

∑ , (2.6-3)

with Γ(w,L,Ω), αn,m(w,L,Ω), and Ω is an integer. In this case, there exists a solution like Eq.(2.6-

3) that has α1,1 of O[(4wΩ/Lπ)2]  larger than any other αn,m, and (α1,1)
2≈4/(3w2). Consequently,

our intuition tells us that the real solution can probably be well described by:

ψ (r,θ,z) = α (z)cos(Ωθ)sech a(z) r − L(z)[ ]{ }exp −iΓ(z)z+ iv(z)r[ ], (2.6-4)

provided that α2(z=0)=4a2(z=0)/3, v(z=0)=0, w/L<<1, and w>>Lπ/4Ω.  We intend to look for

α(z), a(z), L(z), Γ(z), and v(z) using the action minimization approach. Before proceeding, we

emphasize that Eq. (2.6-4), when substituted into Eq. (2.6-1), produces an undesired singularity

at the origin. Consequently, in our simulations, we actually multiply Eq.(2.6-4) at the input (z=0)

with a smoothly varying function that behaves ∝ r2 close to the origin, but assumes values close

to unity in the regions where most of the energy of Eq. (2.6-4) is concentrated. An example of

such a function is sin2(rπ/2L). Expanding this function around r=L(z), we conclude that this
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function's presence influences our action integrals by O((w/L)2), so we are justified in ignoring

its presence when evaluating our integrals; the only place where it actually matters is close to

r=0 , and its only purpose there is to eliminate the singularity. Therefore, when evaluating the

action integrals in cylindrical coordinates below, we first integrate over θ, and when integrating

over r, we keep in mind that the only important contributions to the integral are close to r=L(z),

while the contributions of the regions close to r=0  are negligible.

Our Lagrangian density therefore becomes:

  
L = i ψ

∂ψ ∗

∂r
−ψ ∗ ∂ψ

∂r

 
 
 

 
 
 

+
∂ψ
∂r

 
 

 
 

∂ψ ∗

∂r

 
 
  

 
+ 1

r2

∂ψ
∂θ

 
 

 
 

∂ψ ∗

∂θ
 
 
  

 
− ψ 4 , (2.6-5)

Using the Lagrangian Equations of Motion:

  

∂
∂z

∂L
∂ψ z

∗

 

  
 

  +
1

r

∂
∂r

r
∂L

∂ψr
∗

 

  
 

  +
∂
∂θ

∂L
∂ψθ

∗

 

  
 

  −
∂L

∂ψ ∗ = 0, (2.6-6)

one can obtain Eq. (2.6-1) from Eq. (2.6-5). In the notation we are doing it, the action is given

by:

∫∫∫
∞∞

∞

=
0

2

/6 rdrddz
o-

π

θ . (2.6-7)

In order to evaluate the action, we need to evaluate a few integrals. To illustrate how we

deal with the singularity at the origin, we present some of the integrals here. For example:

r × sech2 a(r − L)[ ]dr
0

∞

∫ ≅ (r − L)sech2 a(r − L)[ ]dr
−∞

∞

∫ + L × sech2 a(r − L)[ ]dr
−∞

∞

∫ =
2L

a
,
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since the first integrand is odd around r=L . Similarly, in the integral
dr

r
sech2

a(r − L)[ ]
0

∞

∫ , we can

replace 
1

r
=

1

L
1−

r − L

L
+ O

w

L
 
 

 
 

2 

  
 

  
 
 
 

 
 
 

, and integrate from -∞ to ∞ instead, not worrying about

what happens at the origin because of the presence of the modulating function which annihilates

the singularity, as explained above. The other integrals are evaluated in a similar manner. After a

few additional lines of algebra, we obtain:

  
S = π dz

4vzα
2L2

a
−

4Lα 2

a

∂
∂z

Γz[ ]+
2aα 2L

3
+

2α 2v2L

a
+

2Ω2α 2

aL
−

4Lα 4

3a

 
 
 

 
 
 - ∞

∞

∫ . (2.6-8)

In order to save ourselves some algebra, we also impose energy conservation for the

ansatz in Eq. (2.6-4). E = ψ 2
d 2r∫∫ ≅ 2πα 2L /a . We can use this to eliminate a(z) from Eq. (2.6-

8) in terms of the other variables. We substitute a=2πα2L/E in Eq. (2.6-8), where E is a constant.

Finally, we require the minimization of the action in Eq. (2.6-8) as:

  

δS
δΓ ξ( )=

δS
δL ξ( ) =

δS
δα ξ( ) =

δS
δv ξ( )= 0, (2.6-9)

thereby obtaining: 2παL/E=1, Lz=v, and vz=(Ω2-E2/12π2)/L3, (the subscripts z denote derivatives

with respect to z) while the minimization with respect to Γ(ξ) does not yield any useful result.

From these equations we also obtain a=E/2Lπ. Integrating these ODEs we obtain:

L(z) =
1

L0
2 Ω2 −

E2

12π 2

 
 
  

 
+ v0

2 

  
 

  z
2 + 2L0v0z + L0

2 , (2.6-10)

where the subscript zero denotes the initial conditions, at z=0.
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Note that our ansatz therefore describes a solution whose intensity, and shape scale

simply as a function of z, preserving the total energy as the necklace expands, which is consistent

with our intuition from section 2.3.

Figure 2.6-3: A necklace whose parameters are in the regime that can be analyzed by the least

action principle. At the input of this necklace, w=5, L=76.8, Ω=50, and α2=4/(3w2). The analytical

solutions we find approximate the subsequent evolution of the shape of this necklace to within a

few percent. The regime that can be understood analytically is described by the parameters that

satisfy: α2=4/(3w2), w/L<<1, and Lπ/4Ω<<w.

To test our analytical results, we simulate the evolution of a few necklaces using split-

step Fourier method and compare the necklace beams evolving (expanding) during propagation
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with the approximate analytic solution presented in Eq. (2.6-4). Given the insight provided by

Eq. (2.6-3), we expect to obtain the best results when our input conditions were:

[ ]{ }wLrhzr /sec)cos()0,,( −Ω== θαθψ , (2.6-11)

 where α2=4/(3w2), w/L<<1, and Lπ/4Ω<<w . Note that the solution from Eq. (2.6-4) satisfies

Eq. (2.6-1) best if the initial radial velocity, v(z=0)=0, so we take it to be zero. Further, in the

simulations, the input waveform given by Eq. (2.6-11) is multiplied by sin2(πr/2L) in order to

eliminate the singularity at the origin. Nevertheless, as explained above, this modulation to a

very good approximation has no other influence on subsequent dynamics or necklace shape. For

the example presented in Figure 2.6-3, L=76.8, w=5, and Ω=50. At the output of the

propagation, after z=165, the width of the necklace is L=130.04. The intensity overlap of the

final necklace (which evolved throughout propagation) with the approximate necklace solution

given by Eq. (2.6-4) that had L=130.04 was approximately 97%. In other words, if we denote the

final necklace with ψ1, and the approximate necklace solution with ψ2, we get that the overlap is:

d2r ψ 1

2 − ψ 2

2

∫∫
d 2r ψ 1

2 + ψ 2

2{ }∫∫
≈ 0.03. (2.6-12)

Furthermore, we check our prediction for L(z) as given by Eq. (2.6-10) against our

numerical simulations. The result presented in Figure 2.6-4 shows a very good agreement

between the analytic (approximate) prediction and direct simulation.
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Figure 2.6-4: Predicting the instantaneous necklace radius, of the necklace from Figure 2.6-3,

using the least action principle.

In addition to these excellent agreements (between the analytics and the numerics) in the

shape and the radius of the necklaces, we measure the radial velocity v(z=165) of the necklace at

the output, and find that it disagrees with the prediction given by Eq. (2.6-10) by less than 3%.

Furthermore, we take the output at z=165, and multiply the whole shape with exp{-iv(z=165)r}.

According to our analytical predictions, this should have reduced the instantaneous radial

velocity of the necklace to zero. Indeed, it reduced the instantaneous radial velocity to less than

2.5% of its initial value.
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 To conclude this sub-section, the agreement between the analytical theory and the

numerical results is very good. Since we expect our results to be valid only to O[(Lπ/4Ωw)2] , or

O[(w/L)2] , one should not have expected the agreement to be better than O(few%) for the

particular necklace presented in Figure 2.6-3.

Unfortunately, our analytical solution works only when the required smallness

parameters are truly small. In particular, (Lπ/4Ωw)2=1/17.18, and (w/L)2=1/236 for the necklace

of Figure 2.6-3. When the required smallness parameters are closer to unity, one can probably

still obtain reasonable analytical solutions by including more terms from the expansion in Eq.

(2.6-3) (rather than including only the lowest order terms) into the ansatz of Eq. (2.6-4).

However, one of the requirements for the stability of any necklace beam is that the azimuthal

width of the pearls has to be of the same order or smaller than the radial width of the pearl. In

addition, the radius of any necklace should be significantly larger than its thickness. Therefore,

typical stable necklace-ring beams that we expect to be stable in self-focusing Kerr media

naturally have the required parameters small, which makes the proposed expansion seem

promising. Extending the regime of validity of our approximate method by including higher

order terms is beyond the scope of this thesis, and we leave it to future research.

2.6.4. Predicting and Controlling the Expansion Rates of Arbitrary Self-Trapped Necklaces

As shown in the previous sub-section, an excellent analytical solution for self-trapped

necklace beams can be found in certain regimes of parameters. However, the approach of the

previous sub-section does not work in some rather interesting regimes of necklace parameters;

consequently we are not able to write down the explicit analytical solution in those regimes. In
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this sub-section, we present another analytical approach that gives a good prediction for the

radius of the necklace as a function of the initial necklace shape and the propagation distance.

This approach works even though one does not know the instantaneous analytical solution for the

necklace shape. It can also be used to predict the dynamics of a necklace after multiplication

with an arbitrary radial phase. But, this approach below works only for the (2+1)D self-focusing

cubic NLSE, whereas the approach from Sub-Section 2.6.3 seems to be adaptable for any

number of dimensions, and for any form of nonlinearity. In any case, it is worthwhile to present

both approaches in this section, and also to use them as a mutual check on each other.

We follow the approach given in [43,39] to derive the instantaneous radius of the

necklace radius as a function of the propagation distance, and the initial necklace shape. First, we

need to define the energy:

E = d
2
xψ (z = 0)

2

SPACE
∫∫ , (2.6-13)

and also the Hamiltonian:

H = d
2
x ∇ψ (z= 0)( )• ∇ψ ∗ (z = 0)( )− ψ (z = 0)

4{ }∫∫ . (2.6-14)

Both E, and H are conserved. Energy is conserved because of the symmetry of Eq. (2.6-1) with

respect to a phase shift. Hamiltonian is conserved because of the invariance of Eq. (2.6-1) with

respect to a shift in z. Therefore, using Noether’s theorem one can prove that E and H as defined

in Eq (2.6-13) and Eq. (2.6-14) are conserved (alternatively, one can use the method given in

Ref. [35] to show this). Defining:

R
2(z) ≡

1

E
d

2
x ψ (z)

2
r

2{ }∫∫ , (2.6-15)
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after a few lines of algebra, one can show:

d2 R2(z)[ ]
dz

2 = 2
H

E
, (2.6-16)

which thus provides us with another very useful conserved quantity. Defining the local current in

the usual way:

j (r ,θ,z) ≡
i

2
ψ (r,θ,z)∇ψ ∗(r,θ,z) −ψ ∗(r ,θ,z)∇ψ (r ,θ,z){ }, (2.6-17)

one can show that:

d R2(z)[ ]
dz

= 2

E
d

2
x j(r ,θ,z) • r{ }

SPACE
∫∫ . (2.6-18)

Therefore, given the initial condition ψ(r,θ,z=0), we can integrate the Eq. (2.6-16) to

obtain:

R2(z) =
H

E
z2 +

2z

E
d2x j(r ,θ, z = 0)• r{ }

SPACE
∫∫ + R2(z = 0) . (2.6-19)

How can we use this result? Well, if it is a valid assumption that most of the initial

necklace energy stays bound to the necklace as the necklace propagates, (i.e. only a negligible

amount of E and H are carried away from the necklace as the necklace propagates, as we fully

expect from self-trapped propagation and as we have found numerically in section 2.4 and in the

examples in that section), then Eq. (2.6-19) lets us predict the instantaneous necklace radius L(z).

(By L(z) we mean the distance from the origin where |ψ(r,θ,z)| is largest; See Figure 2.6-1) This

is because it is trivial to show that for typical necklaces L(z) ≈ R2(z)  up to O(w2/L2) as long as

w/L is small, which is naturally satisfied by all self-trapped necklaces of interest (i.e., those that

propagate in a stable fashion in Kerr media).
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It is now instructive to compare the prediction from Eq. (2.6-19) with the prediction we

obtained using the action minimization approach in Sub-Section 2.6.3, like Eq. (2.6-10).

