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Abstract: We propose a two dimensional (2D) photonic crystal (PhC)
structure that supports super-collimation over a large frequency range (over
4 times that of a traditional square lattice of holes). We theoretically and
numerically investigate the collimation mechanism in our 2D structure, in
comparison to that of two other frequently used related PhC structures.
We also point out the potential importance of our proposed structure in
the design of super-collimation-based devices for both monochromatic and
polychromatic light.
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1. Introduction

The ability of photonic crystals (PhCs) to “mold the flow of light” [1] has resulted in a remark-
able variety of fascinating optical phenomena, such as omnidirectional reflection [2, 3, 4], low
loss bends [5], high-Q cavities [5], efficient spontaneous emission [6, 7], negative refraction
[8, 9], enhancement of nonlinear effects [10], ultrafast all-optical switching [11], and thermal
emission design [12]. Super-collimation, or diffractionless light propagation, represents an ad-
ditional important property made possible by the powerful versatility of PhCs. It was first de-
scribed by Kosaka et. al [13], and subsequently by several other groups [14, 15, 16, 17, 18, 19].
In all these demonstrations of super-collimation, the nondiffractive propagation is achieved by
having a flat constant-frequency contour (CFC) in the dispersion relation of the PhC. When
a beam, having the same frequency as the flat CFC, propagates in the PhC normal to the di-
rection of the flat CFC, the Fourier components of the beam propagate with group velocities
pointing in almost the same direction, and hence the beam does not spread much. However,
in all the earlier observations of super-collimation in PhCs, the flat feature is usually confined
to a not very broad frequency range around the frequency of the flat CFC, thus limiting the
bandwidth over which super-collimation can be observed, and making super-collimation sen-
sitive to variations in the frequency of the propagating monochromatic beam. For example,
super-collimation has been observed along the diagonal directions of a PhC consisting of a 2D
square lattice of circular holes in a dielectric [17], a schematic of which is shown in Fig. 1(a).
The super-collimation property in such a structure manifests itself only in a narrow frequency
interval, within which the CFC’s curvature flips sign. This is depicted in Fig. 1(b), where we
show a typical color contour plot of the first TE (electric field in the plane of periodicity) band
for the structure of Fig. 1(a). The change in the sign of the CFC’s curvature implies the exis-
tence of a CFC with zero curvature, thus leading to super-collimation at the frequency of that
particular CFC, and in a narrow frequency range around it. This stimulates the interest to search
for PhC structures that support super-collimation over a larger frequency range. The band di-
agram of these PhCs would consist of extended frequency ranges over which the CFCs are
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flat enough to substantially suppress diffraction. A hint as to how to achieve this feature can
be inferred from the flatness of tight-binding bands for electrons in solids [20]. The fact that
tight-binding bands arise from the weak overlap between atomic orbitals inspires us to consider
the simple, well-known waveguide array structure depicted in Fig 1(c). We show a typical pro-
jected band diagram for the first TM (electric field perpendicular to the plane) band for such a
structure in Fig. 1(d), together with a color contour plot of the first TM band in Fig. 1(e). Al-
though this structure is not commonly used for super-collimation purposes, its CFCs (in a given
band) get flatter as the frequency increases. However, the curvature of these contours doesn’t
change sign, and hence it doesn’t go through zero, which would be a conventional criterion for
super-collimation. Therefore, to obtain a PhC that supports super-collimation over an extended
frequency range, we consider a hybrid PhC structure that combines features from both of the
above-mentioned PhC types. Namely, we propose inserting into the waveguide array structure a
square lattice of circular rods having the same refractive index as the waveguides, such that the
rods are placed halfway between neighboring waveguides, with a lattice constant equal to the
nearest-neighbor waveguide spacing. A schematic of this 2D hybrid structure is shown in Fig.
2(a). In this manuscript, we investigate the phenomenon of super-collimation in this 2D hybrid
PhC structure [21, 22], and show how it simultaneously inherits useful properties from both of
the structures in Fig. 1(a) and Fig. 1(c): the sign flip of the CFCs’ concavity (due to the discrete
translational symmetry) from the 2D holes-in-dielectric structure, and the extended frequency
range (over 4 times the frequency range of a traditional square lattice of holes) of the flat CFCs
(due to the weakly coupled waveguides), from the waveguide array structure. More specifically,
in our proposed 2D PhC structure, the photonic modes of higher-order-bands have their energy
mostly concentrated in the waveguides, and neighboring waveguides couple weakly, thus giv-
ing rise to tight-binding-like flat bands. So, one might be tempted to think that the rods don’t
play any role, and consequently that the performance of our proposed 2D structure is not very
promising, given the known fact that, in linear waveguide arrays, a beam initially localized in
one of the waveguides is observed to hop quickly to the other waveguides in what is known
as discrete diffraction [23]. However, as we will see later in this letter, the rods play an im-
portant role; in fact, by breaking the continuous translational symmetry along the waveguides’
direction, the rods place our proposed structure at an advantage over the waveguide array, since
they enable the existence of a CFC with zero concavity. On a separate note, considerations con-
cerning the coupling of light into and out of our proposed structure are very similar to those
in PhC structures previously used for supercollimation, such as the holes-in-dielectric structure
studied in [17].

