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We derive a general, analytical, coupled-mode theory for disorder-induced scattering in periodic
systems that shows that in the experimentally relevant limit of weak disorder, the reflection in a
photonic-crystal waveguide is just as low as in a comparable index-guided waveguide. Moreover,
since the photonic band gap also blocks radiative loss, the total scattering loss is reduced, and the
total transmission is higher. These general results are verified by direct numerical simulations in an
example system. © 2004 American Institute of Physics. �DOI: 10.1063/1.1723686�

A photonic crystal blocks the propagation of fields
within a certain frequency range, or photonic band gap,
thereby confining light to the vicinity of defects in its peri-
odic structure.1 Linear defects, which act as waveguides, are
promising building blocks for the design of optical integrated
circuits in photonic crystals.2 Understanding the effects of
disorder in these systems �e.g., from imperfect fabrication� is
thus a topic of both fundamental and practical importance.
However, while the effect of disorder on the bulk band gap
of the crystal is well understood,3,4 the effect of disorder on
transport through photonic-crystal waveguides has seen only
limited study for specific cases.5–8

In this letter, we derive the general principles that govern
scattering due to arbitrary disorder in photonic-crystal
waveguides. Using a basis of Bloch states, we develop an
extension of coupled-mode theory9 valid for strongly peri-
odic, high-index-contrast systems. Unlike previous work, our
approach is not limited to slowly varying perturbations,10

develops the coupled-mode equations in space rather than in
time,11 and uses a fixed basis.12 From the theory, an explicit
formula for reflection is obtained, yielding insight into the
effect of the band gap on scattering. We find that, in the
experimentally relevant limit of weak disorder,13 the photo-
nic band gap suppresses radiation loss without redirecting
light into reflection. As a result, reflection losses are the same
as in a comparable index-guided waveguide, and overall
transmission is higher. These general results are verified by
direct simulations of Maxwell’s equations in an example
system.

We begin by writing the dielectric constant of the wave-
guide as �(x ,y ,z)���(x ,y ,z), corresponding to a
z-periodic, unperturbed waveguide � of period a plus a per-
turbation �� due to disorder, where z is the propagation di-
rection. For a definite frequency �, the fully vectorial source-
free Maxwell’s equations can be rewritten as13
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where �(1/�)����/��(����)� , and

B̂�� 0 � ẑ�

ẑ� 0 � .

�t denotes transverse (xy) components of �. In contrast to
quantum mechanics, Â and B̂ are Hermitian �for real �, �
but not positive definite, allowing complex eigenvalues.

From Bloch’s theorem, the eigenstates of the unper-
turbed system can be written ei�z��	 , where the real part of
��(��/a ,�/a� , and ��	 is a z-periodic function with pe-
riod a that satisfies the generalized Hermitian eigenproblem
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B̂ � ��	��B̂��	 . �2�

The orthogonality condition is ��*�B̂���	�0 for ����,
where ��*	 is the eigenstate with eigenvalue �*, and the
implicit integral is over one unit cell. �Modes with complex
� are evanescent.� While a complete basis at constant � in-
cludes a continuum of nonguided states, this continuum can
be regarded as the infinite-volume limit of the set of discrete
states of a finite volume with conducting boundary condi-
tions. We thus consider only modes �n	 that have discrete
eigenvalues �n , normalized such that �m*�B̂�n	��m ,n�n

with ��n��1; moreover, �m*�B̂e (�2�i/a)�z�n	�0 for �m

��n�(2�/a)� .
Because the orthonormality condition involves an inte-

gral over the unit cell, it is useful to adopt an algebraic
trick12 to introduce a new integration parameter z̃ , a shift of
the original, unperturbed waveguide. Considera�Electronic mail: mpovinel@alum.mit.edu
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where Â(z� z̃) is obtained by sending �(x ,y ,z)→�(x ,y ,z
� z̃) in Eq. �1�. The solution of Eq. �3� can be expanded as

���z �	 z̃��
n

cn�z , z̃ ��n�z� z̃ �	ei�nz. �4�

Since Â(z� z̃�a)�Â(z� z̃), the cn’s can be chosen to be
periodic in z̃ and expressed as a Fourier series:

cn�z , z̃ ���
�

cn ,��z �e�2�i� z̃/a. �5�

After substituting Eq. �4� into Eq. �3�, using a shifted version
of Eq. �2� for the shifted, unperturbed eigenstates �n(z
� z̃)	 , and applying a z̃-shifted orthonormality condition, the
physical solution is obtained by setting z̃ to zero.

After integration by parts and a change of variables, the
final result is14
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where Et�ei�nzEt
n . Note that the integral is over x�

�(xt� ,z�), which ranges over the unit cell, whereas z is the
fixed point along the waveguide axis at which dcm /dz is
evaluated. From Eq. �6� it can be seen that mode coupling
depends on the strength of the perturbation at a given z and
a weighted average of the mode profiles over the entire unit
cell. Assuming for simplicity that the unperturbed waveguide
is single-mode, the coupled-mode equations can be inte-
grated to first order to yield the reflection coefficient:

cr�z ���i�
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� dz ei(2� i�2�k/a)z� dx� e2�ikz�/a