Adapting Eq. (2.6-19) for the necklace of Figure 2.6-3, we find

L(z) ≈ R2(z) =
1

L0
2 Ω2 −

3E2

64π 2

 
 
  

 
 

  
 

  z
2 + R0

2 . (2.6-20)

Comparing this with Eq. (2.6-10), after setting vo=0 in that equation, we see that the

relative error in the term proportional to z2 is 7E2/192π2Ω2=7Lo
2/27Ω2w2, which is tiny for that

necklace. Similarly, as we have already shown, the error in the term proportional to z0 is

O(w2/L2) which is again negligible. Extending this analysis for the cases where vo≠0 is a bit more

involved, but the result is again that the two approaches differ only by a tiny amount which is set

by the smallness parameters of the necklace.
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Figure 2.6-5: Predicting the expansion rates of arbitrary self-trapped necklaces: comparison

between numerical beam-propagation results and analytical predictions. All necklaces here have

L/Ω=1.707, α=1, and w=1. Their respective charges are Ω=4,8,16, and 32. The analytical

approach used here is based on using some conservation laws of the (2+1)D cubic NLSE, in order

to find the instantaneous necklace radius directly. This approach works for a necklace of arbitrary

parameters as long as most of its initial Energy and Hamiltonian are self-trapped to the necklace as

it propagates.

In order to test our results, we simulate numerically several typical examples of self-

trapped necklaces and compare them with the prediction given by Eq. (2.6-19). We obtain best

results if the initial shapes are as close to the true "equilibrium" shape as possible, because in that

case only a negligible amount of energy is carried away with radiation through subsequent
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breathing of the necklace. (In other cases, some energy is lost to radiation in the formation

process of the necklace, as always occurs in the formation of solitons from a non-perfect input).

However, since there are no analytical solutions for necklaces in all regimes, a typical necklace

at the input is only an approximation to the equilibrium necklace shape. Nevertheless, this

technique gives us a good prediction of the subsequent necklace dynamics, provided that not

much energy is eventually scattered into radiation. In any case, experimentally, all necklaces are

expected to be launched with a ψ(z=0) real, so L(z) ≈
H

E
z2 + L2(z= 0) . Our necklaces at the

input are given by:

ψ (r,θ,z = 0) = α cos(Ωθ)sech
r − L

w
 
 

 
 sin2 rπ

2L
 
 

 
 , (2.6-21)

where L/Ω=1.7072,w=1, and α=1; according to our experience this input shape is close to the

equilibrium necklace shape. As examples, we consider the cases where Ω=4,8,16, and 32. The

purpose of the sin2 term in Eq. (2.6-21) is again only to eliminate the singularity at the origin; we

can ignore this term when performing the relevant integrals, as we did in Sub-Section 2.6.3,

since the relative mistake is only O(w2/L2) which is negligible for our necklaces. All the relevant

integrals needed to obtain the Hamiltonian and Energy are evaluated in exactly the same manner

as in Sub-Section 2.6.3. Therefore, we obtain:

L(z) ≈
1

3w2 +
Ω2

L2 −
α 2

2
 
 
 

 
 
 
z

2 + L
2(z = 0) . (2.6-22)

For each of the necklaces, we compare the prediction given by Eq. (2.6-22), with the actual

numerical experiment. The result is shown in Figure 2.6-5. The circles represent numerical data,

while the solid lines represent the predictions given by Eq. (2.6-22). As we can see, our
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analytical prediction is a fairly good approximation for reasonable propagation distances (a few

tenths of diffraction lengths). Keeping in mind that the largest propagation distance observed so

far for spatial solitons is roughly 20LD, being able to make analytical prediction up to a distance

of 30LD is very useful. However, the real value of the prediction in Eq. (2.6-22) is that it gives a

good estimate for the dynamics even for necklace beams whose shape is not initially very close

to the existence curve. For example, we launch a few necklaces that have very similar

dimensions to those in Figure 2.6-5, but with a Gaussian, instead of a sech shape at the input.

This shape is not close to the equilibrium necklace shape; nevertheless, the agreement between

the numerical results and the analytical predictions for the expansion of the Necklace beams is

still reasonably good, as shown in Figure 2.6-6.
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Figure 2.6-6: Predicting the expansion rates of arbitrary necklaces whose shapes are not close to

the equilibrium shapes initially. These necklaces have the same FWHMs, radiuses, energies, and

Ωs as their counterparts in Figure 2.6-5. But, their radial profiles are initially Gaussian instead of

sech shaped. Thus, they are not close to the equilibrium self-trapped shapes. Nevertheless, the

analytic approach used in Figure 2.6-5 still gives a useful approximation when predicting the

radial necklace dynamics.

Now that we have an analytical expression for the necklace dynamics, as given by Eq.

(2.6-22), we can study the feasibility of making a stationary necklace. That is, we would like to

know whether it is possible to construct a necklace that would not change its radius at all as it

propagates. Looking at Eq. (2.6-22) it seems that all we have to do is construct a necklace whose
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parameters make the term proportional to z2 in Eq. (2.6-22) to zero. For example, we can fix

w=α=1, and pick L that will make the given term zero. However, in that case we conclude that

the azimuthal width of each pearl, Lπ/4Ω=1.92, which is bigger than the radial width of the

pearl, and therefore such necklace beam is not stable in self-focusing Kerr media. For the given

intensity, the pearl will self-focus in the azimuthal direction, and this will eventually destabilize

the necklace and disintegrate it. We run the simulation with these precise parameters, and our

expectations were confirmed. The radius of the necklace does not change almost at all. However,

each pearl keeps shrinking in the azimuthal direction, and the necklace destabilizes within

O(40LD). Therefore, setting w=α=1 and choosing an L that eliminates the term proportional to z2

in Eq. (2.6-22), yields a non-expanding Necklace that is basically unstable but can survive for

tens of LD's. Another option to stop the expansion is to increase only α. We take the necklace

from Figure 2.6-1, and keeping all of its other parameters fixed, we increase α till the term

proportional to z2 in Eq. (2.6-22) vanishes. Unfortunately, the necessary α is equal to 1.16, which

is too far off the equilibrium necklace shape. As shown in Figure 2.6-7, this alternative also leads

to non-stationary propagation because the pearls keep shrinking, even though the necklace radius

is largely unchanged till O(40LD). Thus, choosing parameters so that the term proportional to z2

in Eq. (2.6-22) is set to zero seems not to be a fully satisfactory method for stopping the necklace

expansion.
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Figure 2.6-7: A Necklace with no radial dynamics. Our analytical understanding of radial

dynamics of necklaces lets us design a necklace whose radius is stationary as the necklace

propagates. The necklace presented here has α=1.16, w=1, Ω=8, and L/Ω=1.707. Unfortunately,

this necklace has α far away from the equilibrium shape. Thus, each pearl has its own dynamics

that eventually (after O(40LD)) destabilizes the necklace. Nevertheless, as long as the necklace is

stable (till O(40LD)), its radius does not change as was predicted by our analytics.

Even though the structure in Figure 2.6-7 is clearly non-stationary, there are important

lessons to be learned from it. The first lesson is that our analytical expression Eq. (2.6-22) seems

to work well, giving correct predictions even when the initial shapes are far away from the
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equilibrium necklace shapes. Furthermore, by increasing the azimuthal width of each pearl a

little, and also increasing the peak amplitude slightly, one could produce a necklace beam that

would be stable and stationary for a fairly long distance, say O(40LD). Eventually, the necklace

would disintegrate since its initial shape would be too far away from the equilibrium necklace

shape [44]. However, the propagation distance during which such a necklace is stable is

sufficient for experimental interest and its conditions are not too stringent. Finally, as the result

from Figure 2.6-7 clearly demonstrates, our previous intuition, that the force holding the

necklace together results from repulsion between adjacent "pearl"-solitons, needs to be

reexamined more carefully. In particular, Eq. (2.6-22) implies that by choosing the proper

parameters, one can make both the initial radial velocity, and the initial radial acceleration of the

necklace to be negative. Sure enough, such a necklace eventually turns out to be unstable, but

this fact does not diminish the fact that the necklace is held together by a force that is not net

repulsion only. One can think about this force as "surface tension", yet thus far the analogy is not

really substantiated.

We now proceed to use the analytical tools from above to analyze what happens if one

introduces an arbitrary radial phase to any necklace, at an arbitrary moment zo. In particular, we

assume ψ(r,θ,zo+)=ψ(r,θ,zo)exp(ivr), where zo+ denotes the moment immediately after imposing

the radial phase, and zo denotes the moment immediately before. After a few lines of algebra, we

get E(zo)=E(zo+), and also:

d R2(z)[ ]
dz

Zo+

=
d R2(z)[ ]

dz
Zo

+
2v

E
d

2
xψ (z0)

2
r

SPACE
∫∫ . (2.6-23)

Note that for typical necklaces the last term in Eq. (2.6-20) is very close to 2vL(zo).

Approximating L2(z)≈R2(z) in Eq. (2.6-23), we therefore obtain:
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dL(z)

dz Zo+
=

dL(z)

dz Zo

+ v, (2.6-24)

which is exactly as expected.  Furthermore, we can also find out what happens with the

Hamiltonian after imposing this radial phase:

H(z0 + ) = H(z0) + v
2
E + 2v d

2
x j(r,θ,z0) • ˆ r { }

SPACE
∫∫ . (2.6-25)

Since the last term in Eq. (2.6-25) is negative for a negative radial phase, it is not clear whether

imposing a radial phase in order to stop the instantaneous radial expansion would typically

decrease, or increase the Hamiltonian. Thus, we do not know how would it influence the term

proportional to z2 in Eq. (2.6-19). Note that this term is related (but not equal) to the

instantaneous radial acceleration of each pearl. To proceed with our analysis, we assume that at

the input (z=0) we start with a necklace beam that has zero radial velocity. Then, we propagate

the necklace for some zo, at which point according to our analysis in Eq. (2.6-19), its radial

velocity should be given by approximately vo=Hzo/EL(zo). Therefore, we multiply the whole

shape with exp(-ivor). Then, we notice the similarity between the last term in Eq. (2.6-25), and

the Eq. (2.6-18) to conclude:

H(z0 + ) = H(z0)
L2(z = 0)

L
2(z = z0)

. (2.6-26)

This is telling us that after imposing the radial phase, the necklace will have the same dynamics

as the scaled-up version of the necklace we started with at z=0. This is consistent with our

picture from section 2.3 that the intensity of the necklace to a good approximation simply scales

as the necklace propagates, according to the rescaling properties of Eq. (2.6-1) which conserve

the energy in the beam. Notice that in addition to extinguishing the instantaneous radial velocity,

we have also slowed down the subsequent dynamics, as one can see by comparing Figures 2.6-1
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and 2.6-2. In a way, this is expected, because it is natural that a scaled-up necklace would have a

slower dynamics, exactly by the factor given in Eq. (2.6-26).

By imposing a large enough negative radial phase, the radial acceleration can in principle

be turned into zero, or even negative. But, this is not a stable solution because the radial phase

needed to obtain this is huge compared to other necklace parameters, making this proposal

infeasible. Also, in that case the necklace would keep contracting till it destroys itself (each pearl

undergoes the equivalent of catastrophic collapse). Consequently, in typical experimental

realizations, one would probably want to let necklace expand for a while, then impose a large

enough negative radial phase to make it contract for a while, till it starts expanding again. Then

one would impose a negative radial phase again, etc.

2.6.5. Conclusion of section 2.6

In section 2.6, with collision experiments in mind, we investigate the possibility to

control the dynamics of necklace beams. Using the action minimization approach, we find

analytical solutions for the necklace shapes in specific regimes of necklace parameters, and

present analytical techniques for predicting the radial dynamics of necklace of any arbitrary

initial shape, even if the shape is not close to the equilibrium necklace shape. We also present a

procedure that enables us to control, and reverse the instantaneous necklace radial dynamics. All

the tools that we presented in this section enable us to design many different necklaces that are

essentially stationary over most propagation distances of physical interest: tens of diffraction

lengths.
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2.7. CONCLUSION OF CHAPTER 2

In conclusion, we have presented a new form of a self-trapped beam in self-focusing Kerr

media: a necklace-ring beam. Even though we do not know if this necklace beam is stable in the

absolute sense, we find numerically that it exhibits stable propagation for at least O(100)

diffraction lengths, which is more than enough for experimental observations. Such necklace-

ring beams slowly expand but fully preserve their structure.

