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We show that the well-known Čerenkov effect contains new phenomena arising from the quantum nature
of charged particles. The Čerenkov transition amplitudes allow coupling between the charged particle and
the emitted photon through their orbital angular momentum and spin, by scattering into preferred angles
and polarizations. Importantly, the spectral response reveals a discontinuity immediately below a frequency
cutoff that can occur in the optical region. Near this cutoff, the intensity of the conventional Čerenkov
radiation (ČR) is very small but still finite, while our quantum calculation predicts exactly zero intensity
above the cutoff. Below that cutoff, with proper shaping of electron beams (ebeams), we predict that the
traditional ČR angle splits into two distinctive cones of photonic shockwaves. One of the shockwaves can
move along a backward cone, otherwise considered impossible for conventional ČR in ordinary matter. Our
findings are observable for ebeams with realistic parameters, offering new applications including novel
quantum optics sources, and opening a new realm for Čerenkov detectors involving the spin and orbital
angular momentum of charged particles.
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I. INTRODUCTION

When a charged particle travels faster than the phase
velocity of light in a medium, it produces ČR. The ČR
ordinarily has a very broad spectrum, with its intensity
increasing as the photon energy, thus famously seen as a
“bluish glow.” In principle, the spectrum extends up to a
cutoff at the energy of the charged particle, though it is
more commonly cut much earlier by material dispersion.
Although it has been 80 years since its first observation [1],
surprisingly little attention was given to the importance of
the quantum nature of the charged particles producing the
radiation. Since its discovery, the Čerenkov effect has
become a fundamental part of many fields [2]: Devices
like the ring-imaging Čerenkov detector are used for
cosmic radiation measurements [3,4], while other implica-
tions also suggest novel acceleration methods [5], and even
an unusual imaging tool in biology [6,7]. Because of the
fundamental nature of ČR, it is found in many different
physical systems, such as in nonlinear optics [8–11], it is
used in the design of quantum cascade lasers [12], and it is
predicted to yield the generation of entangled photon pairs
[13,14]. Other kinds of ČR were found in photonic crystals
[15,16], tunable light sources [17], coherently driven

ultracold atomic gas [18], and recently even in active gain
medium [19]. Many more novel ČR effects are still being
found in new settings, such as surface polaritons [20] and
metamaterials [21], where recent findings suggest revolu-
tionizing Čerenkov detectors [22]. Even nanoparticles are
now being combined with the Čerenkov effect in the UV
radiation from charges emitted from radioactive isotopes,
allowing in-depth phototherapy [23]. However, despite the
immense progress and the many generalizations, research-
ers still regard the original ČR as the electromagnetic field
emitted by a point charge moving with a relativistic speed.
This is the same theory (henceforth referred to as the
conventional theory) developed in 1937 by Frank and
Tamm [24], who later shared the Nobel Prize in Physics
of 1958 with Čerenkov, for explaining his observation.
In fact, the studies that did address the Čerenkov effect in

a quantum mechanical formalism have found an excellent
correspondence to the conventional theory. Notably,
Ginzburg was the first to work on the quantum ČR [25],
during his Ph.D. in 1940, by considering an electron as a
single momentum state (a plane wave). He stated that the
quantum result “coincides with the classical expression
with accuracy up to infinitely small terms.” In 1948 [26],
ČR was rederived by considering a plane-wave electron
interacting with a photon through the Dirac Hamiltonian.
These works showed that the only correction to the Frank-
Tamm formula occurs for extremely energetic photons,
with energy close to the rest mass of the electron. Ginzburg
himself noted [25] that “The quantum condition for
radiation is different from the classical condition, but
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practically coincides with it for radiation in the visible and
ultra-violet regions, in which we are interested.”Other early
works considered Hamiltonians that also quantized the
medium, in order to study the implications of materials’
resonances, as corrections to the homogenized permittivity
in the conventionalČR (e.g., Ref. [27]).A1957 reviewpaper
described the ČR from particles with different spins [28].
Another 1957 paper [29] studied how two-photon emission
affects ČR, with later work providing observation of such
corrections arising from higher-order Feynman diagrams
[30] and effects of externalmagnetic fields [31].However, to
the best of our knowledge, all previous research always
reconfirmed the same classical limit found by Čerenkov,
Frank and Tamm [1,24]. In fact, no previous work has ever
predicted that the quantum properties of the particle may
cause significant deviation from the conventionalČR in low
photon energies, such as UV, optical, or below.
Here, we study the Čerenkov radiation emitted from

