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We show that a two-level non-Hermitian Hamiltonian with constant off-diagonal exchange elements can
be analyzed exactly when the underlying exceptional point is perfectly encircled in the complex plane. The
state evolution of this system is explicitly obtained in terms of an ensuing transfer matrix, even for large
encirclements, regardless of adiabatic conditions. Our results clearly explain the direction-dependent nature
of this process and why in the adiabatic limit its outcome is dominated by a specific eigenstate—
irrespective of initial conditions. Moreover, numerical simulations suggest that this mechanism can still
persist in the presence of nonlinear effects. We further show that this robust process can be harnessed to
realize an optical omnipolarizer: a configuration that generates a desired polarization output regardless of
the input polarization state, while from the opposite direction it always produces the counterpart eigenstate.
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Understanding the dynamics of time-dependent
Hamiltonians is key in explaining a wide range of processes
in many and diverse physical settings [1]. This ubiquitous
class of problems is of significance since it allowsone to tailor
the evolution of a Hamiltonian towards certain outcomes. If a
system is conservative orHermitian, a cyclic adiabatic change
in a multiparameter space can often lead to surprising results
such as, for example, the emergence of gauge-invariant
geometric phases, as first shown by Berry [2]. Of particular
interest is the case where eigenvalue degeneracies are
enclosed within the parameter loop. In this latter scenario,
the geometric phase is robust against perturbations in the
control path since it is related to the flux generated from the
degeneracies that act as topological sources.
While the Berry phase represents an intuitive and power-

ful unifying notion, it is by nature based on the adiabatic
theorem [3]. Quite recently, a series of studies have critically
reexamined these aspects in non-Hermitian environments
where it was found that the system behavior can be
significantly modified around degeneracies, better known
as exceptional points (EPs) [4]. As opposed to conservative
systems, in non-Hermitian arrangements both the eigenval-
ues and the corresponding eigenvectors tend to coalesce at
an EP (while unfolding associated vectors of the Jordan
form) [5]. In the last few years a number of intriguing
possibilities have been realized in structures supporting EPs,
including loss-induced transparency [6], single-mode lasing
[7], band merging [8], asymmetric diffraction [9], and
unidirectional invisibility [10], to mention a few. In other
studies, the topological properties associated with the
quasistatic encirclement of an EP were also investigated.
Under such stationary conditions it was found that the
instantaneous eigenstates swap with each other at the end of
the parameter cycle with only one acquiring a geometric

phase [11,12]. This behavior, attributed to the branch point
character of the degeneracy that causes a gradual transition
between the intersecting complex Riemann sheets, was
observed in microwave cavities [13] and exciton-polariton
systems [14].
This situation gets drastically altered when a non-

Hermitian Hamiltonian dynamically evolves around an EP
[15]. In this regime, one finds out that adiabatic predictions
tend to break down [16]—a direct byproduct of the fact that
the eigenvector basis is skewed and the eigenvalues them-
selves are generally complex. Indeed, even for slow enough
cycles, numerical studies reveal that only one state dominates
the output andwhat determines this preferred eigenstate is the
sense of rotation in the parameter space [17]. These surpris-
ing effects were recently observed in microwave [18] and
optomechanical [19] systems. The unexpected transitions
during such a non-Hermitian evolution have been traced to
the Stokes phenomenon of asymptotics [20] and stability
aspects [21]. However, a full analytical treatment that
systematically explains the chiral nature of the dynamics
and why the system’s adiabatic evolution is always funneled
into a preferred eigenstate, is still lacking.
In this Letter, we theoretically analyze the behavior of two

coupled states whose dynamics are governed by a non-
Hermitian Hamiltonian undergoing cyclic variations in the
diagonal terms. The model presented here is readily realiz-
able and even more importantly, allows one to track the
modal populations at all times without imposing restrictions
on the degree of adiabaticity or the size of EP encirclement.
Analytical solutions obtained via confluent hypergeometric
functions clearly explain the underlying asymmetric con-
version into a preferred mode and the chiral nature of this
mechanism is brought to the fore through appropriate
transformations. Building on these findings, we propose a
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novel on-chip universal polarizer that can produce in a robust
way a single desired output polarization irrespective of the
input light state. When used in reverse, this omnipolarizer
instead produces the complementary polarization eigenstate.
We here consider a system of two coupled entities,

constantly exchanging energy in space or time. For example,
in optics, this can be implemented using cavities, wave-
guides, or a series of varying dichroic birefringent plates. For
this 2×2 system, the dynamics are governed by i∂tjψðtÞiþ
HðtÞjψðtÞi¼0, where in this Schrödinger description the
time-dependent Hamiltonian HðtÞ is given by