�

c

�� ���xt� ,z �Et
r�x��*"Et

i�x��

��� 1

��xt� ,z � � Dz
r�x��*Dz

i �x�� � ci�0 �, �7�

where i/r label incident/reflected modes. �A factor of �1/vg

is implicit in the mode normalization.12�
Equation �7� shows that for weak-disorder, a photonic

band gap surrounding the waveguide has no effect on reflec-
tion. To first order, only the profiles of the guided modes
enter the formula for the reflection coefficient, along with the
dispersion relation ����, the group velocity vg , and the per-
turbation ��. As a result, a photonic-crystal waveguide with
weak disorder will have the same reflection losses as an
index-guided waveguide that shares these characteristics, re-
gardless of the guiding mechanism. Moreover, the total
transmission will be higher for the photonic-crystal wave-
guide, since the index-guided waveguide suffers additional
radiative losses.15 It is natural to suppose that reflection
losses might be higher for a photonic-crystal waveguide than
for an index-guided waveguide, for one could imagine that
the suppression of radiative scattering loss by the photonic
crystal would redirect light into reflection �as well as in the
forward direction�. However, to first order, redirection does
not occur. Because the photonic crystal modifies the local
density of states at the scattering site, the total scattered
power is lower, and the total reflected power is the same as
in a comparable index-guided waveguide.

FIG. 1. �Color� �a� Waveguide geometries and mode profiles for �
�0.31(2�c/a). Mode profiles show the electric field component perpen-
dicular to the page; red and blue indicate negative and positive values,
respectively. �b� Band diagram for the waveguides shown in �a�. Shaded
regions indicate extended TM states of the bulk 2D photonic crystal.

FIG. 2. Closeup of central waveguide region, showing how identical surface
roughness was added to the photonic-crystal and index-guided waveguides.

FIG. 3. �Color� Transmission and reflection for a disordered region of length
10a , averaged over 20 realizations of the disorder.
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As a specific illustration, consider the waveguides in Fig.
1�a�. On the left is a two-dimensional �2D� photonic-crystal
�PC� waveguide made by introducing a high-index strip of
width w into the center of a missing row of rods.16,17 The
bulk crystal is composed of a 2D array of high-index rods in
air. On the right is a waveguide composed of the high-index
strip alone. A comparison of the two systems provides a clear
demonstration of the effect of a photonic band gap on
disorder-induced scattering, because their only difference is
the presence of the band gap.

Figure 1�b� shows the dispersion relations of both struc-
tures computed by plane wave expansion,18 for rod radius r
�0.2a , w�0.3a , and ��12. Shaded regions indicate ex-
tended TM states of the bulk 2D photonic crystal. Filled,
blue circles show the PC wave guide mode, which traverses
the band gap. Open, red squares show the fundamental mode
of the index-guided waveguide. The dispersion relations co-
incide for wave numbers � greater than �0.65(2�/a). In
this range, the electric field profiles are nearly identical; Fig.
1�a� shows the electric field perpendicular to the paper for
��0.31(2�c/a). Quantitatively, the unit-cell average of
�Et�2 at the waveguide surface is the same to within 0.1%.
Equation �7� predicts the two waveguides will have nearly
identical reflection in the weak-disorder limit.

Surface roughness was added to both waveguides, and
the reflection and transmission were calculated using 2D,
full-vectorial, finite-difference time domain simulations of
Maxwell’s equations.19 The computational resolution was 20
grid points/a . Perfectly-matched-layers were used at the
boundaries of the computational cell.20 Figure 2 shows the
central waveguide region. For each realization of disorder,
the same perturbation was made to both waveguides. Along
each side of the strip, a random perturbation was made at
each grid point, with a probability p of a pixel being added
and p of being removed. No perturbation was made to the
rod surfaces. Aside from a slight narrowing of the band
gap,3,4 the effect of such a perturbation is negligible for weak
disorder. Because the mode is strongly localized in the cen-
tral strip, scattering is dominated by roughness along the
strip surfaces.

Figure 3 shows reflection and transmission as a function
of frequency, where the results are averaged over 20 realiza-
tions of disorder and the length L of the disordered segment
is 10a . For the frequency range shown, the dispersion rela-
tions of the two waveguides overlap �see Fig. 1�. Results are
plotted for three values of the disorder probability. At the
highest value, p�0.1, the reflection in the PC waveguide is
higher than in the strip waveguide by 2%–6% due to second-
order scattering. As p is decreased, the difference in reflec-
tion decreases and is unobservable for p�0.025. For all
three values of p , the transmission through the PC wave-
guide is higher than for the index-guided waveguide. The
oscillations in the frequency spectrum visible in both average
reflection and transmission are due to Fabry–Perot effects
arising from the finite length of the disordered region. The
period of oscillation corresponds to L�10a and was found
to scale linearly with L; the magnitude of the oscillations
decreases linearly with p .

Average transmission through the PC waveguide de-
creases more slowly with length than for the index-guided

waveguide. For p�0.05, the calculated losses were
�0.04 dB/a �PC� and �0.07 dB/a �index-guided wave-
guide�.

While the numerical results we present are for a specific,
2D system, the coupled-mode theory developed here pro-
vides a general, semi-analytical framework that can be used
to study the effects of arbitrary disorder in a variety of three-
dimensional photonic crystals. Moreover, the physical in-
sight gained applies to general photonic-crystal waveguides:
in the limit of weak disorder, the photonic crystal suppresses
radiation loss without redirecting light into reflection. The
results should be of interest for the development of low-loss
waveguides in high to medium index contrast systems using
photonic crystals with full or partial band gaps. Several av-
enues for future study include the direct semi-analytical pre-
diction of disorder losses in realistic systems and the devel-
opment of a generalized coupled-power theory9 based on Eq.
�6�. The latter can be used to illuminate the effects of long-
correlation-length (�a) disorder, which may cause addi-
tional scattering/reflection due to quasiphase matching, as
well as to allow comparison of photonic-crystal waveguides
that do not directly correspond to conventional waveguides.
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