charged particles described by a quantum wave packet. We
show that an upper frequency cutoff can be brought down to
the optical region, above which theČR is zero. Immediately
below this cutoff, we find a discontinuity in the radiation
spectrum, presenting a clear deviation from the conventional
ČR theory that displays no such cutoffs or discontinuities
whatsoever. We develop the selection rules coupling spin
and orbital angular momentum (OAM) of the wave packet
representing the charged particle with the polarization and
OAM of the emitted ČR; this shows that these relations
cause preferential emission angles creating a complex final
state of quantum correlated electron-photon. We find exact
closed-form expressions for the photon emission rate,
showing that the resonance emission is sensitive to the
change of the incoming particle spin (flip or nonflip) and to
the polarization of the emitted photon. This implies that
certain spin flip transitions can dominate the process, even
when the emitted photon is in the optical range, created from
a modestly relativistic electron. Importantly, we show that
the effects are not specific for a particular choice of incident
wave packet – they persist for general relativistic cylindrical
wave packets. Some of the predictions (such as the rates of
ČR emission) are also relevant beyond quantum wave
packets, occurring for incoherent wave packets; i.e., they
only depend on the shape of the electron beam (ebeam). In
such cases, the ebeam is a classical superposition of charged
particles, whose structure affects the rate of the emitted ČR.
As such, our predictions should occur in many experimental
scenarios, without special engineering of the particle wave
packet. These new effects may lead to surprising applica-
tions such as Čerenkov detectors with new features (e.g.,
detectors that can detect particles carrying OAM), new
sources of monochromatic radiation, and novel mechanisms
for generation of quantum states that are coupled (corre-
lated) through their OAM and polarization.
In the current technology of ČR detectors in high-energy

physics, the focus is only on counting photons, while

operating at visible wavelengths with refractive indices
n ∼ 1. Consequently, using currentČR detectors to measure
the predictions presented here would lead to a negligible
difference between the conventional ČR prediction and the
quantum ČR prediction (∼10−6 relative difference in
photon count rate). Nevertheless, by using detectors that
measure other properties of the radiation beyond just
photon count, one can circumvent this issue. For example,
measurements of the emission spectrum or the equivalent
particle energy loss (e.g., electron energy loss spectroscopy
(EELS) in current transmission electron microscopes—
TEMs) can be set to operate at close proximity to the
quantum ČR cutoff, where the quantum effects are the
dominant phenomena. Another example for observing
quantum ČR signatures would be to engineer detection
systems that measure angular spread or orbital angular
momentum. These are readily measurable by means of
geometrical optics (the former) or by passing the radiation
through a mask (the latter), both providing information
about the wave-packet structure of the incoming charged
particle.
The effects of specific wave packets of the charged

particle on ČR are related to fundamental questions arising
from the quantum aspects of the emitted radiation, such as
its angular momentum and entanglement. This issue is of
great interest today because it recently became possible to
shape the quantum wave packet of a single electron
[32–35], imprinting it with OAM [32–34,36–38] or with
other intriguing shapes [35,39].

II. CONVENTIONAL THEORY OF THE
ČERENKOV EFFECT

We begin by recalling the conventional theory of the ČR
(Frank-Tamm [2,5,24,40]). A relativistic point charge is
moving with velocity v ¼ βc inside a homogeneous
medium with refractive index n, where c is the speed of
light. When the particle velocity is larger than the phase
velocity of light in the medium, i.e., β ¼ v=c > 1=n,
radiation is emitted in a cone with the spread angle
θph ¼ θconventional

ČR
. The conventional ČR can be summa-

rized by two equations:

cosðθconventional
ČR

Þ ¼ ðβnÞ−1; ð1aÞ

Γω ¼ αβsin2ðθconventional
ČR

Þ; ð1bÞ

where α is the fine-structure constant (≈1=137), and
Γω is the rate of photon emission per unit frequency.
This rate depends onω indirectly, with the only dependence
being in the material dispersion by the substitution of
n ¼ nðωÞ. All the results we present in this work only
depend on ω through this substitution, with no other
dispersion correction [e.g., n

0 ðωÞ terms cancel out]; hence,
we omit the ðωÞ notation and simply write n. Multiplying

IDO KAMINER et al. PHYS. REV. X 6, 011006 (2016)

011006-2



Eq. (1b) by the photon energy ℏω, we get the classical ČR
power spectrum ðq2=4πε0Þðv=c2Þωsin2ðθconventionalČR