HðtÞ ¼
�
−i~gðtÞ − ~δðtÞ κ

κ i~gðtÞ þ ~δðtÞ

�
; ð1Þ

with the state vector being jψðtÞi ¼ (aðtÞ; bðtÞ)T . Note that
here the non-Hermitain operator HðtÞ governs the dynami-
cal evolution of a classical system as opposed to that of a
purely quantum mechanical nature where a Liuovillian
approach is typically deployed. The time (or space) varying
quantities ~gðtÞ and ~δðtÞ represent gain or loss and level
detuning between the two coupled elements, respectively.
Meanwhile κ denotes the coupling strength (κ ∈ R). The
structure of Eq. (1) implies that one element [aðtÞ] is
subjected to gain while the other [bðtÞ] to an equal amount
of loss. For unbalanced gain-loss or detunings, one can still
reduce the description to a traceless form via suitable gauge
transformations [6,21]. We henceforth use scaled variables
ð~g=κ; ~δ=κ; κtÞ → ðg; δ; τÞ. In this arrangement, the EP is
judiciously established in parameter space at g ¼ 1 and
δ¼0, where the two coalescing eigenvalues are λ1;2 ¼ 0with
the corresponding eigenvectors collapsing to jψi ¼ ð1; iÞT .
This EP can be encircled during propagation provided that

gðτÞ ¼ 1 − ρ cosðγτÞ; δðτÞ ¼ ρ sinðγτÞ; ð2Þ
where γ is a measure of adiabaticity and ρ represents the
radius of the circle (ρ ≤ 1). Equation (2) represents a
clockwise (CW) loop if γ > 0, and a counterclockwise
(CCW) one if γ < 0. In analogy with previous studies in
PT -symmetric systems, the trajectory is chosen to start
(τ ¼ 0) and end (τ ¼ 2πγ−1 ¼ τend) at the point that corre-
sponds to the unbrokenPT -symmetric phase [22] to prevent
any amplifying or decaying modes at the input-output
interfaces. At these terminal points, the eigenvectors and
eigenvalues are jψ1;2i¼ð1;�e�iθÞT and λ1;2¼�cosθ,
respectively, where sinθ¼ð1−ρÞ. The eigenvectors jψ1;2i
are the states around which our discussion is centered. These
two vectors are biorthogonal with their corresponding left
eigenvectors j ~ψ1;2i ¼ ð1;�e∓iθÞT .
It is instructive to first follow the motion of the system in

a quasistatic manner [23] by tracking the instantaneous
eigenvalues. When the EP is encircled, Fig. 1(a)–1(c), the
eigenvalues swap with each other. And for each direction of
encirclement, the path of one of them stays mostly in the
negative imaginary plane. As a result, the gain-loss com-
ponent of the dynamical phase eQðτÞ associated with that

specific eigenvalue, where QðτÞ ¼ −
R
τ
0 dt

0Im½λðt0Þ�, leads
to a significant amplification—Fig. 1(c). Consequently, the
eigenvector that corresponds to this eigenvalue eventually
dominates. On the other hand, when the loop excludes the
EP, Figs. 1(d)–1(f), the eigenvalues instead return to
themselves and none of them is preferentially amplified
at the end of the parameter excursion. This complex phase
and the existence of nonadiabatic couplings between the
eigenstates [16] eventually leads to a chiral dominance of
one eigenstate over the other.
However, for a dynamical parameter cycle a full

understanding of this process can only emanate from an
analytical approach. In this regard, following Eq. (2), Eq. (1)
can be recasted into a second order differential equation
for aðτÞ, e.g.,

d2aðτÞ
dτ2

− ½ρ2e2iγτ − ρð2þ iγÞeiγτ�aðτÞ ¼ 0: ð3Þ

A similar equation can be obtained for bðτÞ. We note that
if the solutions corresponding to a CW loop can be obtained,
they can be directly used to describe the CCW case simply
by employing the transformation ða; bÞ → ða�;−b�Þ [24].
Equation (3) can be solved by using the substitutions η ¼
−2iργ−1eiγτ and aðηÞ ¼ e−η=2wðηÞ, which reduce it to the
form of a degenerate hypergeometric differential equation,

