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We derive the properties of polaritons in single-� and double-� media using a microscopic equation-of-
motion technique. In each case, the polaritonic dispersion relation and composition arise from a matrix eigen-
value problem for arbitrary control field strengths. We show that the double-� medium can be used to up- or
down-convert single photons while preserving quantum coherence. The existence of a dark-state polariton
protects this single-photon four-wave mixing effect against incoherent decay of the excited atomic states. The
efficiency of this conversion is limited mainly by the sample size and the lifetime of the metastable state.
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I. INTRODUCTION

Several years ago, Fleischhauer and Lukin �1� predicted
the existence of a stable polaritonic excitation in �-type me-
dia �Fig. 1�a�� exhibiting electromagnetically induced trans-
parency �EIT� �2�. This excitation, which involves a vanish-
ing population of excited states and was therefore dubbed the
“dark-state polariton” �DSP�, is a coherent quantum excita-
tion whose evolution is governed by a classical control field.
This provides a method for manipulating single-photon mo-
tion, including stopping light �3,4�. The Fleischhauer-Lukin
result was derived as a perturbation expansion of the field
operator equations of motion in the strong control field limit.
In a subsequent work, Juzeliūnas and Carmichael used a
Bogoliubov-type transformation to diagonalize the model
Hamiltonian exactly, and showed that the DSP can be under-
stood as a part of a branch of slow polaritons occurring in
systems containing a pair of atomic resonances �5�. These
authors also emphasized the fact that the photonic part of the
polariton mixes with atomic excitations possessing wave
vectors differing by the wave vector of the control field.
Thus, for instance, it is possible to reverse the direction of a
polariton wave packet by switching the direction of the con-
trol field.

In this paper, we derive the properties of the DSP using
the Sawada-Brout technique �6�. This can be thought of as a
simplified version of the method used by Juzelinūas and Car-
michael, and we shall see how its results reduce to those of
Fleischhauer and Lukin near resonance, which was not dem-
onstrated in Ref. �5�. We then extend the analysis to a
double-� medium �Fig. 1�b��, which contains a DSP consist-
ing of low-lying atomic excitations and photon states of two
different frequencies �7,8�. In both single- and double-� sys-
tems, the DSP is protected against incoherent decay pro-
cesses acting on the excited states because it contains a van-
ishing population of these states. It has previously been
shown that double-� media can efficiently upconvert classi-
cal probe beams �9,10�, and a related four-wave mixing
scheme has already been used in such systems to generate
correlated photon pairs �11–14�. Here, we point out that the
DSP could be exploited to perform single-photon frequency

conversion in a manner that preserves quantum coherence.
Unlike semiclassical analyses in which the electromagnetic
field is treated classically �9,10�, this theory applies to the
single-photon regime. It may thus have applications in quan-
tum information processing, such as for downconverting a
member of an entangled photon pair to a frequency suitable
for transmission over a telecommunications fiber. Unlike
parametric conversion schemes exploiting optical nonlineari-
ties, the relevant photons are up- or down-converted indi-
vidually, instead of being split or recombined; the additional
momentum and energy are supplied by the control fields.

II. SINGLE-� SYSTEM

We begin by considering an N-atom gas with a single-�
level structure, shown in Fig. 1�a�. The ground, excited, and
metastable atomic states are, respectively, denoted by �b�, �a�,
and �c�, and their corresponding energies by ��b, ��a, and
��c. The atomic Hamiltonian is

H0 = ��
r

��a�r
aa + �b�r

bb + �c�r
cc� , �1�

with the sum performed over all atomic positions r. Here,

�r
�� � ���r	��r �2�

denotes a transition operator for the atom at position
r. We also define Fourier-transformed operators, �k

ab

�N−1/2�r�r
abeikr, etc. The photon Hamiltonian is

H1 = �
k

�c�k�ak
†ak, �3�

where ak
† and ak are photon creation and destruction opera-

tors. The photons interact with the ab transition through the
minimal-coupling Hamiltonian
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FIG. 1. �a� Three-level �-type medium. �b� Double-�

medium.
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H2 = − �g�
k

ak�k
ab + H.c. �4�

The coupling constant is g
P�2�N�ab /�V, where P is the
dipole moment of the ab transition, �ab��a−�b, and V is
the cavity volume. For notational simplicity, we have used
the rotating-wave approximation. Finally, we include a clas-
sical control field with strength �Rabi frequency� �, fre-
quency �L��ac, and wave vector kL:

H3�t� = − ��e−i�Lt�
r

eikLr�r
ac + H.c. �5�

Here, we have again discarded counter-rotating terms. We
neglect the coupling between the photons and the ac transi-
tion, which is negligible compared to the effects of the con-
trol field, and the coupling between the control field and the
ab transition, which is off resonance.

