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Composite Multihump Vector Solitons Carrying Topological Charge
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1Department of Mathematics, Technion—Israel Institute of Technology, 32 000 Haifa, Israel
2Physics Department, Technion—Israel Institute of Technology, 32 000 Haifa, Israel

3Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544
4Department of Electrical Engineering and Computer Science, Lehigh University, Bethlehem, Pennsylvania 18015

5Physics Department, Princeton University, Princeton, New Jersey 08544
(Received 2 August 1999)

We propose composite solitons carrying topological charge: multicomponent two dimensional
[�2 1 1�D] vector (Manakov-like) solitons for which at least one component carries topological charge.
These multimode solitons can have a single hump or exhibit a multihump structure. The “spin” carried
by these multimode composite solitons suggests 3D soliton interactions in which the particlelike
behavior includes spin, in addition to effective mass, linear, and angular momenta.

PACS numbers: 42.65.Tg, 05.45.Yv
Composite (vector) solitons are solitons that consist of
two (or more) components that mutually self-trap in a
nonlinear medium. Degenerate vector solitons were first
suggested by Manakov [1] in the context of the Kerr non-
linearity and recently demonstrated [2] with optical spatial
solitons in a AlGaAs waveguide, and later on with optical
temporal solitons in fibers [3] and in a fiber laser resonator
[4]. Intuitively, vector solitons form when the field com-
ponents jointly induce a waveguide structure (self-induced
potential well) via the nonlinearity, and trap themselves in
it by populating the guided (eigen) modes [5]. A key pre-
requisite for forming a vector soliton is that the interference
between the modes does not contribute to the nonlinear in-
dex change, Dn; otherwise the induced waveguide is not
stationary. In Manakov’s original suggestion, this was ac-
complished by having the field components polarized or-
thogonally to one another, which eliminates interference
altogether. This method of orthogonal polarizations limits
the number of vector components to two. Over the years,
two additional techniques for eliminating the contribution
of interference to the index change (and thus for generat-
ing vector solitons) were proposed, both of which require
that the nonlinearity has a noninstantaneous temporal re-
sponse t. In the first method, each field component is
at a different frequency, and the frequency difference be-
tween components is much larger than 1�t [6], whereas
in the second method the field components are incoher-
ent with one another [7]. In both cases the phase of the
interference terms varies (periodically in the former and
randomly in the latter) much faster than the nonlinearity
can respond, and therefore interference effects do not con-
tribute to Dn. Stationary propagation of a vector soliton is
achieved if, in addition, the field components correspond to
guided modes of the waveguide induced by the sum of their
intensities. The methods that rely on different frequencies
and on mutual incoherence allow the formation of vector
(Manakov-like) solitons with many field constituents. In
particular, the coherence-based method [7] allows all com-
ponents to experience the same refractive index and non-
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linearity: for example, one can use it to generate true
(ideal) Manakov solitons. Subsequently, it has been shown
that vector solitons can also form if the field components
belong to different modes of their jointly induced wave-
guide [8,9], provided that, once again, the interference be-
tween modes does not contribute to Dn. These solitons are
called “multimode solitons” and, in many cases, their to-
tal intensity profile possesses multiple humps [10]. Multi-
mode solitons were suggested for temporal vector solitons
[8] and for spatial solitons [9]. Last year, they were demon-
strated experimentally in photorefractive media by making
use of mutual incoherence among the modes to eliminate
the contribution of intermodal interference to Dn [10]. The
recent progress on vector solitons was paralleled by rapid
progress on soliton interactions (collisions), and has mo-
tivated new exciting ideas that are truly unique for vector
solitons. For example, shape transformations of colliding
solitons [11] and energy exchange between colliding vec-
tor solitons [12]. However, thus far all the theoretical and
experimental studies of vector solitons were about one di-
mensional ��1 1 1�D� solitons.

Here, we propose composite solitons carrying topologi-
cal charge: multicomponent two dimensional ��2 1 1�D�
vector solitons for which at least one component carries
topological charge. This analogy between solitons (self-
trapped wave packets) and particles acquires now a new
feature: the analog of spin, which is manifested in the
topological charge carried by each vector soliton. These
multimode solitons can have a single hump or exhibit a
multihump structure. With soliton collisions in mind, it is
obvious that the “spin” (topological charge), the multimode
nature, and the multihump structure offer many new excit-
ing possibilities for interactions between two-dimensional
vector solitons.