η
d2wðηÞ
dη2

þð1−ηÞdwðηÞ
dη

−
�
i
γ

�
wðηÞ¼0: ð4Þ

(a) (b) (c)

(d) (e) (f)

FIG. 1. The upper [(a)–(c)] and lower [(d)–(f)] panels represent
eigenvalue trajectories when the EP (marked with ×) is quasistati-
cally encircled (a) or excluded (d), respectively, from the
parameter loop. Path directions are shown with arrows in (a)
and (d) and black dots depict the starting points. Solid lines
throughout indicate results for a CW path and dashed lines the
CCW. The eigenvalues (λ1;2) at the start of the loop are depicted
as green and gray dots in (b) and (e) where their trajectories are
also shown in the corresponding colors. When the EP is enclosed,
the eigenvalues swap with each other—(b) and when it is
excluded, they return to themselves—(e). The accumulated gain,
eQ (see text) corresponding to the different eigenvalue paths is
plotted in (c) and (f) against time τ.
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From here one can obtain the general solution,
aðηÞ ¼ e−η=2½c1Fði=γ; 1; ηÞ þ c2Uði=γ; 1; ηÞ�, where F and
U represent confluent hypergeometric functions of the
first and second kind, respectively, and the coefficients
c1;2 depend on initial conditions. We can now express
½aðτÞ bðτÞ�T in the form of a transfer matrix

½aðτÞ bðτÞ �T ¼ σðτÞM1ðτÞM2M3½að0Þ bð0Þ �T: ð5Þ
Notice that only σ and the matrix M1 are τ dependent. The
exact solution presented in Eq. (5) is general and applies
regardless of adiabatic or nonadiabatic conditions and
pertains to both large and small encirclements ρ. The scalar
σ is given by σðτÞ ¼ iΓði=γÞeiðρ=γÞð1þeiγτÞ, where Γ is the
gamma function and the matrices are described below:

M1ðτÞ ¼
�

Fð0Þ Uð0Þ

iFð0Þ þ 2ρ
γ e

iγτFð1Þ iUð0Þ − 2ρ
γ e

iγτUð1Þ

�
; ð6aÞ

M2 ¼
2
4−ρUð0Þ

τ¼0=γ − 2iρUð1Þ
τ¼0=γ

2 −Uð0Þ
τ¼0

ρFð0Þ
τ¼0=γ − 2iρFð1Þ

τ¼0=γ
2 Fð0Þ

τ¼0

3
5; ð6bÞ

M3 ¼
�

1 0

ð1 − ρÞ=γ i=γ

�
: ð6cÞ

The abbreviated forms of the hypergeometric functions,
FðnÞ andUðnÞ, represent Fðnþ iγ−1;nþ1;−2iργ−1eiγτÞ and
Uðnþ iγ−1; nþ 1;−2iργ−1eiγτÞ, respectively. The generic
function Fðp1; p2; xÞ is single valued for all complex
variables x, where p1;2 are complex parameters. On the
other hand, the principal value of Uðp1; p2; xÞ is defined in
the interval −π< argðxÞ≤ π. In the case at hand, starting
from −0.5π, the relevant argument, argð−2iργ−1eiγτÞ,
reaches π when τ ¼ 1.5πγ−1. Outside this range, i.e., for
τ ∈ ½1.5πγ−1; 2πγ−1�, one has to use a connection formula
according to [25],

Uðp1;p2;xÞ¼
Γðp2−p1Þ

eiπp1

�
Fðp1;p2;xÞ

Γðp2Þ

−
e−iπðp2−p1Þ

Γðp1Þ
exUðp2−p1;p2;e−iπxÞ

�
: ð7Þ

By using the results of Eqs. (5)–(7), the intensity evolution
(jaj2, jbj2) in the two coupled entities is shown inFig. 2when
γ ¼ 0.4 and ρ ¼ 1, i.e., θ ¼ 0. Figures 2(a)–2(c) depict the
CW case whereas Figs. 2(d)–2(f) show similar results for a
CCW scenario. By monitoring both the real and imaginary
components of themodal fields, one finds out that both local
eigenvectors jψ1;2i at τ ¼ 0 are eventually transformed at
the end of the cycle to jψðτendÞi ∝ jψ1i ¼ ð1; eiθÞT if the
loop is performed in a CW fashion—Figs. 2(b) and 2(c).
Of course, this is also true for any linear combination of the
two eigenvectors at the input. Conversely, if the encircle-
ment is carried out in a CCW manner, jψðτendÞi ∝ jψ2i ¼
ð1;−e−iθÞT for any input state—Figs. 2(e) and 2(f). To

understand this chiral mode preference mechanism, we take
a closer look at the elements mij of the transfer matrix
MðτÞ ¼ M1ðτÞM2M3 by considering the complex ratio
χðτÞ ¼ bðτÞ=aðτÞ,