The time dependence in Eq. �5� can be removed by defin-
ing

HL = UL�t�H�t�UL
†�t� + ��L�

r

�r
cc, �6�

where H�t��H0+ ¯ +H3�t�, and

UL�t� = exp
− i�Lt�
r

�r
cc� . �7�

The Schrödinger equation H�t��	�t��= i��t�	� can be then re-
written as

i�
�

�t
�UL�t��	�t��� = HL�UL�t��	�t��� . �8�

Thus we can extract solutions to the Schrödinger equation
from the energy eigenstates of the time-independent Hamil-
tonian HL. To obtain these, we look for a polariton excitation
operator A† such that

�HL,A†� = ��A† + ¯ . �9�

The polariton is long-lived provided the omitted terms are
negligible �6�. If the initial state of the system is its �zero
photon� ground state, A† should be a mixture of a†, �ab, and
�cb. Below, we list the commutation relations of these three
operators with HL. We have removed terms involving �ba,
�aa, �ca, and ak; since these operators give zero when acting
on the ground state, this introduces no additional error for
single-polariton excitations. Similarly, we have replaced �k

bb

with �N
k0. Thus

�HL,�k
ab� 
 ��ab�k

ab − ��*�k−kL

cb − �g*ak
†, �10�

�HL,�k−kL

cb � 
 ���cb + �L��k−kL

cb − ���k
ab, �11�

�HL,ak
†� = �c�k�ak

† − �g�k
ab. �12�

Let us now look for excitation operators of the form

Ank
† = − �nk

1 �k
ab + �nk

2 �k−kL

cb + �nk
3 ak

†, �13�

where the band index n enumerates the different polariton
species. The c-numbers �nk

j are determined by inserting Eq.

�13� into Eq. �9� and using Eqs. �10�–�12�. This gives three
self-consistency equations that can be written as

��ab � g

�* �cb + �L 0

g* 0 c�k�
���1

�2

�3 �
nk

= �nk��1

�2

�3 �
nk

. �14�

The form of the effective Hamiltonian in Eq. �14� is familiar
from semiclassical analyses of EIT. Figure 2 shows the band
structure in the absence of loss, similar to the one given in
Ref. �5�. For simplicity, let us assume that �L=�ac. The
asymptotic eigenfrequencies far from resonance are c�k� and
the eigenvalues of the upper-left 2�2 submatrix in the ef-
fective Hamiltonian in this case are �ab
�. Exactly at reso-
nance ��k�=�ab /c�, there is an eigenvector ��0,1 ,−� /g�,
and for slightly detuned k this eigenvector continues into
ones where the �ab component is nonzero but small. These
solutions—“dark-state polaritons”—are thus insensitive to
incoherent decay processes acting on �a�. The stability of the
exactly resonant DSP is limited only by the lifetime of the
metastable state �c�, which we shall assume to be longer than
the time scale of any relevant experiment. For off-resonant
DSPs, the decay rate is only quadratic in the detuning: upon
replacing �a with �a− i�a in Eq. �14�, one finds that the
imaginary part acquired by �k is ��a�� /��2 �for ��g�,
where ��c �k �−�ab. The other two polariton branches cor-
respond to “bright” polaritons that contain significant �a�
population and are thus strongly affected by losses. As in
Ref. �1�, we neglect Langevin noise effects, which do not
influence the adiabatic evolution of the DSPs.