2. Super-collimation mechanism in our proposed structure

We begin the study of super-collimation in our proposed structure by considering the fourth
transverse magnetic (TM) band. Our choice to operate in the fourth TM band is based on the
fact that it is the lowest band having flat contours over its entire frequency range. Because of
time-reversal symmetry, the dispersion relation is an even function of ky, the y-component of the
Bloch wavevector. For small values of ky, the angular frequency is described by an expansion
in terms of even powers of ky, namely

ωTM
4 (kx,ky) = ωTM

4 (kx,0)+αTM
4 (kx) · (ky)2 +β TM

4 (kx) · (ky)4 + ... (1)

where ωTM
4 denotes the angular frequency of the fourth TM band. Since we aim at the op-

timum super-collimation performance of our proposed structure, and since small αTM
4 (kx) is

necessary to achieve super-collimation, we search for the particular rods’ radius r and waveg-
uide thickness t that minimize the absolute value of αTM

4 (kx), while we set the refractive index
of both rods and waveguides to n = 3.5. We carried out such optimization calculations by us-
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Fig. 1. Two “often-used” low-diffraction structures. (a) Profile of the refractive index of
a 2D holes-in-dielectric structure, with the dielectric having n = 3.5, and the holes having
radius r = 0.421a′, where a′ is the nearest-neighbor center-to-center separation between
holes (the square lattice spacing). Note that the holes form a square lattice. (b) Color con-
tour plot of the frequency of the first TE band for the structure shown in Fig. 1(a). (c)
Profile of the refractive index for a waveguide array structure, with the waveguide having
refractive index n = 3.5. (d) Projected band diagram of the first TM band for the waveguide
array with t = 0.2a. (e) Color contour plot of the frequency of the first TM band for the
waveguide array with t = 0.2a.
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ing the MIT Photonic Bands (MPB [24, 25]) software. The values of r and t that give rise to
flat CFCs over the largest frequency range in the fourth TM band of the proposed structure,
are those that minimize the maximum (over kx) of |αTM

4 (kx)|. The result of this optimization
calculation for minr,t maxkx |αTM

4 | corresponds to r = 0.16a and t = 0.2a, where a is the lattice
constant. We calculated the TM bands of this optimum structure, by using MPB, with a spatial
resolution of 128 pixels/a , and we show in Fig. 2(b) the projected band diagram of the lowest
four TM bands. We also present in Fig. 2(c) a color contour plot of the fourth TM band, as a
function of kx and ky. Because of periodicity, k-points in the first brillouin zone are confined to
the ranges −π/a ≤ kx ≤ π/a and −π/a ≤ ky ≤ π/a. We show the bands only in the interval
where kx is positive, because we are interested in propagation in the +x-direction for modes of
the fourth band. We observe from Fig. 2(b)-2(c) that the flat CFCs of the fourth TM band ex-
tend almost over the entire frequency range of the fourth band, thus enabling super-collimation
over a significant frequency range. Moreover, except near the edges of the fourth band, the
CFCs are flat for all the values of ky and not just in the vicinity of ky = 0. This last feature
indicates that our proposed structure can support super-collimation of spatially narrow beams.
Note that the flattest CFC for the structure with r = 0.16a and t = 0.2a, has angular frequency
ω = 0.495(2πc/a).

Having found the optimum parameters for our proposed structure, we study the propagation
of a beam with Gaussian envelope and angular frequency 0.495(2πc/a), along the x-direction,
in one of the waveguides of our optimum structure. We represent the z-component of the electric
field of such a beam as

Ez(x,y; t) = e−iωt
∫

ky values on
CFC of freq. ω

dky e−(ky)2/2(σky )2
En=4

(kx,ky)(x,y) ≡ e−iωtA(x,y) (2)

where En=4
(kx,ky)

(x,y) is the E-field of the TM Bloch modes on the CFC with ω = 0.495(2πc/a).
We define the diffraction length Ldiff as the distance in the x-direction that the beam prop-
agates before the full-width at half-maximum (FWHM) of |A(x,y)|2 spreads by a factor of√

2 from its initial value at x = 0. For σky = 0.12(2π/a), the beam is localized mostly in 3
waveguides only, as shown in Fig. 3(a), and the diffraction length is Ldiff = 500a. To obtain an
estimate of the operational frequency width over which the CFCs are flat enough to support
super-collimation, we define the frequency bandwidth Bkx at a particular kx by the expression
Bkx = maxky [(ω4(kx,ky)]−minky [(ω4(kx,ky)]. A small value of Bkx for a certain kx means that
the ω4’s for all values of ky (for the particular kx in question) are of a similar value; Bkx is hence
a measure of the “band flatness” at a given kx value. The kx-value that minimizes |αTM

4 (kx)|
is 0.25(2π/a), and the frequency bandwidth there is Bkx = 0.0008(2πc/a); the CFC associ-
ated with the minimum of |αTM

4 | has ω = 0.495(2πc/a). Next, we ask over which frequency
range does Bkx not change appreciably, to obtain a measure of the frequency range over which
our structure supports super-collimation. Bkx remains below 0.0008

√
2(2πc/a) in a frequency

range from 0.493(2πc/a) to 0.558(2πc/a). Hence, the relative frequency range over which our
optimum structure supports super-collimation is (0.558−0.493)/0.495 = 0.13, or 13%.

