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We report on new fundamental phenomena in soliton interactions: delayed-action interaction and
“spin”-orbit coupling upon collision between two-dimensional composite solitons carrying topological

charges.
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Solitons have attracted much attention in the scientific
community for almost four decades. This is because soli-
tons are perhaps the only nonlinear waves that behave and
interact like real particles. Soliton interactions are univer-
sal, displaying features common to all solitons, in spite
of the diversity of the physical systems in which soli-
tons are found [1]. The reason for this universality is the
fact that solitons can be viewed as bound states of their
own induced potential or, in nonlinear optics, as modes of
their own induced waveguide [2]. The simplest case arises
when the self-induced waveguide has only one mode popu-
lated, in which case the soliton is a “scalar soliton.” In this
vein, collisions of single-mode solitons can be viewed in-
tuitively as interactions between guided modes of adjacent
waveguides. The interaction outcome is determined by
the relation between the collision angle and the (comple-
mentary) critical angle for total internal reflection in each
waveguide, 6.. Experimentally, collisions between scalar
solitons were studied in detail, demonstrating elastic col-
lisions between Kerr solitons [3], almost-elastic collisions
between solitons in saturable nonlinearities interacting at
angles above 6. [4], and inelastic collisions that yield fu-
sion [4—6], fission [6], annihilation [6], and spiraling [7].

More than a decade ago, multimode (or composite) soli-
tons were proposed, in the temporal [8] and later on in
the spatial domain [9]. The discovery of photorefractive
solitons has eventually led to the experimental observation
of composite solitons [10]. Theoretical and experimental
papers on interactions of composite solitons followed, re-
porting on shape transformations upon collision [11], and
on a bound state between two vector solitons [12]. In all of
these studies the solitons were (1 + 1)D type. Recently,
however, we have proposed the possibility of generating
(2 + 1)D multimode composite solitons in which at least
one component carries topological charge [13]. Conse-
quently, two-dimensional dipole-type composite solitons
were suggested [14] and observed [15].

Here, we study theoretically interactions between (2 +
1)D composite solitons carrying topological charges. The
collision results in one of the most intriguing phenomena in
soliton science: “delayed-action collision.” It occurs when
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the interacting composite solitons carry opposite topologi-
cal charges, and when the collision angle is slightly below
0.. Upon collision, the two composite solitons fuse to
form a metastable bound state, which survives as a single
entity for large propagation distances (tens of diffraction
lengths) until it breaks up and new vector solitons emerge.
This interaction resembles the interaction between elemen-
tary particles in which the “mediator” (the fusion product)
has a prolonged yet finite “lifetime” and eventually decays
into new entities. The interaction between our solitons
has similar features: the emerging (new) solitons diverge
away from one another as free particles. Apart from the
delayed-action interaction, the collision process between
composite solitons gives rise to a series of other new phe-
nomena. One such feature, which has no counterpart either
with scalar solitons or with (1 + 1)D composite solitons,
is “spin”-orbit coupling. It occurs for composite solitons
carrying identical topological charges colliding at angles
smaller than 6,.. The spin-orbit coupling is manifested in
the transfer of angular momentum from spin [16] to orbital
motion in which the solitons spiral around each other.
These interaction features should occur in any isotropic
saturable self-focusing nonlinear media, yet in our study
we consider two beams interacting in a medium with
normalized nonlinear refractive index change én(l) =
—1/(1 + I), where [ is the total (time-average) intensity.
The slowly varying envelope functions of the two inter-
acting beams, ;, j = 0, 1 satisfy two coupled normalized
nonlinear Schrodinger (NLS) equations [13,14]:

. 8(//]' 1 2
lg + EV l//j + 5]’1(1)',% = 0, (1)
where | = ]1-:0 l;|?, and z is the propagation distance;

V2 = 9%/ax> + 9>/9y>. Equation (1) admits the con-
servation laws: power E; = [[l;|*dxdy; trans-
verse momentum P = [[pdxdy = 3 f(Z}:O Vi —
c.c.) dx dy and angular momentum L2 = [[r X p dx dy,
where p is the transverse momentum density carried by
the composite solitons and r is the transverse vector coor-
dinate. Stationary solutions to Eq. (1) can be found in the
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form ;(r,¢,2) = uj(r)exp(ipjz + imjp), j=0,1
with my = 0, m; = £1 being the solitons topological
charges (spin) [16] and w; are the propagation constants.
We denote such solutions by (0, £1). Their first mode
has radial symmetry with maximum peak intensity at
the origin, while the second mode is of the vortex type
(doughnut). The stability analysis of these structures was
done in [14,17] where it was shown that they are weakly
linearly unstable [18], and that saturation leads to a strong
stabilization effect.