Self-trapped necklace beams resemble solitons in many ways: a Necklace conserves

energy and momentum and does not change its shape over the experimentally reachable

propagation distances. Therefore, for all practical purposes, we can treat the self-trapped

Necklaces as "quasi-solitons" of the (2+1)D self-focusing cubic NLSE. This is in sharp contrast

to the previously held belief that this equation does not support solitons. Consequently, as an

avenue of further research, we envision studying all solitonic effects with necklaces, both

experimentally and theoretically. Furthermore, we propose studying necklace beams in other

non-linear media (not just Kerr); in particular, studying necklace interaction in saturable media

seems to be a very promising direction for further research.

Finally, we emphasize that the importance of this work lies in the fact that self-trapped

Necklace-ring beams should be observable in all nonlinear systems described by the cubic

(2+1)D nonlinear Schrodinger equation: practically in almost all centrosymmetric nonlinear

systems in nature that describe envelope waves [4].
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3. NECKLACES CARRYING ANGULAR MOMENTUM

3.1. INTRODUCTION AND BACKGROUND

In this chapter, we present self-trapped necklace beams that carry angular momentum. In

contrast to all known results with bright and dark solitons, the angular momentum borne on such

self-trapped entities can be a non-integer multiple of the energy. Furthermore, we demonstrate

the effect of slowing-down of angular velocity due to the increase of the moment of inertia of the

necklace beams as they propagate. Most of the material presented in this chapter has been

submitted for publication [30].

 Solitons that carry angular momentum have been well studied in many systems, for

example, optical dark vortex solitons [46], 3D spiraling-interaction of bright optical spatial

solitons [47], composite spatial solitons [48], quadratic solitons [49], and ring-solitons in a cubic-

quintic nonlinearity [50], to name a few. Over the years, several experiments involving transfer

of angular momentum (not just of spin) carried by light to other forms of angular momentum

have been performed [51]. In particular, the orbital angular momentum of optical beams is most-

commonly associated with an azimuthal phase modulation of the EM field by exp(iMθ) [52].

Such a phase modulation provides a local angular velocity with respect to the center of the beam

to every part of the beam. The EM field of solitons is continuous wherever the amplitude is non-

zero, that is, everywhere except for the origin. This fact bears much significance, because a field

discontinuity where the amplitude is non-zero renders the soliton highly unstable, even in a self-

defocusing medium. For this reason of stability, for all dark vortex solitons (which all have an

exp(iMθ) phase dependence), M is an integer [53].  For the very same reason, for all other forms
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of single solitons carrying angular momentum found as of yet [46,48,49,50], M is an integer. In

particular, in the (2+1)D cubic (Kerr) self-focusing NLSE

 i
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+ ψ 2ψ = 0, (3.1-1)

the energy is E = ψ 2∫∫ dxdy  and the angular momentum is  L =
i

2
r × ψ∇ψ * −ψ *∇ψ{ }∫∫ dxdy.

It is trivial to show that any beam that can be written as ψ(r,θ)=f(r)exp(iMθ), has L/E=M. Since

neither the definition of L, or E depend on the particular non-linearity involved, this result holds

for all types of non-linearities. [Similarly, in quantum mechanics (QM), neither the definition of

L, or the definition of the total probability depend on the particular form of the potential

involved.] Thus, all optical solitons found (theoretically or experimentally) thus far, carry an

integer L/E.  If one calculates the real, physical angular momentum carried by such a beam, one

will conclude that (within the paraxial approximation) the angular momentum (when averaged

over the number of photons) is exactly M!  per photon [52]. (If the light is circularly polarized,

this has to be modified by the spin contribution of ±!  per photon.)

Physically, the fact that L/E is an integer can be intuitively understood by comparison

with quantum mechanics. All solitons in optics (within the paraxial or slowly-varying amplitude

approximation) are described by a Schrodinger equation. In QM, the solutions of this equation

have a quantized angular momentum which has to be an integer multiple of ! , and ψ 2∫∫ dxdy is

normalized to 1 (since it represents the total probability in QM). In contrast, in classical optics

ψ 2∫∫ dxdy represents the total power carried upon the beam, which is proportional to the

average number of photons (and of course there is no ��!  in classical optics). Thus, the

quantization of L in QM (in terms of ! ) resembles the fact that L/E is integer for all solitons
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found thus far of a classical (2+1)D normalized NLSE. We emphasize that L/E is an integer not

because of quantization reasons, but rather because a non-integer L/E typically leads to a field

discontinuity where the intensity is non-zero; such a discontinuity is thought to be unstable in

self-focusing/defocusing media. Here we find self-trapped structures which carry non-integer

L/E yet propagate in a stable fashion for many diffraction lengths: quasi-solitons that carry

non-integer per-photon angular momentum. These possess the structure of necklace-ring

beams.

3.2. NECKLACE BEAMS CARRYING INTEGER L/E

Consider a necklace beam whose shape at the input to the propagation is approximated by

ψ(r,θ,z=0)=f(r)cos(Ωθ), for some f(r) [54], and add to it the angular momentum with exp(iMθ).

(Here, Ω, M are integers.) Thus, the input shape is ψ(r,θ,z=0)=f(r)cos(Ωθ)exp(iMθ). As long as

M is reasonably smaller than Ω, we find that this necklace is stable in all our simulations, for

more than 50 diffraction lengths, LD [56]. After 50 LD we reach our computational limitations, so

it is very plausible that the necklaces are stable for much larger propagation distances. Such

shapes have L/E=M. Since the symmetry between the pearls has to be preserved in a stable

necklace rotation, the angular momentum is manifested in a very direct way: the entire necklace

rotates as it propagates (Fig. 3.2-1). Quantization of L/E manifests itself in our simulations in the

fact that, for a necklace whose all parameters are fixed (except for its M), only certain angular

velocities ω are allowed; these ω's are given by approximately M/R2. The agreement between

this analytical prediction for ω, and our numerical simulations is better than 1% typically.

Another interesting thing to point out here is the differential rotation of necklaces: two
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necklaces that differ only in their radii (but not in their M's) differ in their ω's by a squared ratio

of their radii.

The fact that the allowed ω's are quantized shows a close connection between solitons

and bound states in quantum mechanics! Both of these systems are described by very similar

wave equations; thus we expect them to display quite a few similar properties. However, the fact

that some wave-quantities that relate to the relation between solitons and particles are thus

necessarily quantized in optics was not appreciated so far.

Fig 3.2-1: A rotating necklace with integer L/E. We launch a necklace close to equilibrium self-

trapped necklace shape. It "breathes" for a short distance, until it reaches the equilibrium shape.

In addition, as it is clear from the figure above, this necklace slowly rotates as it propagates. The

input shape (in the regions that contain most of its energy), is ψ(r,θ,z=0)=sech(r-

6.83)cos(4θ)exp(iθ). Dark means high intensity.
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As described in chapter 2, self-trapped necklace beams typically slowly expand as they

propagate. The expansion is a consequence of the net radial force exerted on each of the spots in

the necklace. However, even though the necklace beam slowly expands, the expansion is very

different (and much slower) than diffractive expansion: it is uniform and it preserves the shape of

the necklace. Once angular momentum is added to a self-trapped necklace beam, it expands

faster. In other words, for two necklaces that differ only in their M's, the one with larger M

expands noticeably faster. Consequently, in our simulations, we observe centrifugal force in a

very direct way in a solitonic system. Furthermore, as a necklace beam expands, its L and E are

conserved, but this means that ω (the angular velocity) cannot be conserved. This is similar to a

skater on ice: if she extends her hands while she rotates, her angular velocity ω decreases. As

shown in Fig 3.2-2, we observe this effect with necklace beams. Analytically, angular phase has

to be conserved, because in a smooth continuous evolution, the phase would have to

discontinuously jump from, say, exp(iθ) to exp(i2θ), and that is not physical in an adiabatic

evolution process.  Thus, as the necklace expands, ω*R2 has to be conserved. Our numerics

confirm this prediction. One can also easily develop a moment of inertia formulation for this

system. The moment of inertia for necklaces is roughly I=E*R2. Since L=Iω, and both E and L

are conserved, ω has to go down with R2. To our knowledge, this is the first prediction of a

"skater on ice" effect, which is so obvious in Newtonian Mechanics, but unobserved yet directly

in solitonic systems: the slowing-down of angular velocity due to conservation of energy and

angular momentum.
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Fig 3.2-2: The rotation angle of the expanding necklace of Fig 3.2-1, as a function of

propagation distance, z. This particular necklace expands significantly as it propagates. Since

both L and E are conserved, the angular velocity slows down. The solid line represent the true

instantaneous angle of rotation of the necklace (as measured numerically at 60 points during the

propagation), whereas the dashed line represents what the instantaneous angle of rotation would

have been if the angular velocity were a conserved quantity.

3.3. NECKLACES CARRYING NON-INTEGER L/E

As pointed out above, only integer values of L/E are allowed, in an analogy to QM. But

we know that there are physical objects that carry spin in multiples of ! /2 also. However, such

spin (e.g., in electrons) is an internal degree of freedom, and cannot be reproduced as a

manifestation of a spatial property of a wave function. Nevertheless, even in QM, the expectation

value of angular momentum can be a non-integer multiple of ! . We build on this idea to

construct stable self-trapped beams that carry non-integer L/E. The necklaces described above
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have ψ(r,θ,z=0)=f(r){exp(i(Ω+M)θ)+exp(-i(Ω-M)θ)}/2. To create a necklace carrying non-

integer L/E, we launch shapes of the form of ψ(r,θ,z=0)=f(r){exp(i(Ω+M)θ)+exp(-i(Ω)θ)}/2, like

in Fig 3.3-1. Such a necklace has L/E=M/2. For an odd M, this necklace has a non-integer L/E!

Its intensity is given by f2(r){1+cos[(M+2Ω)θ]}/2. In contrast to the necklaces of chapter 2 that

have an even number of spots, a necklace that carries non-integer L/E has an odd number of

spots. Furthermore, in a necklace in which L/E is an integer (or zero), adjacent spots are

mutually π out of phase (this is why such necklaces expand [8]).  Clearly, this can not be the case

here since there is an odd number of spots. In order to preserve the symmetry between the pearls,

the angular momentum is again manifested in rotation of the necklace, and ω=M/(2R2); thus ω is

twice slower than for the corresponding necklaces of the previous paragraph, keeping M and

other parameters fixed. Our numerics confirm this analytical prediction, and these necklaces

seem to be as stable as the usual necklaces: for many tens of LD's.
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Fig 3.3-1: A necklace with L/E=1/2. We launch a necklace close to the equilibrium self-trapped

necklace shape; it "breathes" until it reaches the equilibrium shape (at 3 LD). As shown here, this

necklace slowly rotates as it propagates. The input shape is approximately ψ(r,θ,z=0)=sech(r-

6.83){exp(i4θ)+exp(-i3θ)}/2.

Another surprising feature of the systems described so far is that a photon, no matter

where it is in the beam, carries the same angular momentum [55], although the energy density

distribution is so non-uniform! That is, we calculate analytically the local ratio L(θ)/E(θ), and

find this ratio to be independent of θ, both in the case of the necklace with an even number of

pearls (when it equals M), and in the case of a necklace with an odd number of pearls (when it

equals M/2). This implies that in a necklace with an odd number of pearls, each photon

contributes equally to the total angular momentum, and it contributes with M! /2. (One might

think that the way we get a non-integer per-photon angular momentum is through the fact that

different photons carry different amounts of integer angular momentum with respect to the

origin, depending on where they are. But, this is not the case! The photons have identical

expectation values of angular momentum.) Since the shape of each pearl is fixed (rigid) as the
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necklace propagates, each photon (no matter in which part of the necklace it is), has to have the

same angular velocity with respect to the center of the necklace.

Finally, we generalize this idea of generating a self-trapped necklace with a non-integer

L/E, to a necklace carrying an arbitrary  real per-photon angular momentum. Consider a

necklace of ψ(r,θ,z=0) = f(r) {a*exp(iMθ) +b*exp(iNθ) + c*exp(-iPθ) + d*exp(-iQθ)}. This

necklace has L/E=(a2M+b2N-c2P-d2Q)/(a2+b2+c2+d2), which can in principle take any real

value. Not all such necklaces are stable, but one can construct necklaces that are stable for at

least many LD's. Setting N=P, M and Q to have similar values as N and P, b to be similar to c,

and a,d << b,c, the necklace looks like a "usual" necklace (with a radius much larger than its

thickness), but with its envelope slightly azimuthally modulated. We know from chapter 2 that

small azimuthal perturbations do not destabilize necklaces for long propagation distances. Thus,

we expect these necklaces to be stable also, and indeed, we find many such necklaces that are

stable for more than 20LD, which is plenty for experimental observations. For example, a

typically-large experimental propagation distance for (2+1)D spatial solitons observed so far is

approximately 20LD [47]. In Fig. 3.3-2, we show a necklace that has d=0, N=P=8, M=15, a=1,

b=7, and c=8. Therefore, L/E=-35/38 for this necklace. As can be seen in Fig. 3.3-3, this

necklace indeed has a shape similar to a usual necklace, but with a small azimuthal perturbation.