Expanding around �=�ab yields a limiting solution for
the DSPs:

�k = �ab +
���2

�g�2 + ���2
�c�k� − �ab� , �15�

�k
1 =

��c�k� − �ab�
�g�2 + ���2

�k
2, �16�

�k
3 = −

�

g
�k

2. �17�

Equations �15�–�17� agree with the solution derived by
Fleischhauer and Lukin using a perturbation expansion in

kωab/c

ω

ωab − Ω
ωab

ωab + Ω

0

FIG. 2. Polaritonic dispersion curve for �L=�ac. The solid lines
show the exact polariton solutions given by Eq. �14�; the dashed
line shows the Fleischhauer-Lukin solution, Eq. �15�.
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1 /� �1�. In our formalism, the fact that decreasing � reduces
the polaritonic group velocity can be intuitively understood
as the result of “squeezing” the bandwidth of the middle
polariton band. An interesting property of the DSP solution is
that it does not depend on the energies of the underlying �
system, only the detuning of the control field and the cou-
pling parameters g and �.

Finally, we can extract the solutions to the original
Schrödinger equation using Eq. �8�. For a polariton with
quantum numbers �n ,k�, the state at time t is

�	�t�� = e−i�nkt � �− �nk
1 �k

ab + �nk
2 ei�Lt�k−kL

cb + �nk
3 ak

†��0� .

�18�

The �cb component in Eq. �18� has a different frequency and
wave vector compared to the rest of the polariton. This prop-
erty does not, however, destabilize the polariton: in a wave
packet constructed of a superposition of DSPs, the photonic
and �cb components possess different phase factors but share
a single envelope.

The preceding derivation holds regardless of the angle
between the input photon and the control beam. The direc-
tion of kL only enters into the choice of excitation operator
�k−kL

cb occurring in the polariton operator �13�, and plays no
role in the eigenproblem �14� that yields the state amplitudes
and polariton energy.

By switching between two noncollinear control beams, it
is possible to coherently rotate the photon wave vector, by an
angle of up to 2 sin−1��ac /�ab�, where the plane of rotation
is specified by the polarization of the control field. A special
case of this has been discussed by Juzelinūas and Car-
michael: when �b��c, one can coherently backscatter the
photon by inserting a photon with k�kL, which mixes with a
�bc excitation with wave vector k−kL�0, and switching the
control field to −kL. The �bc excitation then mixes into a
photon of wave vector k−2kL�−k �5�.

III. DOUBLE-� SYSTEM

Suppose we add a second excited state, �d�, as shown in
Fig. 1�b�. A second control beam couples �d� to �c�, and for
simplicity we assume that the two control beams have paral-
lel polarization vectors. The d↔a transition is assumed to be
forbidden. One of the reasons this “double-�” system is in-
teresting is that it can be used to upconvert or downconvert

probe beams, as experimentally demonstrated by Merriam
et al. �10� and other groups. It can be shown, using the
Fleischhauer-Lukin formalism, that this type of level struc-
ture supports a DSP �8�. As we shall see, this DSP arises
naturally from the present method as a 5�5 generalization
of Eq. �14�.

The Hamiltonian, H��t�, contains four new terms. The
first, �r�d�r

dd, gives the energy of the �d� states. Next, we
introduce a second photon field with operators bk

† and bk, and
Hamiltonian �k�c�k�bk

†bk. �There is really only one photon
field, but this trick is permissible since the atom-photon cou-
pling becomes negligible far away from the EIT resonances.�
Finally, we add interaction terms analogous to Eqs. �4� and
�5�, with �d�, bk, g�, and �� replacing �a�, ak, g, and �,
respectively.

The control field interaction Hamiltonian �5� and its ana-
log for the dc transition oscillate at different frequencies, so
the transformation �6� and �7�, which works by rotating �c�,
cannot eliminate the time dependence. We can overcome this
difficulty with a transformation that instead rotates the �a�,
�d�, and photonic states. Let

HL� = UL��t�H��t�UL�
† − ��L��

k

ak
†ak + �

r

�r
aa�

− ��L���
k

bk
†bk + �

r

�r
dd� , �19�

where H��t� is our new Hamiltonian, and

UL� = exp
i�Lt��
k

ak
†ak + �

r

�r
aa�

+ i�L�t��
k

bk
†bk + �

r

�r
dd�� . �20�

This once again allows us to write the Schrödinger equation
as i��t�UL��t��	�t���=HL��UL��t��	�t���, where HL� is time-
independent. We look for excitation operators for HL� of the
form

Ank
† = − �nk

1 �k+kL

ab − �nk
2 �k+kL�

db + �nk
3 �k

cb + �nk
4 ak+kL

† + �nk
5 bk+kL�

† .