The purpose of this Letter is to propose such solitons and
study their parameter range of existence and the diversity
of their shapes. To make our theoretical study as analytic
as possible, we draw on the so-called thresholding nonlin-
earity, and employ the self-consistency principle presented
© 2000 The American Physical Society
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in [9]. We seek composite solitons for which at least one
mode carries topological charge. Even though a threshold-
ing nonlinearity has not been encountered yet in physical
systems, it serves well as a useful model to understand
the core ideas involved by enabling an analytic treatment
which draws on the modes of a step-index optical fiber.
The composite multimode solitons presented here provide
the necessary insight to realize these complex structures in
a saturable nonlinearity. Following this analytic study, we
follow up with a numerical study of solitons in saturable
nonlinearity.

We start from the normalized equations

i
≠U
≠z

1 =2
�U 1 F�I�U � 0 ,

i
≠V
≠z

1 =2
�V 1 F�I�V � 0 ,

(1)

where U, V are the envelopes of two interacting beams
and =

2
� � ≠2�≠x2 1 ≠2�≠y2. Equations (1) describe two

coupled beams in an optical medium with a normalized
refractive index change F�I� being zero for I , Ith and
constant F0 otherwise [13]; with the total intensity given by
I � jUj2 1 jV j2. We look for a composite vector soliton
solution to Eqs. (1) with U and V carrying topological
charges zero and m, respectively, in the form

U�r , u, z� � u�r�eimz , V �r , u, z� � y�r�eimueinz ,
(2)

where m,n are the propagation constants of the vector con-
stituents and vanishing boundary conditions at infinity are
imposed. We do not consider here composite solitons in
which both U and V carry nonzero charge, because those
are expected to be unstable even in a saturable nonlinearity
[14]. Substituting (2) into (1) yields
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where k
2
1 � F0 2 m . 0 and k

2
2 � F0 2 n . 0 with

m, n . 0. The solutions to system (3) are
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where Jm �Km� are the regular (modified) Bessel functions
of the first (second) kind of order m. Here, u2

0 is the peak
intensity of the first component, and h2J2

m is the maximum
intensity of the second; a is the normalized radius (the
so-called V number) of the waveguide jointly induced by
the soliton components. The propagation constants m and
n satisfy the eigenvalue equations
p
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(6)

Equations (6) correspond to the eigenvalue equations of
a weakly guiding step-index fiber. The polarization states
of these modes were discussed extensively [15]. We im-
pose the self-consistency condition on the vector compo-
nents; i.e., the total intensity at the margins of the induced
waveguide is equal to the threshold intensity

Ith � u2
0J2

0 �k1a� 1 h2J2
m�k2a� . (7)

To study the range of existence and shape diversity of
the composite multihumped solitons we concentrate on two
cases for which the first component always carries zero
charge, whereas the second one can have either charge 1 or
2. We denote such composite structures by �0, 1� and �0, 2�,
respectively. By employing the self-consistency condi-
tion (7) on the �0, 1� configuration and solving Eq. (6),
we find multiple branches of existence curves of compos-
ite vector solitons as shown in Fig. 1. These composite
structures have fundamentally different shapes on different
groups of branches [16]. In branches I and II, the total
intensity profile changes by increasing h, (h � 0 being
the scalar case), from single hump (SH) to double hump
(DH) (on branch I), and from triple hump (TH) to four
humps (FH) (on branch II). In Fig. 2 we provide several
examples of �0, 1� composite solitons of the branches I and

FIG. 1. (a) Propagation constants m (solid) and n (dashed) as
a function of the normalized radius a of the induced waveguide
(the V number) ; (b)– (d) existence regions for composite �0, 1�
solitons at different branches: (b) branch I, (c) mixed branch,
and (d) branch II.
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FIG. 2. u2 (dotted), y2 (dashed), and total intensity I (solid)
for the �0, 1� case. The parameters are (a) a � 6.5, h � 2.5
(branch I); (b) a � 6.5, h � 4 (branch I); (c) a � 8, h � 2.7
(branch II); and (d) a � 8, h � 3.7 (branch II).