It is interesting to note that in these necklaces the angular momentum is not manifested in

rotation of the necklace (!), but instead in circulation of the modulation of the azimuthal

envelope, as shown in Fig 3.3-2; neighboring spots exchange energy and perform a clockwise

circulation of energy around the necklace, and this is the primary means of transporting the

angular momentum upon the propagating beam. The reason for this distinctly different behavior

of a necklace with integer of 1/2 L/E values from a necklace with a non-integer and not 1/2 value
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of L/E, is symmetry. For the necklace with integer, zero, or 1/2, values of L/E, the symmetry

between the pearls is conserved. Thus, if a symmetric necklace is to stay stable, the only way the

angular momentum can be manifested in that case is the rotation of the necklace as a whole, as

shown in Figs. 3.2-1&3.3-1. In contrast, for a necklace with non-integer (and not 1/2) value of

L/E the symmetry between the pearls is broken to start with, as shown in Fig 3.3-2. Thus, the

pearls are allowed to exchange energy, and thereby carry the angular momentum without the

rotation of the necklace as a whole. Indeed, as shown in Fig. 3.3-2, the frame of the necklace is

stationary, yet the spots circulate the energy in a preferential direction corresponding to the sign

and the value of L/E.
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Fig 3.3-2: a necklace with fractional L/E= -35/38. The angular momentum manifests itself in

exchange of energy between the spots; this exchange "circulates" around the necklace. Contrast

is enhanced for better clarity. This particular necklace is stable only for 8LD. Necklaces that

have better stability are such that the energy exchange between the spots is slow, so it is not

visible in a gray-level figure. For example, one can easily construct a necklace with L/E= 261/

1634 that is stable (numerically) for at least 50 LD.
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Fig 3.3-3: the azimuthal intensity profile of the necklace from Fig 3.3-2. The input shape was

approximately ψ(r,θ,z=0)=sech(r-13.66){exp(i15θ)+7*exp(i8θ)+8*exp(-i8θ)}/16. Therefore,

|ψ|2=f(r)Q(θ) at the input; what we plot here is Q(θ). As can be seen here, the azimuthal profile

of this necklace is very similar to the profile of a regular necklace, but with a small azimuthal

perturbation. Thus, a necklace like this one is stable for fairly long propagation distances.

The necklace described in Figs. 3.3-2, and 3.3-3 has L(θ)/E(θ) which strongly depends on

θ. This is easy to understand since in this necklace the pearls are not "rigid" as is the case with

the necklaces from Figs. 3.2-1, and 3.3-1; thus photons that are localized in different parts of the

necklace can have different angular velocities. Therefore, the non-integer L/E found for these

beams does not imply that the angular momentum per photon in them is a non-integer multiple of

! , because different regions upon the beam carry different angular momentum per photon. This
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is in sharp contrast with the M/2 case of Fig. 3.3-1 where the angular momentum per photon is

indeed M/2 everywhere.

3.4. PERSPECTIVE AND CONCLUSION OF CHAPTER 3

Finally, we emphasize that all necklaces described here are indeed self-trapped. If we

start with a shape that is close to the equilibrium necklace shape, as long as this necklace is

stable, both L and E are self-trapped to the necklace. The L and E carried away by radiation are

negligible compared to the initial L and E values. Furthermore, the self-trapped part of the

necklace conserves its initial L/E to even much better accuracy, although a tiny fraction of L and

E are carried away through radiation.

To the best of our knowledge the necklaces described here are the only self-trapped

shapes found thus far that have a non-integer per-photon angular momentum (in units of ! ).

Although our initial motivation (in chapter 2) for constructing necklace beams was to have stable

bright self-trapped shapes in (2+1)D cubic NLSE, necklace beams demonstrate interesting

physical properties by themselves. Since necklace-like shapes can be most likely constructed in

many other non-linear wave-equations, the ideas from this chapter should be extendable to a

wide range of physical systems. For example, one might think about converting the fractional

angular momentum per particle carried by a necklace with L/E =M/2 into the angular momentum

carried by the spin. This will imply rotation of the polarization state in optics, or spin-orbit

interaction in a coherent electronic system, such as a Bose-Einstein condensate.
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4. FRACTALS FROM SOLITONS

4.1. INTRODUCTION

Fractals are one of the most fundamental concepts in nature [57], characterizing many

natural phenomena; they have been described not only in biology, medicine, galactic clusters,

material structures, etc., but also in areas as surprising as stock markets [58]. In Optics, Fractals

have been identified in conjunction with binary gratings [59] and with unstable cavity modes

[60]. Both of these optical fractal systems are fully linear; they respond in a passive manner to

illumination by constructing fractals through linear diffraction. In this chapter, we show that

nonlinear systems that support solitons can, under proper non-adiabatic conditions, evolve and

give rise to statistical fractals. Further, our idea can be used to demonstrate exact fractals as well.

The principle we describe is universal and seems to hold for most soliton-supporting systems in

nature. Just as an illustration of our idea, we present some specific examples that theoretically

demonstrate fractals in nonlinear optics. In addition, we discuss possible experimental

realizations.

As an example of a soliton-supporting system, consider a system described by the

normalized Nonlinear Schrodinger Equation (NLSE:)

i
∂Ψ
∂z

+
1

2
∇T

2Ψ + f (| Ψ |2 )Ψ = 0 (4.1-1)

where the nonlinear term )|(| 2Ψf  is specific to the physical system, and ∇T
2  is the Laplacian

transverse to the propagation direction z. For waves in a single transverse dimension [(1+1)D

NLSE], ∇T
2 =∂2 / ∂x2 . Equation (4.1-1) describes many physical systems, primarily those in

which nonlinear waves propagate in isotropic media [4], where Ψ  describes the slowly varying



59

envelope that modulates a fast carrier wave. In particular, NLSE describes several optical

systems [61,1,5], where Ψ  is the slowly varying amplitude of the electric field, superimposed on

an single k vector carrier plane wave. In our theoretical studies, we focus on the (1+1)D NLSE

and on two particular forms of nonlinearity that are common in optics [1,5]: the Kerr-type where

f (|Ψ |2) =| Ψ |2 , and the saturable type wheref (|Ψ |2) =| Ψ |2 /(1+ | Ψ |2). Extending our ideas to

other forms of nonlinearities is straightforward, and extending them to higher dimensions

maintains the main results while adding beauty and complexity to the fractals generated. The

particular systems we discuss are just examples of the general principle we propose.

Since df (| Ψ |2 )/ d | Ψ |2  > 0, both the Kerr, and the saturable nonlinearity are of the self-

focusing type, i.e., the nonlinearity has a tendency to shrink a pulse. In optical systems, this

happens because the presence of the light pulse increases the local index of refraction, which, in

turn, tends to shrink the pulse. The tendency to shrink competes with diffraction, which tries to

expand the pulse, and, for some NLSEs, these two tendencies can exactly cancel each other,

producing a localized pulse whose shape is stationary as it propagates: a soliton [62]. The

solitons of the particular NLSEs we discuss in this chapter are very robust creatures. Even if one

perturbs them slightly from their equilibrium shape, they soon evolve into stable solitons again.

In section 4.2, we provide some background intuition that contributes to the

understanding of our idea. In section 4.3, we describe our idea. In section 4.4, we put our idea in

perspective of what is already known, and what is yet to be done. In section 4.5, we describe how

our idea can be used to create exact fractals also. In section 4.6, we discuss experiments with

fractals in photorefractive materials, and in section 4.7, we conclude this chapter. Material

presented in section 4.5 appeared in [32], while the rest of material was published in [31,63];

material from section 4.6 was not published.
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4.2. INVARIANCE ACROSS THE SCALES

Consider first the (1+1)D Kerr NLSE, of which a fundamental soliton solution is Ψ(x,z).

One can obtain a whole family of solitons of Eq. (4.1-1) by a simple re-scaling:

Ψ(x,z) → qΨ(qx,q2z) for any real q. According to the definition of self-similarity, this means

that all solitons of the same order of this equation are self-similar to each other [64]. This

property, in fact, holds for solitons of any order N: if Ψ(x,z=0) is a soliton of order 1, then

NΨ(x,z=0) is a soliton of order N. Furthermore, because the generic waveform of solitons of all

orders is hyperbolic secant, then solitons of different orders are also self-similar to one another,

at least at some points in their propagation (although their propagation dynamics differs from one

order to another). The physical basis for this self-similarity is the fact that the (1+1)D Kerr NLSE

does not have any natural scale built into it, so the physics of this equation looks the same on all

scales.

In contrast with the Kerr nonlinearity, the (1+1)D saturable NLSE does have a natural

scale, given by the number 1 in the denominator of the nonlinear term. However, for | Ψ |2<< 1,

the nonlinearity reduces to the Kerr nonlinearity, so self-similarity exists in the saturable case

also. Furthermore, if a soliton of (1+1)D saturable NLSE satisfies | Ψ(x = 0,z) |2>> 1 in the

regions where most of the energy of the soliton is contained, | Ψ |2 /(1+ | Ψ |2) ≈ 1− (1/ |Ψ |2). Of

course, this approximation does not hold at the tails of the soliton. Still, most of the interesting

properties can be captured by studying (1+1)D NLSE with a nonlinearity given by 1− (1/ |Ψ |2 ) ;

we call this nonlinearity the “deep-saturation nonlinearity”. We have checked numerically that if

the condition | Ψ(x = 0,z) |2>> 1 is satisfied, then indeed most of the soliton’s physics is captured
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by studying the (1+1)D Deep-saturation NLSE. If Ψ(x,z) is a solution of the (1+1)D deep-

saturation NLSE, then a whole family of solutions can be obtained by re-scaling

Ψ(x,z) → eiz(1−q 2 )Ψ(qx,q2z)/q , for any real q. Therefore, all solitons of the same order of

(1+1)D saturable NLSE are related by this simple re-scaling, as long as most of the energy of the

solitons is in the regions where | Ψ |2>> 1; all of these solitons are self-similar to one another in

their physical properties, such as intensity shape etc. This is because the natural scale in the

saturable NLSE is visible only in the margins of the intensity profile of the soliton, and its effect

on the shape is tiny.

We now introduce the concept of the soliton existence curve [65], a two-dimensional

curve that gives the FWHM of the soliton intensity in normalized units, as a function of the peak

amplitude of the corresponding soliton, Ψ0 ≡ Ψ(x = 0,z). The curve is drawn for the set of all

solitons of the same order of a given NLSE, where each soliton is represented by a point on the

graph. Different NLSEs have different existence curves, and solitons of different orders of the

same NLSE lie on different existence curves. According to the scaling relation described above,

all existence curves (of solitons of all orders) of Kerr NLSEs are parallel lines of slope -1 on a

log-log plot. The existence curves of saturable NLSEs are also parallel lines of slope -1 on a log-

log plot (which coincide with the Kerr curves) in the region Ψ0 << 1. On the other hand, in deep-

saturation where Ψ0 >> 1, the existence curves are parallel lines of slope 1 on a log-log plot like

in Fig. 4.2-1. The region in between these two regimes, i.e., where Ψ0 ~1, we call the valley. All

solitons of the same order of a saturable NLSE are to a large extent self-similar to each other as

long as they are all on the same side of the valley.
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Figure 4.2-1: Existence Curves of Kerr-type solitons (dashed line), solitons in a saturable

nonlinear medium (solid curve), and deep-saturation solitons (dashed-dotted line), all in (1+1) D.

The vertical axis gives the normalized width of the intensity of the soliton, in the x-units of Eq.

(4.1-1). The point indicated by  * describes the input pulse to the fractal-generating process of Fig.

4.3-2.

The existence curves can provide information about the evolution of arbitrary input

pulses into solitons. Consider a pulse of width w  and peak amplitude Ψ0, and assume that this

pulse does not have the stationary soliton shape. This pulse is represented by a point with

coordinates (Ψο,w) on the existence curve plot. If this point is close to the curve, then the pulse

soon evolves into a stable soliton shape (while shedding some power in the form of radiation

modes or smaller scale solitons). Since the solitons of the NLSEs we study here are stable, this

happens even though their initial shape only approximates a soliton.
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4.3. OUR IDEA ON HOW TO OBSERVE FRACTALS

Having established that Kerr solitons are exactly self-similar, and that deep-saturation

solitons are approximately self-similar, it is now compelling to ask: "Can solitons of various

scales coexist in the same nonlinear medium simultaneously?" If the answer is positive, can they

coexist within one another in a fractal structure? And, if the answer to this question is also

positive, then how can a nonlinear system be driven to generate solitons organized in a fractal

structure? The answers to all of these questions are in the response of the nonlinear system to a

non-adiabatic change in one (or more) of its properties. As described below, an abrupt change in

the nonlinear coefficient, or in the saturation coefficient (in saturable systems), or in the

dispersion coefficient (for temporal solitons), or in almost any parameter that leads to a large

deviation of the pulse from the soliton existence curve, will lead to the appearance of a fractal

structure driven by soliton dynamics. In our simulations, we observe self-similarity and fractals

both in the Kerr regime, and in the deep-saturation regime of Eq. (4.1-1).