Þ, with
the charge q and the vacuum permittivity ε0, showing a
linear increase with ω (explaining the famous bluish color
of ČR). Equations (1a) and (1b) are a direct outcome
of Maxwell’s equations, with the electric and magnetic
fields in the far-field limit and a charge-current source
being a moving delta function source (point particle).
However, in the physical world, point particles are never
an exact description—all particles have some statistical
distributions in their position and momentum or even
quantum uncertainty. For example, in our work, their
momentum is characterized by some spread angle and
some distribution of a finite width. These important
characteristics are typically ignored without any significant
impact on the results. But as we show below, they make an
important difference for ČR.
Many papers have dealt with ČR in a quantum mechani-

cal context (e.g., Refs. [25–29,41–43]). They always
considered the particle as a single momentum state,
analogous to a plane wave in space. Under such an
assumption, it was shown that one can rederive the original
equation for the rate, Eq. (1b). However, a plane-wave
description of a particle, being a single momentum state, is
exactly a delta function in momentum space. Such a
description is just as problematic as the classical descrip-
tion assuming a delta function in real space. Real charge
carriers are neither plane waves of a single momentum nor
singular point sources given by delta functions in space. It
is this additional feature—of the coherent superposition of
plane waves with different momentum directions, whose
interference makes up the quantum wave packet describing
the electron—that gives rise to the new effects involving
the OAM of the electron and photon. Thereby, engine-
ering the quantum wave packet can greatly enhance the
predicted effects and show additional effects that are
unique to specially shaped quantum particles. A direct
implication is that one can control properties of the ČR
by shaping the wave packet of the incoming electron
or ebeam. Henceforth, we call our particle an “electron,”
even though the results are exactly the same for any
charged spin-½ fermion (since we make no assumptions
with respect to the mass of the particle). Moreover, the
generalization for particles with any spin is straight-
forward, only changing the spinor-dependent terms in
the result [Eq. (7)], as was discussed in a review back in
1957 [28].

III. INTRODUCING THE FORMALISM:
THE QUANTUM APPROACH TO THE

ČERENKOV EFFECT

In QED, a wave packet is a sum (or integral) over creation
operators of single electrons, where each describes an
electron of a single momentum state. We describe these
single electron states in momentum space using cylindrical

coordinates, so every state is defined by jpcyl
i i ¼ jEi; si;

θi; lii, which contains its energy Ei, spin si, spread angle θi,
and OAM li, measured with respect to the cylinder axis (z).
See Fig. 1 for an illustration of the cylindrical states and the
notations. The longitudinal and transverse momenta are
piz ¼ βEi cosðθiÞ=c and pir ¼ βEi sinðθiÞ=c, respectively
[where Ei ¼ ð1 − β2Þ−1=2mc2]. When presenting this state
in real space, it has a Bessel function-like profile, as recently
shown in Ref. [44] as wave-packet solutions of the Dirac
equation. Notice that the cylindrical states always have their
OAMmixed with the spin angular momentum, as presented
in Ref. [44], and in Ref. [45], Sec. I.
To develop the ČR in QED, we consider the spin-

polarization term in the Dirac Hamiltonian ψ†γ0γμAμψ ,
describing the electron-photon interaction. Here, ψðψ†Þ is
the electron annihilation (creation) operator, and Aμ is the
electromagnetic field operator. We impose a final state of a
single electron and a single photon, both described in
cylindrical coordinates by jpcyl

f i⊗jkcyli¼jEf;sf;θf;lfi⊗
jℏω;sph;θph;lphi (Fig. 1), forming a complete basis for the
process. The electron parameters are as above, while the
photon is characterized by its frequency ω, polarization sph
(azimuthal or radial), emission angle θph, and OAM lph.
We define the longitudinal and transverse photon wave
numbers kz ¼ nω cosðθphÞ=c and kr ¼ nω sinðθphÞ=c,
respectively (the dispersion relation of the photon is

ω ¼ j~kjnc). In a medium where n > 1, this final state is
created by a first-order interaction from an initial state of a
single electron and is the only possible first-order inter-
action; hence, it is the dominant effect. This first-order
interaction does not occur in vacuum because conservation
of energy and momentum cannot be satisfied together.
The first step in describing the transition shown in Fig. 1

(pcyl
i → pcyl

f þ kcyl) is to write the bra-ket expression for the
Hamiltonian density:

FIG. 1. Illustration of the ČR process. The incoming (outgoing)
electron is drawn in blue (red), and the emitted photon in
green.
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Mdensity

pcyl
i →pcyl

f þkcyl
ðt; r;φ; zÞ

¼ hpcyl
f electron

; kcylphotonjψ†γ0γμψ|fflfflfflffl{zfflfflfflffl}
≜jμðt;r;φ;zÞ

qAμðt; r;φ; zÞjpcyl
i electron; 0i

¼
�

q
n

ffiffiffiffiffi
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2ℏωk
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spinor−polarization term

; ð2Þ

where the normalization of the current operator
jμ≜ψ†γ0γμψ uses the cylindrical radius Lr and length Lz,
which will be taken to infinity later (Ref. [45], Sec. II, or
Refs. [37,46,47]). In the normalization of the photon field
operator Aμ, ε0 is the vacuum permittivity, and ωk is the
dispersion-dependent normalization that later cancels out
(see Ref. [45]). The radial dependence is given in the form of
Bessel functions because of the cylindrical symmetry.
Notice that Eq. (2) is given for the special case of the
electron flipping its spin and the photon having an azimuthal
polarization. Each spin and choice of polarization results in a
different spinor-polarization term and in a change in the
orders of the Bessel functions (Ref. [45], Secs. I and II).