�21�

The self-consistency equations for the parameters �nk
j take

the same matrix form as Eq. �14�, with the effective
Hamiltonian

Hk� = ��
�ab − �L 0 � g 0

0 �db − �L� �� 0 g�

�* ��* �cb 0 0

g* 0 0 c�k + kL� − �L 0

0 g�* 0 0 c�k + kL�� − �L�
� . �22�
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The polariton created by Eq. �21� is a valid excitation be-
cause, as in the single-� case, no extra non-negligible terms
are generated by commutating this operator with the Hamil-
tonian. Let us now assume that the control fields are reso-
nant, i.e., �L=�ac and �L�=�dc. For �k+kL�=�ab /c and �k
+kL��=�db /c, the effective Hamiltonian �22� has an eigenvec-
tor ��0,0 ,1 ,−� /g ,−�� /g��. The first two components of
this eigenvector, corresponding to the two excited states, are
identically zero, so this represents a DSP consisting of �k

cb

excitations and photons with wave vectors k+kL and k+kL�. It
can be shown that no other linearly independent eigenvector
with this property exists, so there is only one such DSP so-
lution. The linearized DSP solution, analogous to Eqs.
�15�–�17�, is

�nk = �cb +
��/g�2
k + ���/g��2
k�

1 + ��/g�2 + ���/g��2
, �23�

�nk
1 =

�

�g�2

k + ���/g��2�
k − 
k��

1 + ��/g�2 + ���/g��2
�nk

3 , �24�

�nk
2 =

��

�g��2

k� + ��/g�2�
k� − 
k�
1 + ��/g�2 + ���/g��2

�nk
3 , �25�

�nk
4 = − ��/g��nk

3 , �26�

�nk
5 = − ���/g���nk

3 , �27�

where 
k��k+kL�−�ab /c and 
k�= �k+kL��−�db /c. The po-
laritonic band structure, in the absence of loss, is shown in
Fig. 3.

These results can be shown to be consistent with the
single-photon limit of a semiclassical analysis of the double-
� medium given by Korsunsky and Kosachiov �9�. In this
one-dimensional model, where the electromagnetic field is
treated classically, the Heisenberg equations of motion for
the atomic system possess a stationary “dark state” solution
that is decoupled from the electromagnetic field and is stable
against spontaneous emission. This dark state exists only if
the background field �consisting of two probe beams and two
control beams� obeys certain frequency, amplitude, and
phase matching conditions. The frequency-matching condi-
tion is

� − �L = �� − �L� = �cb, �28�

where � and �� are the respective frequencies of the probe
beams resonant with the ab and db transitions. This equation
is exactly satisfied by Eq. �21�, for which �=c�k+kL� and
��=c�k+kL��. The physical meaning of Eq. �28� is particu-
larly easy to deduce in the present theory: in the single-
photon limit, the stationary state corresponds to a polaritonic
solution of the form �21�, for which the photonic components
cannot take on arbitrary frequencies because they are coher-
ently mixed via the atomic excitation �k

cb. The amplitude-
matching condition for the semiclassical dark state is

PE

�
=

P�E�

��
, �29�

where P and P� are the dipole moments for the ab and db
transitions, and E and E� are the electric field amplitudes of
the associated probe beams. The electric field amplitudes can
be related to the quantum mechanical photon amplitudes �4

and �5 by

E ↔ �2���ab/V�4, �30�

E� ↔ �2���db/V�5, �31�

which can be verified by computing the expectation value
	�E�2� produced by each photon creation operator. With this
identification, the linearized DSP amplitudes �26� and �27�
satisfy Eq. �29�. The third condition derived by Korsunsky
and Kosachiov, which relates the phases of the four beams, is
also satisfied by the DSP because, as shown by Eqs. �26� and
�27�, the phases of the probe beams are locked to those of the
control beams � and ��.