χðτÞ ¼ m21að0Þ þm22bð0Þ
m11að0Þ þm12bð0Þ

: ð8Þ

The aforementioned mode conversion is evidently only
possible under adiabatic conditions, γ ≪ 1. In this regime,
one finds a very specific proportionality factor between
pairs of mij. Based on analytic continuation at τ ¼ τend,
the asymptotic behavior of the matrix elements leads to

the following important relation, m21=m11 ¼ m22=m12 ¼
iþ ð2ρFð1Þ

τ¼0Þ=ðγFð0Þ
τ¼0Þ [24]. Given that the terms iγ−1 and

−2iργ−1 are both large for γ ≪ 1, we now use the
asymptotic expansion of Fðp1; p2; xÞ for large p1 [25],

Fðp1; p2; xÞ ∼ Γðp2Þex=2ðkxÞð1−2p2Þ=4

× π−1=2 cosð2
ffiffiffiffiffi
kx

p
− πp2=2þ π=4Þ; ð9Þ

where k¼p2=2−p1. As a result, Fð1Þ
τ¼0=F

ð0Þ
τ¼0∼γðeiθ−iÞ=

ð2ρÞ. From here, we finally obtain

m21

m11
¼ m22

m12
∼ eiθ: ð10Þ

(a) (b)

(c)

(d) (e)

(f)

FIG. 2. Intensity evolutions (jaðτÞj2, green; jbðτÞj2, gray) for a
CW loop are shown in (a), normalized with respect to the
maximum value Imax. The real (orange) and imaginary (blue)
parts of the ratio χðτÞ ¼ bðτÞ=aðτÞ are depicted in (b) and (c).
Dashed lines correspond to the input jψ1i and solid to jψ2i. The
same scenario for a CCW parameter loop is shown in (d)–(f). At
the end of the excursion (τ ¼ 2πγ−1), in the CW case, Re½χ → 1�
and Im½χ → 0� for both local eigenvector inputs, while in the
CCW case Re½χ → −1� and Im½χ → 0�.

PRL 118, 093002 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

3 MARCH 2017

093002-3



Therefore, χðτendÞ ¼ bðτendÞ=aðτendÞ → eiθ. Equations (8)
and (10) lie at the heart of our results since they explain in a
comprehensive manner why this mode-conversion process
takes place, with all possible inputs converging towards
jψ1i ¼ ð1; eiθÞT . Moreover, given the fact that ða; bÞ →
ða�;−b�Þ for a counterclockwise loop, while leaving the
matrix elements unchanged, one immediately finds that for
a CCW encirclement, χðτendÞ → −e−iθ and as a result all
possible inputs are converted into jψ2i ¼ ð1;−e−iθÞT . An
interesting subcase of our results arises when ρ ≪ 1, where
the hypergeometric functions can be accurately represented
by Bessel functions [24]. Finally, simulations indicate that
the state conversion mechanism at the end of the loop
happens to be robust even when the contour is considerably
deformed, as long as the various paths share the same
starting point [24]. Of further interest will be to investigate
mode conversion effects when the EP is close to the contour
but not enclosed.
In many applications it is often required to control the

polarization state at the output of a system [26,27]. In
particular, significant effort has been invested in over-
coming the polarization dependent performance of com-
ponents such as optical amplifiers and wavelength filters.
Based on the results presented earlier, we here propose a
single channel omnipolarizer. This structure is expected to
transform any input into a desired state of polarization
(jψ1i) when light traverses it in one direction. Conversely,
in the opposite direction, any arbitrary input is mapped into
the biorthogonal vector (jψ2i). A possible realization is
shown in Fig. 3(a). In this case, the slanted sidewall allows
for coupling (κ) between the TE (x̂) and TM (ŷ) polar-
izations [28] while variations in the width of the waveguide
w can introduce a variable birefringence. To achieve the
aforementioned conversion of any input to a single polari-
zation, w and the amount of carrier injection P (optical or
electrical) need to be varied along propagation so as to
encircle the EP, as shown for example in Fig. 3(b). Note that
w and P are directly related to δ and Δg, respectively. The
TE and TM polarization gains vary linearly with P, only the
latter being less by a factor of ε, typically ε ∼ 1=3. A cross-
sectional view of this structure is shown in Fig. 3(c) where
the birefringence (δ) is negligible and the eigenpolariza-
tions (�45°) are jψ1;2i ¼ ð1;�1ÞT—Fig. 3(d).
In the design presented, κ remains nearly constant at