Our goal is to design a physical system that can support many solitons all of different

sizes simultaneously. If one starts with a pulse whose shape is very far off the existence curve,

this pulse is not able to evolve smoothly into a soliton. Under proper conditions, it breaks up into

smaller pieces and radiation. Quite often, the pieces resulting from this "explosion" include many

small solitons, all of different sizes. If the nonlinearity is such that these solitons are self-similar

to each other, one can claim to have observed self-similarity.

We distinguish between two scenarios that produce such breakup. The first is driven by

noise and is easier to realize experimentally. Consider a pulse whose initial width is far above the

existence curve launched into a nonlinear medium in the regime that can support self-similar

solitons (as in Fig. 4.2-1). Therefore, small perturbations (initiated by noise) of large
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wavelengths will grow on top of the pulse as it propagates. After some distance, the energy in

these perturbations becomes significant, and the pulse breaks up into smaller pulses. This

phenomena is known [61] as Modulational Instability (MI). In many physical systems, the

products of this breakup include many solitons of different sizes. We call it “MI-induced

breakup”. An example of such a breakup in saturable NLSE is given in Figure 4.3-1.

Figure 4.3-1: An example of an MI driven breakup, starting in the deep-saturation regime of

(1+1)D saturable NLSE. The initial pulse was 80 times wider than the soliton of the same peak

amplitude, and there was a significant amount of background noise.

The second breakup scenario is "Dynamics-induced breakup". It is observable in

numerical calculations that inherently have no or very little noise. It is also observable in “clean”

experimental systems, like temporal solitons in optical fibers [81]. Consider a pulse above the
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existence curve launched into a self-focusing medium. The local intensity increases the local

index of refraction, thereby creating a waveguide structure that attracts light to the center of the

induced waveguide. If the initial width of the pulse is much larger than the width of the lowest

guided mode of this induced waveguide, the light coalesces towards the center trying to reach the

solitonic shape, in which diffraction is exactly balanced by self-focusing. However, once the

equilibrium is reached the pulse keeps shrinking because of its inertia. Since the equilibrium

could not have been reached smoothly (the pulse is initially far above the existence curve), the

pulse explodes into smaller pieces, which form smaller solitons of different sizes. For an

example in saturable NLSE, please see the top plot of Fig. 4.3-2. Since both the underlying

equation and the initial pulse obey left-right symmetry, the output multi-soliton pulses also obey

this symmetry (in contrast with an MI-induced breakup, since noise obeys no symmetry). At any

rate, Fig. 4.3-1, and the top plot in Fig. 4.3-2 clearly demonstrate self-similarity in systems that

allow for existence of solitons.
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Figure 4.3-2: A 3-stage self-similar dynamics-driven breakup creating a fractal structure starting

in the deep-saturation regime of the (1+1)D saturable NLSE. The initial pulse is given by point *

in Fig. 4.2-1. The 1st stage is given in the top plot. A detail of the 2nd stage is given in the middle

plot. Finally, a detail of the 3rd stage is given in the bottom plot.
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In order to create fractals, one can apply the logic that has caused such breakups in a

repetitive manner. The breakups into self-similar solitons were caused by an abrupt change from

a medium in which the input pulse was stable into a second medium that tried to force the pulse

to be much narrower. In the above examples, the initial medium is free space and the second

medium is a self-focusing medium that supports solitons that are much narrower than the input

pulse, when both have the same peak intensity. The same logic can be applied when the initial

medium is nonlinear, when the abrupt transition is from a medium in which the input pulse is a

stable soliton into a medium that breaks it up into much narrower solitons. In other words, if

after the abrupt transition, the pulse is much wider than the soliton of the same intensity (i.e., the

pulse is far above the existence curve), it cannot evolve smoothly into a single soliton. Instead, it

explodes into solitons of different scales. In this spirit one can take the output “daughter solitons”

at the end of the top plot in Fig. 4.3-2, and make an abrupt change in the nonlinear medium in

which they propagate, and force each one of the “daughter solitons” to break up into a train of

smaller solitons. This happens if the change moves the position of the “daughter-solitons” far

above the existence curve. Such a change in the nonlinear medium can be realized either by

altering the intensity of the pulses abruptly, or by changing the coefficient in front of ∇T
2  in Eq.

(4.1-1), or by changing the properties of the nonlinearity (magnitude, saturation, etc.). It is

important that the change in the conditions is abrupt; an adiabatic change does not cause a

breakup, but instead the pulse adapts and evolves smoothly into a narrower soliton, as shown in

Fig. 4.3-4. When the change is abrupt and large enough, each of the pulses undergoes a self-

similar breakup as illustrated in the middle plot of Fig. 4.3-2, or top plot of Fig. 4.3-3. This

process can be repeated, in principle, an infinite number of times, thereby creating a fractal

structure. Of course, all the resulting solitons after each breakup have to be in the regime where
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they are all self-similar to each other.

Figure 4.3-3: Top view of a 3-stage self-similar breakup creating a fractal structure starting in the

deep-saturation regime of the (1+1)D saturable NLSE. The 1st stage is given in the upper-left plot.

The 2nd stage is given in the upper-right plot. A magnified detail of the 2nd stage is shown in the

lower-left plot. The continuation of evolution of that detail into the 3rd stage is given in the lower-

right plot.

A three stage fractal is presented in Figs. 4.3-2, and 4.3-3. These breakups are dynamics-

induced. At the input, self-focusing is much stronger than diffraction for a pulse of that width, so

the pulse contracts and eventually breaks up into many self-similar solitons observed at the
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output of the upper-left figure. At the plane of the output of the upper-left figure, we change the

denominator in the nonlinear term from 1+ |ψ |2   to 1+ (|ψ |2 / 8). This makes all the pulses at

the output of the upper-left figure have amplitude 8 times smaller than solitons of the same

widths have. Then, we propagate the output of the upper-left figure for a few more diffraction

lengths, resulting in a self-similar breakup of every pulse, as shown in the middle plot of Fig 4.3-

2. At the output of the middle plot of Fig. 4.3-2, we change the nonlinear term into

1+ (|ψ |2 / 64), and propagate the pulse further. As shown in the bottom plot of Fig. 4.3-2, we

observe one more stage of self-similar breakup. In these simulations, we use the saturable

|ψ |2

1+ |ψ |2
 nonlinearity, to show when we expect the fractal generation process to end in a real

system. In this case, the third stage shown by bottom plot is the final breakup, because most of

the end solitons at this stage are of peak intensities on the order of unity, which cease to be self-

similar. As for the other end of this process, i.e., the first breakup, there is no upper limit: one

can start this fractal generation process by literally breaking up plane waves.
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Figure 4.3-4: An adiabatic change of the physical system in which the pulse propagates does not

cause the required breakup. We start with a pulse that is initially a soliton of the (1+1)D cubic

NLSE, and vary the saturation coefficient adiabatically (i.e. the characteristic propagation length

scale on which the coefficient varies is much longer than the characteristic length scale of the

pulse propagation given by the diffraction length of the pulse at any given moment.) Instead of

breaking up, the soliton keeps evolving smoothly into whatever the instantaneous solitonic shape

is. Physically this is expected because solitons of (1+1)D cubic NLSE are very stable creatures.

To have a real fractal in mathematical sense, one should have an infinite number of stages

in this process. However, as is the case with all other physical fractals, the number of stages is

limited, thus resulting in a pre-fractal, rather than a fractal. The reason why all physical fractals

live in only a limited regime of scales is easy to understand. Both at large, but primarily at small

scales, sooner or later the scale of the fractal in question becomes comparable to some other

relevant physical scale. Such scale then modifies the physics of the system, and the equation

representing the system is modified, typically to an equation that does not display self-similarity

anymore. For example, at small scales, at least the atomic scale presents a lower bound to fractal
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generation. Specifically for optical spatial solitons, the number of breakup stages is limited by

the ratio between the beam width (of any of the daughters solitons in a particular stage) and the

optical wavelength in the medium. When this ratio is smaller than, say, 5, the beam is no longer

paraxial and one has to add other terms to the equation (and for ratio ~1 the underlying equation

becomes vectorial). For optical temporal solitons in fibers, the limiting factors are third order

dispersion, and additional nonlinear processes (e.g., Raman scattering). In both cases, we

realistically expect to observe 3-4 stages of breakup.

Let us go back now to the definition of a fractal [58] as “an object which appears self-

similar under varying degrees of magnification. In effect, possessing symmetry across scale, with

each small part replicating the structure of the whole”. It is obvious that the structures described

in Fig. 4.3-2 are fractals: they are self-similar within  each scale (i.e., the “daughter solitons”

after each breakup), and they are also self-similar over at least three widely separated scales.

Also, as we show by the increasing magnification (Fig. 4.3-2), each part breaks up again and

again in a structure replicating the whole. It is obvious that we have found a way to generate

fractals, which are driven by soliton dynamics.

4.4. PERSPECTIVE

Several topics merit discussion. We want to emphasize the resemblance of our fractals to

Cantor Sets [58]. This fractal structure (after several breakup processes) is actually a

Randomized Cantor Set, because at any given stage self-similar structures (soliton-like pulses)

of various scales coexist, with the distances between these pulses varying in what looks like a

random manner, especially in the presence of significant noise. Furthermore, the process we

described is pretty robust; in our simulations we did not have to be particularly careful about
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when to start each particular stage in order for our final creatures to be fractals. The presence of

the noise does not harm the fractal generation either; in fact, as we explained above, one can use

this idea to build random fractals that are in fact noise-driven. This brings in another point: the

fractal dimensions. The fractal dimension can be estimated using box-counting method, and it is

obvious that this dimension is (in general) not an integer. In any case, the fractal dimension is

specific to the system and the initial conditions used. Another topic has to do with fractals in

higher Euclidian dimensions, e.g., in full 3D. Since the ideas presented are not restricted by

dimensionality,  they should be easy to translate into higher dimensions and we envision fractals

that have two different transverse scales, that is, when the width of every pulse in x is much

different than that in y.  However, caution must be taken to make sure that the system can

support (2+1)D soliton structures first. The saturable NLSE can support stable bright (2+1)D

solitons [66], so we expect it to support 2D fractals as well.  There are many other new ideas

under research, but the main challenge is experimental: to demonstrate fractals.

4.5. EXACT FRACTALS FROM SOLITONS

4.5.1. Introduction

Fractals can be classified in numerous manners, of which one stands out rather distinctly:

Exact (regular) Fractals versus Statistical (random) Fractals. An exact fractal is an "object

which appears self-similar under varying degrees of magnification … in effect, possessing

symmetry across scale, with each small part replicating the structure of the whole” [58]. Taken

literally, when the same object replicates itself on successively smaller (or larger) scales, even

though the number of scales in the physical world is never infinite, we call this object an "exact

fractal ". When, on the other hand, the object replicates itself in its statistical properties only, it is
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defined as a "statistical fractal". Statistical fractals have been observed in many physical

systems, ranging from material structures [e.g., polymers, aggregation, interfaces, etc.], to

biology, medicine, electric circuits, computer interconnects, galactic clusters, and many other

non-related and surprising areas, including stock market price fluctuations [58]. Exact fractals,

on the other hand, such as the Cantor Set, occur rarely in nature except as mathematical

constructs. In this section 4.5, we describe how a Cantor Set of exact fractals can be constructed,

under proper nonadiabatic conditions, in systems described by the (1+1)D cubic self-focusing

Non-Linear Schroedinger Equation (NLSE). We demonstrate exact Cantor Set fractals of

temporal light pulses in a sequence of nonlinear optical fibers. We calculate their fractal

similarity dimensions and explain how these results can be produced experimentally. This work

was done in collaboration with Suzanne Sears et al. [32].

A Cantor Set is best characterized by describing its generation [58]. Starting with a single

line segment, the middle third is removed to leave behind two line segments, each with length

one third of the original. From each of these line segments, the middle third is again removed,

and so on, ad infinitum. At every stage of the process, the result is self-similar  to the previous

stage; i.e., identical upon rescaling. This "triplet set" is not the only possible Cantor Set: in

general, any arbitrary "cascaded" removal of portions of the line segment may form the repetitive

structure.