IV. QUANTUM DERIVATION:
THE MATRIX ELEMENT

Integrating Eq. (2) over space-time yields the matrix
elements, or the amplitudes of the transition pcyl

i →
pcyl
f þ kcyl. We get delta functions for the conservation

of energy, longitudinal momentum, and angular momen-
tum. The latter shows a unique mixture of spin and OAM:
Any combination of outgoing electrons and photons is
allowed in Eq. (2), as long as they satisfy a conservation of
OAM, lph þ lf � 1 ¼ li. The �1 is because this transition
involves a spin flip, and it will also appear in the case of a
spin flip with radial polarization, but with different ampli-
tudes. Accordingly, the transitions without spin flip have a
direct conservation of OAM, lph þ lf ¼ li. The full
description is in Ref. [45]. The amplitudes of the ČR
transitions are also affected by the OAM since the electron
and photon OAM set the orders of the Bessel functions in
Eq. (2). Plotting the amplitudes, Figs. 2(a)) and 2(b) exhibit
preferred “stripes” of high amplitude at certain angles of
emission θph; these stripes depend on the OAM [lph ¼ 4; 8
for Figs. 2(a) and 2(b)]. To observe these features, one has
to measure the OAM of the outgoing state (electron and
photon) and distinguish between different outgoing chan-
nels of emission for the ČR. This can be thought of as an

experimentally implementable postselection process in the
measurement. Since an infinite number of channels are
possible simultaneously, the full outgoing state in the ČR
process is a complex electron-photon state, correlated
through their OAM energy and spread angle. However,
if one only measures the radiation spectrum, these OAM
features are averaged out and their distinct marks com-
pletely disappear. The same applies for the double-cone
angular spread shown below, which would be averaged out
unless measuring the emission at distinct angles or as a
function of the angle.
Exactly quantifying the amplitudes requires solving a

triple-Bessel integral over the cylindrical radius r, which
was fortunately studied in the mathematical literature [48],
providing us with a closed-form solution:

Z∞
0

Jliðpirr=ℏÞJlfðpfrr=ℏÞJlphþ1¼li−lfðkrrÞrdr

¼ cosðliαf − lfαiÞ
2πSΔð1ℏpir;

1
ℏpfr; krÞ

; ð3Þ

where SΔ is the area of a triangle with sides of lengths
ð1=ℏÞpir ¼ ð1=ℏÞpi sinðθiÞ, ð1=ℏÞpfr ¼ ð1=ℏÞpf sinðθfÞ,
and kr ¼ nω sinðθphÞ=c, where αi, αf, and αph are the
angles opposite the three sides. If a triangle cannot be made,
then the integral is zero, which gives another selection rule
(though not a simple one) for the possible radiation
emission. When combined with the conservation of energy,
momentum, and angular momentum, this selection rule
defines a finite regime shown in Fig. 2. Most importantly,
the amplitude always diverges on the edge of the regime
[blue, red, and green dashed lines in Figs. 2(a) and 2(b)]
since this is where the triangle area SΔ goes to zero. The
integral of Eq. (3) recently appeared in studies of scalar
Compton backscattering, where these selection rules were
discussed in the spinless case [46,47], along with the
implications of finite integration range [47] and the nature
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of the S−1Δ divergence (appendixes of Ref. [46]). This shows
that our calculations can describe additional physical
phenomena such as the Compton effect from electrons
or other fermions (since we solve the full vector case—i.e.,
taking into account the spin).
Because of the divergence along the edges, the photon

emission primarily occurs along discrete angles θph ¼
jθi � θČRj marked by the blue, red, and green dashed lines.
This shows that two different mechanisms affect the
emitted radiation: the properties of the incoming electron
wave function (such as its angular spread θi) and the
quantum ČR corrections of θČR. The formula for θČR in the
quantum derivation [generalizing Eq. (1a)] is still indepen-
dent of θi; hence, it is most easily found for the limit case of
θi ¼ 0, where our incoming electron state jpcyl

i i reduces to
a plane wave (a single momentum state pi ¼ βEi=c), and
the radiation spread angle is just θph ¼ θČR (black dashed
line). Then, θČR is found analytically from elementary
conservation laws, as was first shown by Sokolov [41], and
later by Cox [49] and many others [26–28,42,43]:

θČR ¼ arccos

�
1

βn
þ ω

ωC

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
β

n2 − 1

2n

�
; ð4Þ

whereωC ¼ mc2=ℏ is the Compton frequency, given by the
rest energy of the electron divided by the reduced Planck
constant. To avoid confusion, notice that for incoming
jpcyl

i i, we use θČR only as a convenient notation and not as
the angle of photon emission θph (compare black vs blue,
red, and green dashed lines). This significant difference has
an important physical implication: The jpcyl

i i electron
primarily has two allowed angles of ČR emission for each
ω (θph ¼ jθi � θČRj), resulting in a double Čerenkov cone,
which we name the inner (θph ¼ jθi − θČRj) and outer
(θph ¼ θi þ θČR) cones. Interestingly, for each θi > 0 and
high enough electron velocity, the outer cone becomes a
backward cone (θph > 90°), which is supposed to be
impossible in ordinary materials [8,9], under the conven-
tionally used Čerenkov theory that only considers a point
particle or a plane-wave source. These two angles can be

FIG. 2. Matrix-element amplitudes for the ČR process, as a function of the photon wavelength λ and emission spread angle θph. The
color map shows the spatial part of the matrix element [Eq. (3)] that vanishes outside of the permitted zone, bounded by the blue, red,
and green dashed curves. Along these curves, the amplitude diverges; thus, we use a saturated color scale, with darker colors
corresponding to higher transition amplitudes. The divergences are highlighted by the cross-section plots below the maps, also showing
the nodal lines of zero amplitude (marked by black circles) between high amplitude “stripes.” These distinct stripes depend on the OAM
[lph ¼ 4, 8 in (a) and (b)], showing the coupling between the OAM and preferred emission angles inside the permitted zone (which is
independent of angular momentum). The black dashed curve denotes the angle of the conventional ČR [Eq. (1a)], changing with λ in
(a) because of the silica dispersion. The spectral cutoffs are marked by solid purple lines—beyond these wavelengths, no photons are
emitted. At the points tangential to this line, θČR ¼ 0; hence θph ¼ θi [equals 10.3° in (a) or 0.1° in (b)]. The 4-order-of-magnitude
difference between the two panels results from the 2-order-of-magnitude difference in θi, and the 2-order-of-magnitude difference in θph
(as shown by the horizontal axes), both of which contribute to the calculation of the area SΔ. All figures have β ¼ 0.685 and the
refractive index of silica including its material dispersion (a) or constant n ¼ 1.45986 (b).
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understood by noting that the state pcyl
i is a superposition of

plane waves with their momenta at an angle θi, each
emitting ČR at a relative angle θČR. More generally, the
cone splitting originates from the shape of the charge
distribution and is not necessarily unique to the quantum
ČR. Namely, it can also occur for classical charge dis-
tributions having a well-defined spread angle θi, as well as
in analogs of the Čerenkov effect in other areas of physics

(for example, see Refs. [13,14]; similar conditions could
be designed in other systems analogous to ČR
[8–19,21,22]). In either case, the cone splitting we show
here is uniquely tied to the shape of the incoming electron
wave packet (or the charge distribution in a classical
electron beam), and it is independent of material properties
that can cause other kinds of cone splittings [50]. One way
of constructing a classical charge distribution that would

FIG. 3. Deviations between classical and quantum ČR theories—conventional vs QED photon emission rates, demonstrated with
Bessel ebeams (solid curves) and Gaussian ebeams (dashed curves). Dashed black lines: Conventional ČR result, according to Frank-
Tamm [Eq. (1b)]. Green and orange lines: Quantum ČR for emission into azimuthal and radial polarizations, according to Eq. (S41) (red
curve is for their sum). Blue line: The Čerenkov angle [in (e) and (f)], showing a spectral cutoff where it becomes zero and spectral kinks
where it crosses θi, both marked by gray dotted lines. Unlike the conventional Čerenkov theory, the quantum theory predicts ČR that
involves electron spin flip [panels (a) and (b)] having discontinuities at both cutoffs. The dominant part of the ČR emission [no spin flip,
panels (c) and (d)] matches the conventional theory in (c) but deviates from it near ωcutoff in (d). The kinks (abrupt change in slope),
which are also emphasized in the insets, are a unique feature of the Bessel ebeam that is smoothened out in Gaussian ebeams—compare
solid and dashed curves in (c) and (d). For the current choice of parameters, panels (a) and (b) are practically agnostic to θi. Panels (a)
and (c) present ČR in silica for a Bessel ebeam with θi ¼ 10.3° or Gaussian with spread FWHM of 10.3°, both showing a “trivial”
spectral cutoff at λ ¼ 550 nm (occurs since n drops below 1=β). Panels (b) and (d) present ČR assuming a constant n ¼ 1.45986 for a
Bessel ebeam with θi ¼ 0.1° or Gaussian with spread FWHM of 0.1°, both showing a new spectral cutoff at λ ¼ 244 nm [occurs because
of the quantum correction to ČR from electron recoil, as shown by ωcutoff in Eq. (5)]. A different choice of n causes ωcutoff to shift, yet its
exact value only matters at the proximity of the cutoff: no need for a constant n over a wide spectrum. All ebeams have β ¼ 0.685
(∼190 keV); while the Bessel ebeams are mono-energetic, the Gaussians have an energy uncertainty of ΔE ¼ 0.5 eV. The predicted
effects are not special for the current choice of parameters.
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emit a double-cone ČR analogous to the one found for a
quantum wave packet is to replace each plane-wave
constituent by a point particle moving with the same
velocity (along the same direction) as the plane wave.
Another important consequence highlighted in Fig. 2(b) is