We numerically study the interactions between such
solitons by launching two vector solitons in the (x,z)
plane, each of which is composed of a circular and a
vortex component. We consider only single hump com-
posite solitons which were shown numerically [13] to be
stable against deviations of at least 2% in initial ampli-
tudes, and at least 5% relative displacement of the compo-
nents, all of these within a propagation distance in excess
of 100 physical diffraction lengths. We simulate Eq. (1)
with the initial condition given by (j = 0,1)

}nitial — Z 'ﬁj(r + sro 7z = O)eixﬂx, )
s=%1

where 29 is the dimensionless collision angle, and 2|rg|
is the separation between the centers of the two composite
solitons. Our results are presented in dimensional units
with the parameters of [19], where 6. = 0.66°. To facili-
tate understanding, we first recall known results from in-
teractions between scalar solitons (¢; = 0) [1]. When two
scalar solitons with circular cross sections collide at angle
6 > 6. then they pass through each other unaffected
(maintaining their circular shape) [4], whereas they
undergo fusion or fission [5,6] for 8 < 6, (Fig. 1). This,
in turn, serves as a definition of the critical angle 6. [20].
Interaction between composite vector solitons exhibits
many new features. Here, we describe in detail only the
most important effects. In essence, the interaction between
solitons always displays a dramatic change near the tran-
sition from 8 > 6. to § < 6.. In the regime 8 > 6., two
pairs of composite solitons (either with identical or op-
posite topological charges) cross the trajectories of each
other. But, in distinction from collisions between scalar
solitons, the vortex components always transform upon
collision into rotating dipoles. The dipoles of the emerg-
ing solitons corotate (counterrotate) for input solitons with
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FIG. 1. Interactions of two circular scalar solitons. (a) Above

the critical angle and (b) below the critical angle.

800

identical (opposite) charges. Evidently, this shape transfor-
mation into rotating dipoles is solely due to the spin carried
by the second mode and is not observed with scalar soli-
tons. At § < 6., the dynamics always include a change in
the number of solitons. In this regime we observe the most
intriguing new phenomena: delayed-action interaction and
spin-orbit coupling.

Delayed-action interaction.—When two composite
solitons of opposite spins [solitons of type (0,1) and
(0,—1)] collide at angle 6 = 0.37° < 6., then both
vector constituents undergo a fusion process and form a
resonant bound state that has a prolonged lifetime (propa-
gation distance) of about 35 diffraction lengths. When
this metastable bound state eventually disintegrates, it
gives rise to new vector solitons that lie in a plane almost
orthogonal to the initial plane (Fig. 2 and the schematic
presentation in Fig. 3). This delayed-action process bears
much resemblance to interactions between elementary
particles where the intermediate (metastable) fusion
product plays the role of a mediator. This phenomenon
is observed here for the first time [21]. We find (numeri-
cally) that the generic delayed-action interaction is robust
against deviation of at least 3% in initial amplitudes. Even
at 3% perturbations, this metastable state still occurs,
and survives for a distance of 20 diffraction lengths.
Nevertheless, the details of the delayed-action interaction
process and the emerging solitons critically depend upon
the initial amplitudes. In the examples depicted in Figs. 2¢
and 2d, the input solitons differ by merely 3% in initial
amplitudes, yet in one case two solitons emerge from the
collision process, whereas in the other three solitons are
emitted. Evidently, tiny changes in the input parameters
completely change the details of the interaction.
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FIG. 2. Interactions of two composite solitons colliding at § =
0.37° < 6., with |p(0)|> = 4 and max(|¢,|*) = 0.64. (a),(b)
show the ¢y,; components. (c),(d) same as (a),(b) but with
deviations of 3% in initial amplitudes.
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FIG. 3. Schematic representation of the two delayed-action
examples shown in Fig. 2. Two vector solitons collide, a
metastable bound state forms, and after many diffraction
lengths, the bound state decays into new vector solitons. (a)
corresponds to Figs. 2a and 2b, whereas (b) refers to Figs. 2c
and 2d.