The fractals we propose should be observable in many systems in nature, and their

existence depends on two requirements: (I) the system does not possess a natural length scale,

i.e., the physics is the same on all scales (or, any natural scale is invisible in the parameter range

of interest) and (II) the system undergoes abrupt, non-adiabatic changes in at least one of its

properties (as seen in section 4.3). 
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In the most general case, our method of generating fractals from solitons gives rise to

statistical fractals. In the fractal which results from each breakup, the amplitudes of the

individual solitons, the distances between them, and their relation to the solitons of a different

"layer" are random. Thus, the self-similarity between the structures at different scales is only in

their statistical properties. In this section, we show that the principle of "fractals from solitons"

can be applied to create Exact (regular) fractals, in the form of an exact Cantor Set. The

underlying requirement is that after every breakup stage, all of the "daughter pulses" must be

identical to one another. In this case, ALL  the daughter pulses can be rescaled from one breakup

stage to the next by the same constant, and the entire propagation dynamics repeats itself in an

exact rescaled fashion. Additionally, if we prepare a sequence of breakups in which the scaling

constant between each successive breakup is the same, then the cascade of breakups will create

solitons in precisely self-similar formation. The resulting scaling on all length scales constitutes

an exact Cantor Set. (Recall that in an exact Cantor Set fractal, all the re-scaled structure must

have the same scaling constant between every pair of consecutive stages). We show below that

in this manner, one can obtain exact Cantor Set fractals from solitons. This represents one of

the rare examples of a physical system that supports Exact (regular), as opposed to Statistical

(random) fractals [58].
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Figure 4.5-1: Illustration of a sequence of nonlinear optical fiber segments with their dispersion

constants and lengths specifically chosen to generate exact Cantor Set fractals.

To illustrate the idea of generating Cantor Set fractals from solitons, we analyze the

propagation of a temporal optical pulse in a sequence of nonlinear fiber stages with dispersion

coefficients and lengths specifically chosen to impose a constant rescaling factor between

consecutive breakup products. We numerically solve the (1+1)D cubic self-focusing NLSE, vary

the dispersion coefficient in a manner designed to generate Doublet- and Quadruplet- Cantor Set

fractals, and show the formation of temporal optical soliton Cantor Set fractals (see Fig. 4.5-1).

4.5.2. Theoretical description of the process

The nonlinear propagation and breakup process in fiber segment "i" is described by the

(1+1)D self-focusing cubic NLSE:
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i
∂ψ
∂z

−
β ( i)

2
∂2ψ
∂T

2 +γ ψ 2ψ = 0 , (4.5-1)

where ψ (z, T)  is the slowly varying electric field envelope of the optical pulse, T = t − z/ vg , is

the time coordinate shifted to the propagation frame, vg  is the group velocity, β ( i) <0 the

(anomalous) group velocity dispersion coefficient of fiber segment i, and γ>0 is proportional to

the fiber nonlinearity (n2>0); z is the spatial variable along the direction of propagation and t is

time. Equation 4.5-1 has a fundamental soliton solution of the form:

ψ z,T( ) =
β (i )

γ (T0
(i ) )2 Sech T/T0

( i)( )Exp[izβ ( i ) /(2(T0
( i) )2 )] ,  (4.5-2)

where, 1.76274 T0
( i)  is the temporal full width half maximum of ψ (z,T)

2
, and

z0
( i) = π(T0

(i ))2 /(2β( i ) )  is the soliton period for fiber segment i. The N-order soliton (at z=0) of

Eq.(4.5-1) can be obtained by multiplying ψ(z,T=0) from Eq.(4.5-2) by a factor of N. A higher

order soliton of a given N>1 propagates in a periodic fashion. In the first half of the soliton

period (z0
( i) / 2 ), the pulse splits into two pulses, then into three, then into four, etc. up to N - 1

pulses [61]. In the second half of the period the process reverses itself until all the pulses have

recombined into a single pulse identical to the original one. While attempting to generate Cantor

Set fractals from solitons, we observed that, if we start with an N-order soliton, it splits into

M<N pulses, each of which reaches an approximately hyperbolic secant shape. Furthermore,

there is always a region in the evolution where all the M "daughter-pulses" are almost fully
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identical and possess the same height. The breakup can be reproduced if we cut the fiber at this

point and couple the pulses into a new fiber with a dispersion coefficient chosen such that each

of the pulses launched into the second fiber is an N-order soliton. Each of the daughter-pulses

generated in the first fiber exactly replicates the breakup of the "mother-soliton", on a smaller

scale. Because the physics of Eq.(4.5-1) is the same on all scales, the entire 2nd breakup process

of each daughter-pulse is a rescaled replica of the initial mother-pulse breakup. In fact, we can

redefine the coordinates in the second fiber by simple rescaling, so that in the new coordinates

the equation is identical to the equation (including all coefficients) describing the pulse dynamics

in the first fiber. In this manner, we can continue the process recursively many times, resulting in

an exact fractal structure that reproduces, on successively smaller scales, not only the final

"product" (the pulses emerging from each fiber segment), but also the entire breakup evolution.

What remains to be specified is how we choose the sequence of fibers and the relations

between their dispersion coefficients and lengths. Consider a sequence of fibers in which the

ratio between the dispersion coefficients of every pair of consecutive segments is fixed

β ( i +1) / β( i ) = η , where η is real and smaller than unity. This implies that the periods of the

fundamental solitons in consecutive segments are related through

z0
(i+1) / z0

(i ) = [ T0
(i+1)( )2 / T0

(i )( )2][1/ η] .

4.5.3. Numerical simulations

Numerically, we launch an N-order soliton into the first fiber segment and let it propagate

until it breaks into M hyperbolic-secant-like pulses of almost identical heights and widths. At

this location we terminate the first fiber section. We label the distance propagated in the first
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fiber segment )1(L . From the simulations we find the peak power )1(
M

P  and the temporal width

)1(
M

T  of the M almost-identical pulses emerging from the first segment. The M pulses are then

launched into the second segment. Our goal is to have, in the second segment, a rescaled replica

of the evolution in the first segment. To achieve this, we require that each of these M pulses will

become an N-order soliton in the second segment. Thus we equate the peak power in each of the

M pulses in the first fiber to the peak power of an N-order soliton in the second fiber:

PM
(1) = PN

(2) =
β (2)

γ (T0
(2) )2 N2 , (4.5-3)

where TM
(1)  = T0

(2)  since it is the width of the input pulse to the second fiber. From Eq. (4.5-3) we

find the dispersion coefficient in the second fiber, β (2) . The ratio η between the dispersion

coefficients in consecutive fibers determines the scaling of the similarity transformation. Using η

and T0
(2)  we calculate the period, z0

(2) . Requiring that the evolution in the second fiber is a

rescaled replica of that in the first fiber, we get L(2) /z0
(2) = L(1) / z0

(1) . Each of the M pulses in the

second fiber exactly reproduces the dynamics of the original soliton in the first fiber but on a

smaller scale. At the end of the second stage, each of the M pulses transforms into M pulses,

resulting in M sets of M pulses. The logic used to calculate the second stage parameters is used

repeatedly to create many successive stages, each producing a factor of M pulses more than the

previous stage.
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Figure 4.5-2: The figure represent exact (regular) Cantor set fractal generation for a particular

case in the (1+1)D cubic self-focusing NLSE. We start with a sech-shaped pulse that is

significantly higher than the soliton of the same width, as shown in the first row. The pulse starts

breaking up, as shown in the second row. When it acquires the shape depicted in the second row,

we abruptly significantly decrease the dispersion coefficient in the underlying equation. This

induces the second stage of the breakup and results in the shape shown in the third row. Then,

once again we decrease the diffraction coefficient abruptly, and induce the third stage of the

breakup shown in the fourth row. In some cases, the pulses were too tiny to see at the given

magnification, so the insets in the plots show magnified details of their corresponding plots.
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We provide examples of Cantor Set fractals from solitons by numerically solving

Eq.(4.5-1). The order of the soliton used and the fraction of a soliton period propagated vary

depending on the desired number of pulses, M. Figure 4.5-2 shows a Quadruplet Cantor Set

fractal. We launch an N=8 soliton into the first fiber characterized by γ =1 and β (1)= -1 and let it

propagate for 0.1261 z0
(1). At this point the pulse has separated into four nearly identical

hyperbolic secant shaped pulses. We launch the emerging four pulses into the next fiber,

characterized by β (2)  = -0.01285 and γ = 1. Each of the four solitons is an N=8 soliton in the

second fiber. We let the four soliton set propagate for 0.1261 z0
(2) , which is identical to 0.03290

z0
(1). The scaling factor η is 0.01285. We repeat this procedure with the third fiber, and let the

four sets of four solitons propagate for 0.1261z0
(3) , so that there are three stages total. The output

consists of four sets of four sets of four solitons.
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Figure 4.5-3: Temporal pulse envelope after each of the three stages for Doublet Cantor Set. The

bottom figure shows two sets of two sets of two. The inset in the bottom panel shows a

magnification of one of the four sets of two. Units are normalized so that T0 =1, peak power = 1,

and 1 unit of distance = T0
2/|β(i)|.

The same method is used to generate the Doublet Cantor Set fractals in Fig. 4.5-3, where

an N =5 soliton is propagated for 0.1623 z0
( i)  in each fiber segment. Figure 4.5-3a shows the two

output pulses emerging from the first segment. The two pulses are then fed into the rescaled

environment, where they mimic the original N=5 soliton, each breaking up into two more pulses

(Fig. 4.5-3b). Figure 4.5-3c shows the output after the third segment. At this stage we have two

sets of two sets of two pulses, which is a Cantor Set pre-fractal. If one could construct an infinite

number of fiber segments, then it would be an exact regular Cantor Set fractal in the
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mathematical sense. In physical systems, however, limitations such as high order dispersion,

dissipation, and Raman scattering place a bound on the number of stages. As with any physical

fractal, the breakups are pre-fractals rather than fractals; yet, we expect at least three stages in a

real physical fiber sequence. To prove the generation of an exact Cantor Set fractal, we choose

random selections from each of the three panels of Fig. 4.5-3 and plot them on the same scale as

displayed in Fig. 4.5-4: they fully coincide with one another. The exactness of the overlap in Fig.

4.5-4 indicates that this indeed is an exact Cantor Set fractal. Similarly, we verify that the

Quadruplet fractals from Fig. 4.5-2 are exact. We have also generated a Triplet Cantor Set fractal

from an N=6 soliton, propagated for 0.1649z0
i( ) .

Figure 4.5-4:    Illustration of exact self-similarity of pulse envelopes after each of the stages of

the Doublet Cantor Set. The three panels shown in Figure 4.5-3 have been appropriately rescaled,

shifted, and overlapped. Units are T0 =1, peak power = 1, and 1 unit of distance = T0
2/|β(i)|.
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4.5.4. Experimental proposal for observing exact fractals

One can design a simple experimental implementation of Cantor Set fractals in a fiber

optic propagation system. For example, a Doublet Cantor Set can be generated from the breakup

of an N=3 soliton. In the first stage a 50 ps FWHM pulse of 0.88 Watt peak power is launched

into a 6 km long fiber with β (1) =−127.6 ps2/km (assuming a nonlinear factor, γ = 1.62 Watt-1 km-1

for all fibers.) At the end of this fiber, which corresponds to the midpoint of the soliton period,

the input pulse has broken into two pulses of peak power 1.2 Watts and width 13.2 ps spaced 42

ps apart.. These two pulses are then coupled into a second, 4.1 km long fiber characterized by a

dispersion parameter of β (2) =−12.2 ps2/km. The pulses exiting this second stage are each 3.3 ps

in duration and peak power 1.9 Watts. They are grouped in pairs separated by 9.9 ps. Finally, the

pulses are propagated in a third 2.7 km long stage with β (3) =−1.2 ps2/km. This results in 2 sets of

2 sets of 2 pulses, each of width 816 fs and peak power 3 Watts, grouped in pairs separated by

2.4 ps. These results have been confirmed through numerical simulations including third order

dispersion, fiber loss, and Raman scattering. The inclusion of these additional terms in Eq. (4.5-

1) limits the number of stages which may be realistically obtained experimentally. The example

system given above is consistent with readily available fibers. One may use specialty fibers (e.g.,

dispersion flattened fibers or fibers with exponentially decreasing dispersion) to further combat

effects of third order dispersion and loss and to expand the number of experimentally realizable

stages.

The Cantor Set fractals generated in the fiber optic system are robust to a variety of

perturbations in the fiber parameters and variations in the initial pulse conditions. We simulated

the evolution of the Cantor Set fractals under 5% deviations in the pulse peak power, pulse

width, fiber length and dispersion. In addition we added 2% (of the power) of excess gaussian
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white noise and launched a gaussian initial pulse shape. Under all these variations in the physical

parameters, the resulting Cantor Set fractals exhibit excellent similarity to the ideal case.