The dark state studied by Korsunsky and Kosachiov is a
pure state of the atomic system, reflecting the fact that the
electromagnetic field is treated classically �9�. In contrast, the
present model takes into account the coherent mixing be-
tween the quantum state of the probe field and the quantum
state of the atomic medium: performing a partial trace of the
DSP over the photonic Hilbert space yields a mixed atomic
state. This mixing becomes important at the single-photon
level, which is also potentially the regime of interest for
quantum information processing. In the following section,
we will examine how this mixing can be used to convert
between the two photonic components of the double-� DSP.

IV. FREQUENCY CONVERSION

For a single-� medium with a resonant control beam,
inserting a photon with wave vector k0, resonant with the ab
transition, gives rise to a DSP whose group velocity points in
the same direction, independent of the direction of the con-
trol beam. This freedom to choose the direction of the con-
trol beam disappears in the double-� case. Here, an incident
photon k0 mixes with another photon with wave vector k1
=k0−kL+kL�. Assuming both control beams are tuned to reso-
nance, the resulting state overlaps with a DSP only if �k1�

�db /c. Furthermore, the group velocity of the DSP is, from
Eq. �23�,

kωcb/c

ω

ωcb

0

FIG. 3. Polaritonic dispersion curve for the double-� medium.
The solid lines show the exact polariton solutions given by Eq. �22�;
the dashed line shows the linearized solution given by Eq. �23�. The
horizontal asymptotes occur at �cb and �cb
����2+ ����2.
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v = �k�nk =
��/g�2k̂0 + ���/g��2k̂1

1 + ��/g�2 + ���/g��2
, �32�

where k̂0=k0 / �k0� and k̂1=k1 / �k1�. Therefore a choice of k̂0

and k̂1 determines the directions of the two control beams
�or, more generally, choosing any two of these directions
determines the other two�. As an aside, we note that the beam

matching conditions forbid the choice k̂0=−k̂1, which would
imply the possibility of a stationary wave packet with non-

zero control beams; however, if k̂0 and k̂1 are nearly antipar-
allel, Eq. �32� predicts that the control beam strengths can be
tuned to produce a low group velocity.

In order to illustrate the mixing between the two photonic
components in the DSP, let us fall back on the “trivial” one-
dimensional case where all wave vectors are parallel, which
satisfies the above beam matching conditions. Suppose we
inject the photon k0 at t=0, so that the quantum state is

�	�0�� = ak0

† �0� = �
n=1

5

�nk
*4Ank

† �0� , �33�

where k�k0−kL. Without losses, the state at time t is

�	�t�� = ei�L�t�e−iHk�t/��5,4bk+kL�
† �0� + ¯ , �34�

where the matrix H is defined in Eq. �22� and the omitted
terms are the other polariton components. The result, shown
in Fig. 4, is an oscillating upconversion amplitude
�	0�bk+kL�

�	�t��� that can approach 100%. The effects of inco-
herent excited state decay, which can be modeled by replac-
ing �a with �a− i�a and �d with �a− i�d in Eq. �22�, are also
shown in Fig. 4. Although the DSPs are protected against
decay, damping still occurs because the incident photon gen-
erates a nonvanishing population of bright polaritons. When
these exit the system �typically as off-axis photons�, only the
DSP remains.

A more efficient example of single-photon frequency con-
version can be obtained by going from momentum space to
real space and studying the behavior of polariton wave pack-
ets. Let us define c-number fields � j =� j�r , t� such that

�	�t�� = �
r

ei��r−�cbt��− �1eikLr�r
ab − �2eikL�r�r

db

+ �3�r
cb + �4e−ikLrar

† + �5e−ikL�rbr
†� . �35�

Inserting Eq. �35� into the Schrödinger equation and using
Eq. �22�, we obtain a Schrödinger wave equation

i�
��i

�t
�r,t� = �

j

Hij� j�r,t� . �36�

If � is chosen such that ��+kL�=�ab /c and ��+kL��=�db /c,
then the DSP corresponds to values of � j that are constant in
space. For a wave packet centered around � with bandwidth
��ab ,�db �i.e., spatial width much longer than the optical
wavelength, which is the usual slowly varying envelope ap-
proximation�, H takes on the intuitive local form

H�r,t� � ��
0 0 � g 0

0 0 �� 0 g�

�* ��* 0 0 0

g* 0 0 − ick̂0 · � 0

0 g�* 0 0 − ick̂1 · �

� .