Spin-orbit coupling.—In this case, both input solitons
are of the (0, 1) type and the collision angle is below 6.,
e.g., 8 = 0.12°. The collision results in the production
of three vector solitons which are completely decoupled
from each other (Fig. 4). The resulting solitons propagate
in a plane that is tilted by an angle 28.65°. In the outer
two pairs ¢y and i1 both occupy the lowest mode of their
jointly induced waveguide. On the other hand, for the inner
soliton components, ¥y and ¢| occupy self-consistently the
first and second modes of their jointly induced potential.
The inner composite soliton emerging from the collision
develops complicated dynamics: its ¢ constituent initially
shows strong pulsation that gradually evolved into rotation
around its own center of mass (Fig. 4a). This dynamics
relaxes after some distance. The emerging ¢; component
of the middle fission product has the form of a dipole,
and exhibits stable spiraling for all propagation distances
in access (Figs. 4b and 5). The spiraling of the middle
1 component occurs even though the initially launched
solitons have trajectories in the same plane. The spiraling
occurs because some of the angular momentum carried
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FIG. 4. As in Fig. 2 but for collision angle § =~ 0.66° = 6..
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FIG. 5. A magnified version of the dynamics displayed in
Fig. 4b for a longer propagation distance.

by the spin [exp(img)] is transferred to orbital angular
momentum. This is a clear manifestation of spin-orbit
interaction between solitons.

This generic behavior appears for all collisions with § <
0. including & = 0 (when the solitons are launched in par-
allel). In other words, the spiraling behavior of the emerg-
ing inner ¢ dipole component appears also in the case
of fully parallel-launched solitons. In the most counter-
intuitive manner we find that solitons launched in parallel
with one another undergo fission, and one of the fission
products exhibits spiraling. All this fascinating dynamics
occurs just because the input solitons are carrying spin.
Note that the emerging solitons, for any collision angle
0 = 6., lie in a plane tilted with respect to the plane of
incidence (x,z). The tilt angle increases with decreasing
0, and at & = 0 reaches 37°. If the colliding solitons have
m = —1, then the plane of the emerging solitons is tilted
in an opposite direction, and all the rotation dynamics pre-
sented above, including the spiraling, occurs in reverse (an-
ticlockwise) direction. In summary of the last result, this
collision process displays spin-orbit interaction: the initial
angular momentum was carried solely by the topological
charge (spin) of each soliton, yet upon collision, part of the
angular momentum is transferred to orbital motion of the
emerging solitons. As we increase the collision angle 6 to
an “intermediate” value, e.g., # = 0.66° = 6., we observe
a qualitative change in the interaction picture (Fig. 6).
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FIG. 6. As in Fig. 2 but for a collision angle 8 = 0.12° < 4.
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In this case, the two interacting vector solitons undergo
a fission process which ends up in the creation of four
pairs of components, in which each pair is self-trapped
separately. The two outer pairs travel almost like free
particles, whereas the inner pairs show strong pulsation
and, after propagating at close proximity for some distance,
they eventually escape away one from another. Although
the initial paths (before collision) of the composite solitons
were solely in the (x, z) plane, the emerging four soliton
pairs do not lie in that plane anymore, but rather in a
plane that is tilted clockwise with respect to (x,z) by an
angle of 5.7° in the direction of the corotating topological
charges. This tilt of the plane of propagation is contrary to
the § > 6. case in which the emerging soliton paths are
always in the (x, z) plane.

Before closing, we revisit the particlelike quantities that
characterize the solitons: power E; of each component
and total angular momentum L. We compute E; and L
in a local window around each soliton in each case dis-
cussed above. Consider, for example, the collision of
Fig. 4. Before the collision takes place (up to z = 10),
E; and L decrease very slowly at a rate of 0.003% per
diffraction length (set up by our numerical accuracy). In
the second stage, during which the solitons strongly over-
lap and interact, E; and L decrease at a higher rate (this is
where radiation modes are excited) of 0.05% per diffrac-
tion length. After the collision has ended, only the in-
ner spiraling dipole and its ¢y companion continue to lose
power and angular momentum at almost the same rate as
before the collision. The long term prospect of evolution
of the inner solitons is that the dipole eventually coalesces
to a circular shape and both components occupy the low-
est mode of their jointly induced waveguide. It seems that
this three-stage behavior is characteristic of all such inter-
actions of composite solitons.

In conclusion, we presented fundamentally new phe-
nomena that occur upon collision between (2 + 1)D com-
posite solitons: delayed action collision and spin-orbit
interaction. The implications to other fields of science are
fascinating. For example, multicomponent Bose-Einstein
condensates [22] are described by Gross-Pitaevskii equa-
tions that are almost identical to the NLS-type equations
describing composite optical solitons.

This research is part of the MURI project on optical
spatial solitons, and was supported by ARO, AFOSR, NSF,
and the Israeli Science Foundation.

[1] G. Stegeman and M. Segev, Science 286, 1518 (1999).

[2] A.W. Snyder, D.J. Mitchell, and Y. S. Kivshar, Mod. Phys.
Lett. B 9, 1479 (1995).