marked by a solid purple line that bounds the range of
emission by a spectral cutoff. This is in contradiction to
Eqs. (1a) and (1b), which have no bound and are even
frequency independent. Namely, the conventional ČR is
famously broad in spectrum, truncated only by the material
dispersion [when n ¼ nðωÞ drops towards 1 and gets below
1=β, as shown by the cutoff in Figs. 2(a), 3(a), and 3(c)]. In
contradistinction, the quantum derivation yields a fundamen-
tal frequency cutoff that exists irrespective of material
dispersion [as shownby the cutoff in Figs. 2(a), 3(a), and 3(c)]:

ωcutoff ¼ 2ωC
βn − 1

ðn2 − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p : ð5Þ

The fact that a frequency cutoff appears at some extreme
frequency (ωC is in the gamma rays) is expected—a trivial
reason being that a charged particle cannot create a photon
carrying more energy than it originally had. This was indeed
mentioned in some papers as an extreme limit for the ČR
(see, e.g., Ref. [41]). However, it was always thought to be
of no practical interest since “as shown by Tamm, the
spectrum must be cut off at a smaller frequency” ([41]). In
other words, ωcutoff was believed to be much larger than the
conventional cutoff that comes from the material dispersion
[ω for which nðωÞ drops below 1=β [24]]. Indeed, the
quantum correction to ČR at frequencies much lower than
ωcutoff is obviously insignificant. This logic led Landau and
Ginzburg to reason that the quantum corrections must be
immaterial in the optical region, as stated explicitly by
Ginzburg in 1996 [43], when referring to his Ph.D. paper
from 1940 [25]: “In the optical region, the only one where
applications of the VC effect are normally feasible, the ratio
hω=mc2 ∼ 10−5 [very small] even for electrons, i.e., quan-
tum corrections are immaterial. In 1940, L D Landau told
about my work [25] stated that it was of no interest (see
Ref. [51] p. 380). It follows from the above, that hewas fully
justified in drawing this conclusion, and his comment hit the
mark as was usual with his criticism.”
Evidently, Ginzburg and Landau believed that the

quantum correction to the ČR effect has no implication
in the optical spectral region. However, a particularly
interesting implication of Eq. (5), which as far as we know
was not noted earlier, does concern the optical region after
all: Near the Čerenkov threshold, the velocity satisfies
β ≈ 1=n, and thus ωcutoff shifts to very low frequencies.
Equation (5) shows that the cutoff is linear in β − 1=n, with
a very large slope (∼mc2=ℏ). Thus, taking a charged
particle with a velocity arbitrarily close to the Čerenkov
threshold would shift the frequency cutoff all the way to
zero. In practice, this is only possible up to the experimental

precision in setting the velocity of the charged particle, or
equivalently, its energy variance. Fortunately, variances in
the electron energies in modern electron guns are already
low enough. For example, transmission electron micro-
scopes (TEM, typical energy 100–200 keV) can work with
a variance in the electron energy lower than 1 eV, which
brings the cutoff to the optical frequencies (2 eV photon ¼
wavelength of 620 nm). Furthermore, variances in the value
of the refractive index n in high-quality glasses are even
smaller (∼10−6 with three terms in the Sellmeier equation).
Moreover, as we show below, even with larger variances,
the predicted effect can still be observed because ČR gets a
new frequency-dependent correction.

V. QUANTUM DERIVATION:
THE RATE OF EMISSION

So far, we have found the amplitude of the general
pcyl
i → pcyl

f þ kcyl transition. Below, we are interested in
the rate of photon emission, which is the simplest observ-
able quantity (being what a spectrometer would measure),
insensitive to the momentum of the outgoing electron. We
integrate over all three-dimensional (3D) momentum space
of the outgoing electron, finding the rate of photon
emission for any value of the outgoing photon momentum.
When also integrating over the (solid) angles of radiation,
we obtain the spectrum of ČR, or the rate of photon
emission per unit frequency Γω, as shown in Eq. (1b).
Importantly, these rates of ČR emission are independent of
the OAM and, in general, are insensitive to any phase
information of the incoming wave packet. Consequently,
all the results henceforth also describe incoherent wave
packets and classical electron distributions.
The summation over the outgoing electron momenta

eliminates the delta functions in the matrix elements and
removes the dependence on a finite cylindrical box in the
limit of Lr, Lz → ∞. The elaborate calculations needed to
solve the integrals are all done analytically (Ref. [45],
Secs. IV and V), for any functional dependence of the
refractive index n ¼ nðωÞ. Eventually, we find the rate of
photon emission Γω in four distinct cases that differ by the
azimuthal or radial polarization and the spin flip or nonflip.
The case of azimuthal emitted photons and spin flip is given
by (the other three cases have similar expressions presented
and explained in Ref. [45], Secs. V and VI)