4.5.5. Fractal dimensions

Although we only generate pre-fractals, we can calculate the fractal dimension for an

equivalent infinite number of stages. There are various definitions of fractal dimensions; here we

calculate the similarity dimension, Ds. In the construction of a fractal structure an original

object is replicated into many rescaled copies. If the length of the original object is defined as

unity, the parameter ε is defined as the length of each new copy, and N is the number of copies.

The similarity dimension is then [58]: DS = log N( ) / log 1/ε( ).    For the Doublet Cantor Set

fractal from Fig. 4.5-3, Ds = 0.2702, and for the Quadruplet Cantor Set fractal from Fig. 4.5-2, Ds

= 0.4318.

4.5.6. Conclusion of section 4.5

We have shown how a nonlinear soliton-supporting system can be driven to generate

Exact (regular) Cantor Set fractals, and demonstrated theoretically optical temporal Cantor Set

fractals in a sequence of nonlinear optical fibers. The next challenge is to observe these Cantor

Set fractals experimentally.
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4.6. EXPERIMENTS IN PHOTOREFRACTIVE MATERIALS

Most experiments in our laboratory are done in photorefractive materials. Consequently, I

tried to do statistical fractal experiments with photorefractive materials in (2+1)D. The extra

dimensionality was supposed to give additional richness to the system. The purpose of the

experiment was also to provide additional insight and intuition about the process of fractal

generation. The beam we typically started with was a circular beam of radius approximately

160µm. I was hoping that in the first stage, the beam would split into smaller circular beams of

approximately 40µm radia. Then, in the second stage, I was hoping to induce a breakup of each

of these beams into even smaller circular beams of radia approximately 10µm. Unfortunately, the

non-linearity in the photorefractive materials we use (SBN60, and SBN75) is highly anisotropic.

Consequently, during the first stage, the beam broke up in one of the transverse directions,

creating "rolls", as seen in Figures 4.6-1a, and 4.6-1b. In the second stage however, instead of

each roll breaking up further into more narrow features, the rolls broke up in the other transverse

direction, thereby creating 2D filaments, as seen in Figure 4.6-1c. Therefore, the final result was

not really a fractal (although the breakup process does have many features of statistical fractals).

We conclude that fractals of our kind should be much easier to observe in isotropic non-linear

materials, or else in (1+1)D.
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(a)                                              (b)                                              (c)

Figure 4.6-1: Experiments demonstrating that anisotropy significantly hinders observing

statistical fractals in photorefractive materials. The material used was SBN60. At the input of the

first stage, the beam is very broad (app. 160µm), as seen in (a). By the output of the first stage,

because of high anisotropy of the non-linearity in SBN60, the beam breaks up in the x-direction

first, as seen in (b). This is used as the input to the second stage. By the output of the second stage,

the beam breaks up in the y-direction, as seen in (c).

4.7. CONCLUSION OF CHAPTER 4

In conclusion, we have proposed a general scheme of generating fractals by the dynamics

of solitons that undergo abrupt changes along their propagation paths. This method of fractal

generation is universal and should exist in many nonlinear system that can support solitons.

Interestingly, this is one of the very few cases in which one can generate fractals experimentally

and investigate them theoretically knowing all the physics involved. Furthermore, this is one of

very rare physical systems that can support exact fractals as well.

Nevertheless, there is one more issue that needs to be addressed; one might argue that the

process we describe is a "prepared process" and unlikely to occur naturally in soliton-supporting

systems in nature. This is because one always needs to have an abrupt change in at least one
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parameter of the system. Clearly, it would be very nice to have a cascaded breakup process that

occurs naturally. As an avenue of further research, we propose studying a system that exhibits a

first order phase transition, which is driven by light. In such a system, the nonlinear evolution

process can trigger the next stage of breakup. We have been thinking about several examples of

such processes. One example has to do actually with spatial (not temporal) solitons that follow

the same equations and can give rise to fractals as well. A nonlinear system in which the EM

field, through the nonlinearity, induces a first order (paraelectric to ferroelectric) phase transition

has recently been found [67]. We are thinking about a homogeneous crystal like that, in which

the optically-driven photorefractive diffusion fields induce the phase transition and cause

crystallization. This process starts at the input and progresses (in time) from the input forward,

and each narrow beam forms a soliton through the interaction at the phase transition. Now those

diffusion fields are always proportional to the gradient of the optical intensity. Thus, narrower

solitons will generate larger fields that will overcome the diffusion fields that survived from the

previous layer and take over. This is the general idea. In Ref. [67], one can find a list of similar

effects in numerous other material systems, so one might be able to find an even more suitable

system.
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CHAPTER 5: MODULATION INSTABILITY OF INCOHERENT WAVES

5.1. INTRODUCTION

Modulation instability (MI) is a non-linear process closely related to soliton formation.

During MI, small amplitude and phase perturbations tend to grow exponentially as a result of the

combined effects of nonlinearity and diffraction/dispersion. Because of this, a broad optical

beam or a quasi-CW pulse tends to disintegrate during propagation [68,69]. Since MI typically

occurs in the same parameter region where bright solitons are observed, it can be loosely

considered as a precursor to soliton formation. Until recently, optical spatial solitons were solely

coherent entities. However, a recent series of experimental [27,28] and theoretical [70-74] works

has demonstrated solitons made of partially-incoherent light: Incoherent Solitons. They exist in

non-instantaneous nonlinear media, when the average phase fluctuation time across the beam (or

between modal constituents) is much shorter than the response time of the medium. In this case,

the nonlinear change in the refractive index depends only on the time average of the light

intensity [27,28,71]. The existence of incoherent solitons proves that self-focusing is possible not

only for coherent wave-packets but also for partially-spatially/temporally-incoherent light

[27,28]. In other words, incoherent solitons are self-trapped envelope wave-particles of weakly-

correlated many-particle systems. Now, since MI appears in all systems that support bright

solitons, it is natural to wander whether it also exists for incoherent light beams.

In this chapter, we demonstrate, analytically and numerically, the existence of incoherent

MI, that is, modulation instability of incoherent wave-packets. Incoherent MI occurs when the

value of the nonlinearity exceeds a threshold imposed by the degree of spatial coherence. We use
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analytical and numerical methods to study the properties of incoherent MI in a general self-

focusing non-instantaneous medium. We solve for incoherent MI in closed form for input beams

with Lorentzian angular power spectra, and illustrate it with Kerr and saturable nonlinearities;

this is presented in section 5.2. In section 5.3, we confirm our results with numerical simulations,

and further study general cases of input beams along with propagation-evolution effects. In

section 5.4, we put our results in perspective with other work in related areas of physics. Finally,

in section 5.5, we present preliminary experimental results on incoherent MI. We conclude this

chapter in section 5.6. Most material presented in this chapter appeared in [33], except for

section 5.5, which is yet to be submitted [76].

5.2. THEORETICAL ANALYSIS

The incoherent light we analyze propagates in the z-direction, with its spatial coherence

length being much smaller than its temporal coherence length; i.e., the beam is a partially-

spatially-incoherent and quasi-monochromatic (the wavelength of light λ is much smaller than

each of these coherence lengths). The nonlinear material is non-instantaneous, that is, the

nonlinear index change is a function of the optical intensity, time-averaged over the response

time of the medium, τ, which is much longer than the coherence time of the light, tc. Assuming

the light is linearly polarized and E(r,z,t) is its slowly varying amplitude, we define

B(r1,r2 ,z) =< E* (r2 ,z,t)E(r1, z,t) >  where the brackets denote the time average (taken over τ).

The equation for B, as derived from paraxial wave equation, is [73]:

∂B

∂z
−

i

k

∂2B

∂r∂ρ
=

in0

k

ω
c

 
 

 
 

2

δn(r1,z) −δn(r2,z){ }B, (5.2-1)
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where ω is the carrier frequency, k is the carrier wave-vector, n0 is the index of refraction

without light present, δn is the tiny nonlinear modification to the refractive index, r=(r1+r2)/2 is

the middle point coordinate, and ρ=r1-r2 is the difference coordinate. B(r,ρ,z) is the spatial

correlation function, and I(r,z)=B(r,ρ=0,z) is the time-averaged light intensity. The definition of

B yields B(r,ρ,z)=B*(r,-ρ,z).

To study MI, we assume the incident light to have a uniform intensity, except for small

intensity perturbations that depend on r and z. Thus, B can be written as

B(r,ρ,z)=B0(ρ)+B1(r,ρ,z), where B1<<B0,  B0(ρ) representing the background of a uniform

intensity I0=B0(ρ=0). The dependence of δn on r comes from B1, so to the lowest order in B1,

{ δn(r1,z)-δn(r2,z)}=κ{B 1(r1,ρ=0,z)-B1(r2,ρ=0,z)}, where κ=d[δn(I)]/dI evaluated at I0 is the

marginal nonlinear index. In the Kerr case (δn=γI), so κ=γ. Because of the time-averaging

properties of the material, any random time-dependent perturbation, no matter how large, if it

occurs on a time scale shorter than τ, averages to zero; only time-independent perturbations lead

to MI in our system. Therefore, linearizing Eq.(5.2-1) in B1 produces:

∂B1

∂z
−

i

k

∂2B1

∂r∂ρ
=

in0

k

ω
c

 
 

 
 

2

κ B1(r +
ρ
2

,ρ = 0,z) − B1(r −
ρ
2

, ρ = 0,z)   
   

B0(ρ ). (5.2-2)

Up to this point, the discussion applies for any correlation function B0(ρ). In what

follows, we assume that B0(ρ) has a Lorentzian-shaped k-spectrum and obtain closed-form

results. Thus, ̂  B 0(kx ) = A/[kx
2 + kx0

2 ] , where ˆ F (kx ) =
1

2π
dρ

−∞

∞

∫ F(ρ)e
ikxρ  is the Fourier transform

of F(ρ) for any F(ρ). In this case the normalized angular power spectrum [70] is also Lorentzian

(GN(θ ) = (θ0 / π )(θ 2 +θ0
2)

−1  where the angle θ = kx / k is in radians. The background intensity is
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then I0=πA/kx0. The physically acceptable eigenmodes of the Eq.(5.2-2) can be written as

B1(r,ρ,z)=exp(gz)exp[i(αr+φ)]L(ρ) +exp(g*z)exp[-i(αr+φ)]L*(- ρ), where φ is an arbitrary real

phase that carries no physical significance, α is real and g is associated with the MI gain. These

modes automatically satisfy B1(r,ρ,z)=B1*(r,-ρ,z). For each α  one can obtain a set of modes

L(ρ) needed to describe any perturbation B1. Defining M(ρ)=L(ρ)/L(ρ=0), with the boundary

condition M(ρ=0)=1,  we get:

gM(ρ) +
α
k

dM(ρ)

dρ
+

2ωκ
c

sin
ρα
2

 

 

 
 
 

 

 

 
 
 
B0(ρ) = 0   . (5.2-3)

We are interested in the modes that grow: those with g that is not pure imaginary. We look for

the particular and for the homogeneous solutions to Eq.(5.2-3). Since we have a physical

constraint that M(ρ) has to be bounded for large |ρ|, the homogenous solution has to be zero for

the modes that have a real part in g.  Therefore, by seeking a particular solution of Eq.(5.2-3), we

find

ˆ M (kx ) g − i
α
k

kx

 

 

 
 
 

 

 

 
 
 

= iωκ
c

ˆ B 0 kx +
α
2
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 
 

 

 
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 

− ˆ B 0 kx −
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2
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 
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 
 
 

 

 

 
 
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. (5.2-4)

M(ρ) obtained from Eq.(5.2-4) is clearly bounded for large |ρ|. Impose M(ρ=0)=1,

or ˆ M (kx )dkx

−∞

∞

∫ = 1:

1= −
ωκ
c

dkx

−∞

∞

∫ ˆ B 0 kx +
α
2

 
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 
 
 
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 
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 
 

 

 

 
 
 
 
, (5.2-5)

which gives us a constraint that determines the dispersion relation g(α) for the modes whose g

has a real part, for arbitrary B0(ρ). Note that ̂  B 0(kx ) is purely real since B0(ρ)=B0*(-ρ).
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Figure 5.2-1: Incoherent MI for Kerr nonlinearity: growth rate of perturbations vs the perturbation

wavelengths. The light wavelength in vacuum is 500nm, and the refractive index n0=2.3. The

background uniform intensity has a Lorentzian shaped angular power spectrum of width θ0. The

nonlinear index change due to the background is given by δn. In the upper plot, we show gain

curves for a few δn's, with a fixed θ0=0.0096 rads; the dashed line in the plot has δn marginally

small enough so that MI just disappears. In the lower plot, we show gain curves for a few θ0's,

with a fixed δn=0.0005; the dashed line in the plot has θ0 marginally large enough so that MI just

disappears.