[3] J.S. Aitchison et al., Opt. Lett. 16, 15 (1991); M. Shalaby
et al., Opt. Lett. 17, 778 (1992).

[4] M. Shih and M. Segev, Opt. Lett. 21, 1538 (1996).

[5] V. Tikhonenko, J. Christou, and B. Luther-Davies, Phys.
Rev. Lett. 76, 2698 (1996); H. Meng et al., Opt. Lett. 22,
448 (1997).

802

[6] W. Krolikowski and S. A. Holmstrom, Opt. Lett. 22, 369
(1997); W. Krolikowski et al., Opt. Lett. 23, 97 (1998).

[7] M. Shih, M. Segev, and G. Salamo, Phys. Rev. Lett. 78,
2551 (1997); A. Buryak, Y.S. Kivshar, M. Shih, and
M. Segev, Phys. Rev. Lett. 82, 81 (1999).

[8] D.N. Christodoulides and R.I. Joseph, Opt. Lett. 13, 53
(1988); M. V. Tratnik and J. E. Sipe, Phys. Rev. A 38, 2011
(1988); M. Haelterman, A.P. Sheppard, and A. W. Snyder,
Opt. Lett. 18, 1406 (1993).

[9] A.W. Snyder, S.J. Hewlett, and D.J. Mitchell, Phys. Rev.
Lett. 72, 1012 (1994).

[10] M. Mitchell, M. Segev, and D.N. Christodoulides, Phys.
Rev. Lett. 80, 4657 (1998).

[11] N. Akhmediev, W. Krolikowski, and A.W. Snyder, Phys.
Rev. Lett. 81, 4632 (1998); W. Krolikowski, N. Akhmediev,
and B. Luther-Davies, Phys. Rev. E 59, 4654 (1999).

[12] E.A. Ostrovskaya, Y.S. Kivshar, Z. Chen, and M. Segeyv,
Opt. Lett. 24, 327 (1999).

[13] Z.H. Musslimani, M. Segev, D.N. Christodoulides, and
M. Soljaci¢, Phys. Rev. Lett. 84, 1164 (2000); Opt. Lett.
25, 61 (2000).

[14] J.J. Garcia-Ripoll, V.M. Pérez-Garcia, E. A. Ostrovskaya,
and Y. S. Kivshar, Phys. Rev. Lett. 85, 82 (2000).

[15] T. Carmon, C. Anastassiou, S. Lan, D. Kip, Z.H.
Musslimani, M. Segev, and D.N. Christodoulides, Opt.
Lett. 25, 1113 (2000); W. Krolikowski, E. A. Ostrovskaya,
C. Weilnau, M. Geisser, G. McCarthy, Y.S. Kivshar,
C. Denz, and B. Luther-Davies, Phys. Rev. Lett. 85, 1424
(2000).

[16] We loosely define the form of angular momentum that
results solely from topological charge as “spin.” This is
because the angular momentum L carried by ¢, is given by
L = mE, where m, is an integer (the topological charge)
and E; is the soliton power. Since m; # 0, the soliton
acquires quantized internal rotation that is analogous to
spin of real particles.

[17] J.H. Malmberg, A.H. Carlsson, D. Anderson, M. Lisak,
E. A. Ostrovskaya, and Yu.S. Kivshar, Opt. Lett. 25, 643
(2000).

[18] For a further discussion on stability of single hump com-
posite solitons, see Ref. [13].

[19] The dimensional angle # can be obtained from tanf =
(2%%)1/ 2 tan®}, where Any is the maximum physical index
change. Typically, Ang/n is of the order of 2 X 107*
for 10 um FWHM solitons at A = 0.5 um. The (x,y)
coordinates are scaled by 5x(537-)"/>.

[20] The value of 6. is slightly different for scalar and vector
solitons, since the nonlinearity necessary to generate a
scalar soliton is lower than that for a vector soliton.

[21] This delayed-action interaction might be related to a
phenomenon called “excitation of soliton internal modes”
[see Y.S. Kivshar, D.E. Pelinovsky, T. Cretegny, and
M. Peyrard, Phys. Rev. Lett. 80, 5032 (1998)], which has
been predicted to occur for 1D kinks in the sine-Gordon
equation and for a coupled set of discrete NLS. The
internal modes of a soliton, however, do not lead to actual
delayed-action phenomena but rather to large persistent
oscillations of the soliton amplitudes.

[22] M.R. Matthews et al., Phys. Rev. Lett. 83, 2498 (1999);
J.J. Garcia-Ripoll and V.M. Pérez-Garcia, ibid. 84, 4264
(2000).