Γω;azimuthal;↑↓

¼
�
ℏω
Ei

�
2
�
cos2ðθiÞ

ðβEi − nðEi þmc2Þ cosðθČRÞÞ2
ðEi þmc2ÞðEf þmc2Þ

þ 1

2
n2sin2ðθiÞsin2ðθČRÞ

Ei þmc2

Ef þmc2

	
: ð6Þ

Studying Eq. (6) near any frequency cutoff (either the
quantum cutoff ωcutoff or any cutoff created by material
dispersion) shows a spectral discontinuity-because on one
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side the emission vanishes when θČR ¼ 0, yet on the other
side the left term in Eq. (6) remains finite. This is in
contradiction to the inevitable zero rate found beyond the
cutoff, implying a discontinuity exactly at the cutoff, as is
shown in Figs. 3(a) and 3(c). Notice that conventional ČR
has no such discontinuity whatsoever [Eq. (1b)], as also
shown by the continuous curves in Figs. 3(c) and 3(d).
Observing this effect would be challenging because it is
much smaller than the conventional ČR rate, scaling like
ðℏω=EiÞ2. However, recent progress in spin-polarized
ebeams, and especially spin-polarized transmission elec-
tron microscopes [52], might create the opportunity to
observe this discontinuity in the energy loss of electrons by
filtering only the cases of electron spin flip.
The rate Γω shows another important feature not pre-

dicted by the conventional ČR theory for cases of no spin
flip when near the quantum cutoff ωcutoff [Fig. 3(d)]. This
deviation can even be observed without measuring the spin
at all and has a much larger amplitude (although still small
in absolute value) than the above spin-dependent case.
Summing over all possible outgoing spin and polarization
states, we obtain

Γω;total ¼ αβsin2ðθČRÞ þ
α

β

�
ℏω
Ei

�
2 n2 − 1

2
: ð7Þ

Equation (7), when taken together with Eq. (5), shows
the quantum generalization of Eqs. (1a) and (1b). These
conform to the conventional result when assuming
ℏω ≪ Ei:
At this point, it is valuable to compare the total rate of

quantum ČR vs conventional ČR and the conditions for
observing the quantum correction to the total rate of
emission [Eq. (7)]. The important difference we find
between them is a deviation for wavelengths in the vicinity
of the quantum cutoff and below it, as shown in Fig. 3(d):
comparing the dashed black curve to the green, orange, and
red solid curves shows a pronounced difference for wave-
lengths shorter than the cutoff, between a finite rate of
Eqs. (1a) and (1b) and the zero rate of Eqs. (5) and (7). This
difference can, in principle, span over a broad spectral
window [e.g., more than the entire range of Fig. 3(d)],
depending on the material dispersion. Of course, observing
this deviation requires a careful tuning of n, at least for a
small window of wavelengths around the cutoff. Recent
advancements in fabrication methods in nanophotonics,
and especially metamaterials and photonic crystals, are
exactly up to this task, allowing exact tuning of nðωÞ in
specific windows of parameters [15]. Additional external
control knobs provide further fine-tuning of the refractive
index (by, e.g., dc electric field, temperature). Still, the
absolute difference between conventional ČR rate and the
quantum rate is typically low for ordinary bulk materials
because the velocity is tuned close to the conventional ČR
threshold β ≈ 1=n, where conventional ČR vanishes. In

particular, the conventional rate near the quantum cutoff
can be approximated by αðℏωcutoff=EiÞ½ðn2 − 1Þ=n�, giving
5.6 × 10−6 in Fig. 3(d), which despite being small, gives a
measurable difference from the quantum ČR that has a zero
rate of emission above ωcutoff [and remains much smaller
than the conventional result for a wide range of frequencies
—see Fig. 3(d)]. Of course, it is still desirable to identify
scenarios where the absolute difference is also more
significant. In this context, we notice that the ČR rate
increases for higher frequencies (ČR is even observed in the
x-ray range at narrow spectral windows [53]), where the
difference between the quantum and the conventional ČR
effects is considerably larger. A different alternative would
be to use artificial materials with a very high index of
refraction [54], or to use materials like graphene, where
very high refractive indices already exist, reaching 200–300
for plasmons propagating in it [55]. Intriguingly, the
quantum ČR becomes of great importance for bound
charge carriers that cross the Čerenkov velocity threshold
inside a medium [56] because their effective mass can be
very low, thus making the ratio ℏω=Ei significantly larger,
even going above unity. This concept can be generalized to
other manifestations of the diagram in Fig. 1, with different
kinds of low-energy excitations emitting photons, plas-
mons, phonons, etc.