�37�

As in the single-� case, the evolution of the polaritonic en-
velope is independent of the underlying double-� frequen-
cies, except through the coupling parameters g, g�, �, and
��. We again emphasize that this result is not perturbative; it
holds for arbitrary values of � and ��, and depends only on
the fact that the wave packet is sufficiently broad. Generally,
the coupling parameters can vary �smoothly� in space; for
instance, a variation in � or �� could be accomplished using
a cw control beam with a nonuniform cross-sectional inten-
sity profile. Such variations can be used to “adiabatically”
transfer one photon population to another within a propagat-
ing DSP wave packet, substantially improving the efficiency
of the conversion process compared to the previous example.

Let us consider an effectively one-dimensional experi-
mental setup where all relevant spatial variations occur in the
z direction. In particular, we must assume that the x and y
edges are far enough away that boundary effects �which ap-
pear when the beams are not all collinear� are negligible. The
incident envelope field � j�z , t=0� is

�4 = exp
− �� z

cos �
− z2�2� ,

�1 = �2 = �3 = �5 = 0. �38�

Outside the sample �z�0 or z�z0�, all coupling parameters
are zero. Within the sample �0�z�z0�, the functional forms
of ��z� and ���z� are chosen so that ���� �g�� ���� near the
entrance of the sample, which ensures that the DSP is domi-
nated by the input photon; whereas ����� ���� �g� near the

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

t (10-9 s)

(a)
(b)

FIG. 4. Numerical solutions of �	0�bk−kL+kL�
�	�t��� against t,

where �	�t�� is the quantum state at time t after inserting a photon
ak

† with k=�ab /c. Here, �cb=104 cm−1, �g�= �g��=0.1 cm−1, and
���= ����=1 cm−1. �a� No excited state decay, �a=�d=0. �b� �a

=�d=0.02 cm−1.
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exit, which ensures that the DSP is dominated by the con-
verted photon. The result is shown in Fig. 5. For the given
parameters, the converted photon amplitude is �0.9 times
the incident amplitude. The efficiency is limited by the avail-
able length of the double-� medium. As shown in Fig. 6, a
longer sample allows the �� field to be varied more gently,
generating fewer bright state polaritons and increasing the
conversion efficiency.

V. CONCLUSIONS

In this paper, we have presented an analysis of single- and
double-� EIT systems based on a microscopic equation-of-
motion technique. Within this formalism, the presence of a
DSP corresponds to the existence of special eigenvectors of
an effective Hamiltonian matrix, in which the entries corre-
sponding to rapidly decaying excitations are identically zero,
regardless of the strength of the control fields. The ability of
the double-� system to efficiently upconvert and downcon-
vert photons, previously established in semiclassical four-
wave mixing studies �9,10�, is retained in the coherent
single-photon limit due to the existence of the DSP. The

analysis can be further generalized to multi-� systems,
where one finds additional polaritonic bands similar to those
in Fig. 3, with exactly one family of DSP solutions possess-
ing vanishing excited state populations.

Throughout this paper, we have restricted our attention to
the single-polariton sector of the theory, which is valid only
if the polaritons are much more dilute than the underlying
atomic medium. The polariton operators �13� and �33� do not
obey exact bosonic commutation relations, since the � op-
erators are not bosonic operators; however, the corrections to
the commutator vanish as O�M /N�, where M is the number
of atoms excited �15�. This condition is satisfied, for in-
stance, in the experiments of Merriam et al., where M /N
�10−3 �10�. The single-polariton sector has the advantage
that the quantum state of the system can be expressed in
terms of a simple wave equation, as in Eq. �36�. Thus once
the � operators have been used to derive the effective Hamil-
tonian, the additional structure given by their nontrivial com-
muation relations disappears from the theory. Should one
wish to study the limit where M becomes comparable to N,
this structure will have to be taken into account.
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