II (corresponding to Figs. 1b and 1d). There u �y� carries
zero (unity) charge, and u2�r�, y2�r� and the total inten-
sity, I � u2�r� 1 y2�r� are plotted for different values of
h. The situation seems to be different on the mixed branch.
By increasing h we observe a transition from SH to DH,
then to FH (see Fig. 1c and specific examples in Figs. 3a,
3b, and 3c).

FIG. 3. As in Fig. 2 with parameters a � 7.5 (mixed branch)
and h � 2.2 (a), 2.95 (b), 3.6 (c), and 3.75 (d).
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Further increasing h, we find a narrow range of pa-
rameters, where the induced waveguide corresponds to a
double core fiber (see Fig. 3d) for which I , Ith in some
regions of r , a. This region corresponds to the dark area
in Fig. 1c and exists also in branches I and II, although the
region is narrower (Figs. 1b and 1d). Next, for composite
solitons with �0, 2� topological charges, we solve the eigen-
value problem (6) with m � 2. Contrary to the �0, 1� case
where composite solitons exist in the first branch, here they
exist starting from the lowest mixed and second branches
(see Fig. 4a). In the mixed branch, the composite soliton
total intensity profile changes from SH to TH (Figs. 4b,
5a, and 5b). On the other hand, in the second branch,
starting with small values of h we find total intensity with
TH shape along which I , Ith in some regions of r , a.
By crossing a line of critical values of h, the composite
soliton intensity profile still exhibits TH shape but with
I�r , a� . Ith for all r (Figs. 4c and 5d).

The method we employ to find composite solitons of the
structures �0, 1� and �0, 2� can be further used to find com-
posite two-component solitons of structure �0, m� where
m is any integer, and it represents the topological charge
of the V component. In the same manner one can find
even higher composite structures: those that have three (or
higher) field components. In fact, we have found them but
they will be described elsewhere.

Having found composite solitons, a reasonable question
to ask is the following: are they stable, and if not, are
they at least observable? The work presented here deals
with the thresholding nonlinearity, which does not lend it-
self to stability analysis. We have therefore studied the
existence of composite solitons with a real saturable non-
linearity, i.e., F�I� � 21��1 1 I�, which represents, e.g.,
nonlinearities in an isotropic homogeneously broadened
two-level system. Using a relaxation code, we find the
wave functions of composite two-component solitons, and
they have the same features as the solitons of the threshold-
ing nonlinearity, including the multihump structure, except
that now one can use the results to study stability and col-
lisions. We find (numerically) that, at least in the SH case,
these structures are stable against deviation of at least 2%
in initial amplitudes and at least 5% relative displacement
of the vector components. We have checked all of these
within a propagation distance in excess of 100 physical

FIG. 4. (a) Propagation constants m (solid) and n (dashed) as
a function of the normalized waveguide radius (the V number)
a. (b)– (c) Existence regions for composite �0, 2� solitons at the
mixed branch (b) and at branch II (c).
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FIG. 5. As in Fig. 2 but for the �0, 2� case. The parameters are
(a) a � 7, h � 2.8 (mixed branch); (b) a � 7, h � 4 (mixed
branch); (c) a � 7, h � 2 (branch II); and (d) a � 7, h � 3.5
(branch II).

diffraction lengths. Thus, we safely conclude that at least
the SH composite solitons in a true saturable nonlinearity
should be observable. This fact bears much importance be-
cause the higher-order modes, standing alone, are unstable
[17]. This resembles �1 1 1�D multimode multihump soli-
tons that were found numerically [10] and semianalytically
[18] to be stable, at least in the SH and the DH cases,
even though the higher-order modes, standing alone, are
unstable. One can find, of course, regions of instability,
especially for the multihump cases. This is not surpris-
ing, because regions of instability can be found also in the
�1 1 1�D multihump cases [18,19]. Based on our numeri-
cal simulations for a true saturable nonlinearity, it seems
very promising that single-hump �2 1 1�D composite soli-
tons should be stable (or at least observable) for large
propagation distances, and there seems to be a good chance
that DH �2 1 1�D composite solitons will be observable
as well. And indeed we are now conducting experiments
to observe them.

In conclusion, we have predicted the existence of com-
posite solitons that carry topological charges, with the hope
to study collisions that involve not only energy, linear, and
angular momenta, but also the equivalent of spin.
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