By assuming a Lorentzian k-spectrum ˆ B 0(kx ) = A/[kx

2 + kx0
2 ]  in Eq.(5.2-5), a contour

integration yields the following result for the mode that grows, if g is bigger than zero:
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g

k
= −(kx0 / k)(α / k) + (α / k)

κI0

n0

−
α
2k

 

 

 
 
 

 

 

 
 
 

2

. (5.2-6)

 where κ represents the marginal nonlinear index change because of the constant background

intensity, and kx0 / k =θ0 . The result of Eq.(5.2-6) clearly demonstrates that the MI growth rate is

substantially affected by the coherence of the source. Moreover, in the limit kx0 → 0, it correctly

reduces to the well known result of coherent MI [68,69]. Even more importantly, Eq.(5.2-6)

indicates that for a given degree of coherence, MI occurs only when the quantity κI0 exceeds a

specific threshold; incoherent MI exists only if  κI0 / n0 >θ0
2 , whereas when κI0 / n0 <θ0

2 , MI is

entirely eliminated. Thus, the more incoherent a source is, the larger κI0 (marginal index change)

required to induce MI. Computer simulations suggest that this trend is universal and is

independent of the angular power. Having found )(αg , one can then easily determine the

intensity of the perturbation I1(r,z) = B1(r , ρ = 0,z).
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Figure 5.2-2: Incoherent MI for a saturable nonlinearity: growth rate of perturbations vs the

perturbation wavelengths. λ in vacuum is 500nm, and the refractive index n0=2.3. The background

uniform intensity has a Lorentzian shaped angular power spectrum of width θ0=0.0096 rads. The

nonlinear index change due to the background is δn=0.001. In the saturable case, there is

additional suppression due to the saturation. The gain curves are plotted for various degrees of

saturation; the dashed curve presents the case when the saturation is marginally large enough so

that MI just disappears.

To apply the result of Eq.(5.2-6) for Kerr nonlinearity δn(r)=γI, we set κ=γ and present it

graphically in Fig.5.2-1. In this case, κI0=δn, so the larger the non-linear index change, the

stronger MI. However, the MI growth rate can be analytically determined for any type of

nonlinearity. Of particular significance is the saturable nonlinearity which occurs for example in

photorefractives [19], and in homogeneously-broadened 2-level systems (atomic rubidium vapor)

[66], in which the nonlinear index change is of the form δn(r)=γI(r)/[1+I(r)/I sat].  For the

saturable case, we find that the growth rate is given by Eq.(5.2-6) with κ=γ/[1+I0/Isat]
2. As with
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the Kerr nonlinearity, incoherent MI exists, once again, only above a specific threshold for κI0.

From the result, it is apparent that saturation suppresses MI by a factor of 1/[1+I0/Isat]. Figure

5.2-2 displays graphically typical results with the saturable nonlinearity.

5.3. NUMERICAL SIMULATIONS

To verify our analytical findings and to further explore incoherent MI, we use computer

simulations. In particular, the intensity/correlation MI dynamics of Eq.(5.2-1) are investigated by

means of the coherent density approach [70]. The power Fourier spectrum of the intensity

fluctuations growing on top of the constant incoherent background is used to identify the spatial

frequencies that exhibit maximum gain.  Figure 5.2-3(a) shows the evolution of the power

spectra of the intensity fluctuation when the angular power spectrum of the source is Lorentzian,

and the nonlinearity is Kerr type. In this example, 0θ =9.6 mrads, γI0=5*10-4, n0 = 2.3, λ=0.5 µm

in vacuum. These results indicate that maximum MI gain is attained at a spatial frequency

α /k ≈ 0.0135, with a peak value of g=1.37mm-1, both in an excellent agreement with that

predicted from Eq.(5.2-6) as also depicted in Fig.5.2-1 for the same set of parameters. Note that

in this case the spatial frequency where maximum MI gain occurs remains invariant during

propagation. After a certain distance (in this example after 9 mm) additional sub-bands emerge

as in the case of coherent MI [75]. This is "secondary" MI: modulation instability for which the

first amplified instability peak acts as a "pump" and plays the role of B0. Numerical simulations

confirm another prediction of the analytic result: the existence of a threshold for incoherent

MI . The numerical study also provide information about the evolution of incoherent MI from

input beam of angular power spectra different than the Lorentzian shape. For example, Fig. 5.2-

3(b) depicts information similar to Fig. 5.2-3(a) when the source angular power spectrum is
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Gaussian (GN(θ ) = (1/π 1/ 2θ0)exp(−θ 2 / θ0
2) ). In this case 0θ =9.6 mrads, γI0=2.5x10-4, 3.20 =n ,

and λ=0.5 µm. The MI spectra initially evolve in a fashion similar to the Lorentzian case, but,

after some propagation distance the perturbation grew substantially, (and our analytic

approximation B1<<B0 no longer holds), and the MI spectrum does not exhibit a clear peak but

broadens with propagation. As observed from Eq.(5.2-5), the MI growth highly depends on the

shape of the angular power spectrum of the source.

Figure 5.2-3: Power spectrum of an incoherent beam during propagation in Kerr nonlinearity

when (a) the source power spectrum is Lorentzian with θ0=0.0096rads and δn=0.0005; (b) the

source power spectrum is Gaussian with θ0=0.0096rads and δn=0.00025.

5.4. PERSPECTIVE

We emphasize that one can use our logic up to Eq.(5.2-6) in order to obtain analytical

understanding of MI with an arbitrarily shaped angular power spectrum, where one needs to
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solve the integral in Eq.(5.2-5) numerically (except for the Lorentzian case, where one can obtain

closed-form solutions as we did). When we apply this idea for an input beam of a Gaussian

power spectrum [Fig. 5.2-3(b)], we obtain an excellent agreement between our analytic and

numeric results. The analytic expansion also captures the fact that there always exists a threshold

κI0 for incoherent MI to occur.

We also wish to emphasize that our MI results cannot be obtained using a ray optics

(transport) approach [72], which assumes that the source is fully incoherent (or the period of the

perturbation is much larger than the transverse coherence length). In this picture, each ray

behaves like a particle that follows a trajectory determined by the local index of refraction, which

has a role of potential. The local index of refraction is in turn determined by the local density of

the rays. Therefore, this picture is very similar to a gravitational system of many particles.

Unfortunately, for partially spatially-incoherent optical beams, the spatial frequency that grows

fastest is beyond this regime. Nevertheless, studying this approach is instructive because it

connects the incoherent MI system with systems as different as galaxy formation, and one can

use it to predict driven MI (induced-MI).

5.5 EXPERIMENTS ON INCOHERENT MI

At the moment of writing this thesis, the experiments are being performed in our

laboratory, trying to confirm the predictions of the theory of incoherent MI presented in this

chapter. These experiments are done in collaboration with Dr. Detlef Kip [76], who is currently a

research fellow in our group. In this section, we present preliminary results of incoherent MI

experiments that already confirm some of the predictions of the theory.
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∆n0=0                                                            ∆n0=5*10-4

          

∆n0=5.5*10-4                                                   ∆n0=6*10-4

Figure 5.5-1: Experiments with incoherent MI in photorefractive materials. For a fixed

coherence length, lC=8µm, we varied the light intensity induced change in the index of

refraction, ∆n0. As we can see, there is no MI just below ∆n0=5.5*10-4, and it clearly appears

just above this ∆n0; this clearly demonstrates existence of a threshold in incoherent MI.

Existence of such a threshold was predicted by the theory presented in this chapter.
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The experiments we perform are in (2+1)D, since they are done in photorefractive

materials, while our current theory is for (1+1)D. Furthermore, the exact shape of the correlation

function is very difficult to measure; the only quantity experimentally accessible to us at this

point is the correlation length, lC (up to a constant factor, this is an inverse of the parameter θ0,

used above). Consequently, at this point, we are able to do only qualitative comparison with the

theory. Nevertheless, the qualitative predictions of the theory are very nicely confirmed by the

experiment. In Figures 5.5-1, and 5.5-2, we present some representative examples that

demonstrate the agreement of the theory with the experiment.
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Figure 5.5-2: Relative modulation depth vs. the non-linear change in the index of refraction, for

a few different coherence lengths. Modulation depth m=0 denotes uniform intensity, while m=1

denotes non-uniform intensity which oscillates between zero and maximum intensity. This

figure clearly demonstrates existence of a rather sharp threshold for every fixed coherence

length. Furthermore, it also demonstrates that for smaller coherence lengths (larger

incoherence), larger non-linear changes to the index of refraction are needed to overcome the

threshold. This feature is also predicted by our theory when applied for the particular non-

linearity used in this experiment.

5.6. CONCLUSION OF CHAPTER 5

To conclude, we have shown that modulation instability exists in partially incoherent

systems, and that its existence requires the marginal nonlinear index change times the

background intensity, κI0 to be above a well-defined threshold. This is in a marked difference

with coherent MI, since there does not exist a similar threshold for coherent MI. The κI0 is
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determined by the spatial degree of coherence (angular power spectrum). To emphasize the

fundamental importance of this result, recall that partially incoherent light is a system in which

the "quasi-particles" are only weakly phase-correlated (with the extreme case being a fully

incoherent system in which the "quasi-particles" are fully non-correlated). Yet this weakly-

correlated system exhibits features characteristic of a phase-transition: above a well-defined

threshold, it collapses and forms "clusters" (filaments). We also emphasize that, since

modulation instability is a precursor of solitons, it is to some extent an even more universal

phenomenon than solitons. In fact, MI appears in all systems supporting solitons [77] and also in

systems in which solitons have not been identified as of yet. We have identified here MI in an

incoherent system, which is fundamentally a system in which repulsion forces are much weaker

than the attraction forces [1,5]. Since nature is full of nonlinear systems in which incoherent

wave-packets exist (e.g., optics [78], plasma physics [79]), we expect that these systems will

exhibit MI as well. We believe that this work lays the foundations for instabilities and pattern

formation in any nonlinear incoherent system in nature. Furthermore, incoherent MI links to

other related but qualitatively different phenomena, such as galaxy formation. From all of these

arguments, one thing is obvious: there are many more new exciting features that are intimately

related to incoherent modulation instability, and are yet unraveled calling for future research.
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6. CONCLUSION AND FUTURE WORK

In this dissertation, we studied various aspects of instabilities associated with non-linear

wave propagation. The systems we were interested in display a great richness of very diverse

physical phenomena. During the research we came upon quite a few very interesting new

physical systems. Still, the possibilities of exciting new research opened by the results presented

in this dissertation are even much more plentiful.

We constructed and studied necklace beams, which are the first stable self-trapped shapes

in Kerr media. As an avenue of further research, it would be interesting to study necklace beams

in other non-linear media: their interactions, collisions, conserved quantities in the collision

processes, transfer of information (via transfer of conserved quantities) through collisions, etc.

Further, we presented necklace beams carrying angular momentum, and also for the first

time non-integer per-photon angular momentum. It would be very interesting to study these

necklaces in other non-linear media. Furthermore, if a necklace is composed of circularly

polarized light, each photon carries spin in addition to angular momentum. In this case, there

should be non-linear materials where the transfer of polarization to angular momentum (and

vice-versa), is possible. Moreover, studying interactions of such necklaces, and perhaps transfer

of angular momentum and spin during such interactions should be very interesting; this would be

particularly interesting if the necklaces in question are composed of a only a few (instead of a

macroscopic number of), photons. The very high non-linear coefficients which are necessary to

achieve something like this are available today in electromagnetically induced transparency

materials [80].
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We also presented a principle that allows one to generate fractals (and also exact

fractals), in almost any soliton-supporting system in nature. However, at the point of writing this

thesis, a necessary prerequisite for such fractal generation is an abrupt change in one of the

physical parameters describing the system. In future, we plan to study physical systems where a

smooth change in one of the physical parameters (for example light intensity due to absorption),

leads to an abrupt change in the physical parameter that causes the required breakup. Of course,

we are talking here about optically induced phase transitions.

The non-linear systems we study demonstrate a great richness of non-linear phenomena:

modulation instability, solitons, chaos, and now, as have seen also fractals. All these phenomena

appear in the same materials, but in different parameter regimes. Consequently, it should be

educational to study what parameter phase spaces imply which non-linear phenomena, and how

do these different regimes relate to each other.

Finally, we predicted the existence, and studied the properties of modulation instability in

incoherent wave systems. This turns out to be a very rich physical system that opens many new

avenues of research. One of the avenues is certainly extending our theory from (1+1)D to

(2+1)D; the extra dimensionality should add even more richness to the system. Developing a

statistical mechanics description of the system should also be very interesting. In addition, one

might also want to enclose an incoherent MI system in a cavity, and study for the first time

incoherent pattern formation.
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