κ ∼ 1.4 × 103 m−1. The corresponding value of maximum
gain (intensity wise) required is 100 cm−1 near the middle
of the device. Meanwhile w needs to be gradually varied
according to w ¼ 1.42 → 1.34 → 1.50 → 1.42 μm, as
schematically shown in Fig. 3(a). Here the nonlinear
evolution dynamics are given by [24,29]

dEx

dz
¼ gxEx

1þ jExj2 þ εjEyj2
− ðαþ iδÞEx þ iκEy; ð11aÞ

dEy

dz
¼ εgxEy

1þ jExj2 þ εjEyj2
− ðα − iδÞEy þ iκEx; ð11bÞ

where α ∼ 0.9κ is a linear absorption loss, γ is here chosen to
be γ ¼ 0.4 corresponding to a device length of L ¼ 1.1 cm.
For a CW loop shown in Fig. 3(b), gain and detunings
are dynamically varied as gx ¼ 3.6κ sinðγκz=2Þ and δ ¼
κ sinðγκzÞ for κz ∈ ½0; 2πγ−1�. The ensuing evolution of
intensities jExj2 and jEyj2, scaled with the saturation level
[24], is shown in Fig. 4(a) for a TE and in Fig. 4(b) for a TM
input. Unlike the linear case studied before, here the
intensities evolve within reasonable limits due to saturation

(a)

(c) (d)

(b)

FIG. 3. (a) A possible realization of an omnipolarizer is shown
that highlights the variations in the width—w (sinusoidal) and
pumping—P (strongest in the center). Direction-dependent polari-
zation conversions are also schematically illustrated with green
arrowheads. (b) To limit the required maximum amplification, the
parameter loop around the EP (×) is here chosen to be skewed.
Detuning is given by δ and Δg represents the difference between
the TE and TM modal gains, i.e., Δg ¼ ðgx − gyÞ=2. (c) A cross
section at z ¼ 0, L=2 and L (L—length of the device) is shown
where the dimensions are ðh; w; tÞ ¼ ð0.8; 1.42; 0.1Þ μm and
θ ¼ 70°. In this system h, t, and θ are kept constant throughout,
while w varies as, e.g., w ¼ 1.42 − 0.08 sinð2πz=LÞ. The refrac-
tive indices for thisGaAs-AlGaAs structure are also shown in (c) at
the wavelength of 800 nm. (d) The two resulting orthogonal
eigenmodes with their electric field polarizations.

(a) (b)

(c) (d)

FIG. 4. Evolution of intensities (jExj2, green and jEyj2, gray)
for the nonlinear system are shown in (a) and (b) corresponding to
a TE and TM input, respectively. The results are scaled with
respect to the saturation intensity (Is) of the gain medium.
Polarization dynamics on the Poincaré sphere corresponding to
these two cases are depicted in (c) and (d), where yellow dots
indicate the input light state and crosses that of the output.
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effects. The nature of the underlying polarization conversion
is revealed in Figs. 4(c) and 4(d) where the corresponding
field trajectories are plotted on the Poincaré sphere. Clearly,
both TE and TMpolarizations end up in the same eigenstate,
i.e., þ45° linearly polarized. Instead for a CCW traversal,
viz. δ ¼ −κ sinðγκzÞ, the output polarizationwas found to be
−45°. Our results indicate that despite the presence of
nonlinearities, the chiral mechanism of mode preference
still persists. In other words, the topological nature of EP
encircling in this omnipolarizer makes it highly robust.
In conclusion, we have provided an analytic explanation of

the chiral mode-conversion mechanism that takes place
during dynamic encirclement of an EP. We demonstrated
that this effect can be exploited to implement an optical
omnipolarizer that exhibits counterintuitive polarization prop-
erties. Finally, this EP based mechanism could find manifes-
tations in various settings beyond optics, e.g., coherent
population control between coupled energy levels and other
non-Hermitian acoustic [30] and electronic [31] systems.
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