VI. QUANTUM CORRECTIONS OCCURRING
EVEN WITHOUT SPECIFIC SHAPING:

GAUSSIAN EBEAMS

All the effects above are found for a shaped incoming
electron having a well-defined spread θi, describing a
single cylindrical momentum state jpcyl

i i or a Bessel ebeam.
Will the effects remain for ebeams or wave packets that are
not specially shaped? The total rate in Eq. (7) is very
general as Γω;total is independent of the spread θi; it also
occurs irrespective of the electron being a coherent wave
packet or an incoherent beam—as expected from the
incoherent summation in the calculation (Ref. [45],
Sec. IV). This means that the total rate of emission is
the same for any shaped ebeam (e.g., Gaussian, Bessel, or
plane wave), which is probably why no previous experi-
ment has observed deviations from the conventional theory
(as the primary observable in such experiments was the
emission rate). Nevertheless, the total rate is the only result
that does not depend on θi—when measuring either the
emission direction, polarization, or any property of the
electron, we have shown strong θi dependence [e.g.,
Eqs. (2), (3), and (6) and Figs. 2 and 3]. In order to
generalize the calculations to arbitrary shaped ebeams, one
can directly integrate the current expressions over θi or Ei
with proper weight functions. As examples, we calculate
the ČR emission rates for Gaussian ebeams (dashed curves
in Fig. 3) that have variance in both their angular spread θi
[variance of 10.3° in Figs. 3(a) and 3(c), or 0.1° in Figs. 3(b)
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and 3(d)] and energy Ei (ΔEi ¼ 0.5 eV, a conservative
TEM value; modern microscopes used for EELS reach
variances smaller by more than an order of magnitude). The
important fact is that the effects due to the quantum nature
of the particle do survive: The discontinuities at the cutoffs
and the resulting deviations from the conventional theory
are also observable for these Gaussian ebeams. In particu-
lar, the discontinuity in Fig. 3(a) is practically unaffected
(dashed and solid curves coincide), while the discontinuity
in Fig. 3(b) is partially smoothened (spectral broadening),
yet there is still a noticeable peak. Figure 3(d) has a similar
broadening. Nonetheless, the deviation between the quan-
tum and the conventional results (dashed red vs dashed
black curves) remains for even larger energy variances.
This proves that the deviations arising from the quantum
calculation are not exclusive for the jpcyl

i i states—they
occur for any ebeam that is a real physical entity.
Importantly, the results shown in the dashed curves in
Fig. 3 are not specific for Gaussians: They appear for any
realistic wave packet that we tried. As such, they should
appear in nature without intentional shaping of the wave
packet, and they should be observable in the spectrum,
provided there is a small enough variance in the particle
energy.
Other sources of spectral broadening are the limited

penetration depth of the electron into the medium, optical
losses in the medium, and the finite volume of this medium
[57]. However, these effects are known from conventional
ČR; here, they usually present a smaller broadening
compared with the electron energy variance. For an exact
expression taking into account the finite system and finite
interaction size, as well as the possibility of material losses,
one can modify the calculation in Ref. [45] by replacing the
delta functions with a Lorentzian or a sinc distribution and
compute the integrals numerically [58]. Other potential
corrections like material defects, nonuniformities, or con-
taminations, as well as nonlinear optical properties of the
medium (in cases of very strong nonlinearities), would
require further exploration beyond this work.

VII. CONCLUSIONS AND DISCUSSION

To conclude, we discuss the general insight resulting
from this work: A realistic particle is never in just a single
momentum state; therefore, any scattering process should
involve similar quantum corrections that follow from the
particle-wave structure. The corrections can be significant,
as long as the length scale of the process is not exceedingly
larger than the size of the wave functions of the particles
involved. This happens in other electron-photon inter-
actions (e.g., Compton effect) but is not limited to these;
it can, in principle, happen in any scattering process in
particle physics when there is enough uncertainty in the
positions of the particles. Applications of our work include
future Čerenkov detectors that reveal more information
about a particle by also measuring the radiation spectrum,

spread, or polarization, instead of just counting photons.
Furthermore, the coupling between the OAM of the final
electron and the photon suggests means of creating an
entangled pair of a photon and a free electron, as well as a
new approach for the creation of entangled photons,
controlled by the shaping of the incoming electron.
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