3. Super-collimation mechanism in other structures

3.1. Holes-in-dielectric structure

Having explored super-collimation in our structure proposed in Fig. 2(a), we now study super-
collimation in the two other previously-mentioned structures. We first start with the 2D holes-
in-dielectric structure shown in Fig. 1(a) and take the refractive index of the dielectric to be
n = 3.5. Super-collimation was demonstrated in this structure [17], for a beam propagating
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Fig. 2. Proposed 2D PhC structure (a) Schematic of the refractive index: the rods, of radius
r, and waveguides, of thickness t, (shown in green) both have n = 3.5, and are surrounded
by air (n = 1). The rods form a square lattice, with lattice constant a, and the waveguides
are halfway (on the y-axis) between the rods. (b) Projected band diagram of lowest four
TM bands for r = 0.16a and t = 0.2a. (c) Color contour plot of the frequency of the fourth
TM band.
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along the x′-direction (diagonal), at the frequency of the flattest CFC of the first TE band.
Because of the structure’s mirror symmetry with respect to the plane y′ = 0, we expand the
angular frequency close to the super-collimation frequency in even powers of ky′

ωTE
1 (kx′ ,ky′) = ωTE

1 (kx′ ,0)+αTE
1 (kx′) · (ky′)

2 +β TE
1 (kx′) · (ky′)

4 + ... (3)

Since the frequency range in which we have super-collimation is known to be small in this
structure, we consider maximizing the propagation length at the super-collimation frequency,
instead of maximizing the frequency bandwidth around it (as we did for the structure proposed
in Fig. 2). In order for this structure to support super-collimation over the longest propaga-
tion length, the holes’ radius r′ needs to be chosen such that ωTE

1 (kx′ ,ky′) depends very little
on ky′ . It is known from Ref. 17 that there always exists a value of kx′ at which αTE

1 is zero
since it changes sign from negative to positive. We denote this value by ko

x′ , so that we have
α(ko

x′) = 0. Therefore, to minimize the dependence of ωTE
1 (kx′ ,ky′) on ky′ , we searched for

the radius r′ that minimizes |β (ko
x′)|, and found that r′ = 0.421a′ where a′ is the lattice con-

stant of the holes’ structure, along the x and y directions. A color contour plot of the first
TE band for this optimum hole radius was obtained by using MPB, and is shown in Fig.
1(b). Because of periodicity, k-points in the first brillouin zone are confined to the ranges
−π/a′ ≤ kx ≤ π/a′ and −π/a′ ≤ ky ≤ π/a′. We show the bands only in the interval where kx

and ky are positive, because we are interested in propagation in the +x′-direction for modes
of the first TE band. The minimum frequency bandwidth occurs at the value of kx′ corre-
sponding to ω(kx′ ,ky′ = 0) = 0.1966(2πc/a′), and has a value of Bmin = 0.0034(2πc/a′). It
spreads by a factor of

√
2 at kx′ -values with maximum frequencies equal to 0.1945(2πc/a′)

and 0.2004(2πc/a′). Hence, the relative frequency range over which the optimum 2D holes
structure supports super-collimation is 0.03 (or 3%), which is smaller than that of our pro-
posed structure by a factor of 4.3. The minimum value (over ko

x′ ) of |β TE
1 (ko

x′)| for the opti-
mum 2D holes structure having r′ = 0.421a′, occurs at ko

x′ = 0.457(2π/a′), where we have
ωTE

1 (ko
x′ ,ky′ = 0) = 0.2124(2πc/a′). Thus, we calculate the diffraction length of a beam with

gaussian envelope and angular frequency 0.2124(2πc/a′) propagating along the x′ direction in
the optimum 2D holes-in-dielectric structure. If we set the physical frequency of this beam to
be the same as that for the optimum structure in Fig. 2, then the lattice constant a′ in the holes’
structure is related to that in Fig. 2 by a′ = (0.2124/0.495)a. In this case, sending a beam of
the same physical width as before corresponds to using σky′ = 0.12×(0.2124/0.495)(2π/a′),
and yields a diffraction length of 707a′ = 303.4a. So the collimation length in this optimum 2D
holes-in-dielectric structure is shorter than that in our proposed structure by a factor of 1.65,
when we use beams of the same physical frequency and same physical width. We show in Fig.
3(b) how such a beam spreads after it propagates, along the diagonal of the optimum 2D holes
structure, a physical distance equal to the collimation length (500a) of our proposed structure.

3.2. Waveguide arrays

Now we explore how the super-collimation mechanism in our proposed structure compares to
that in the waveguide array structure, shown in Fig. 1(c). Again, we set the refractive index of
the waveguides to n = 3.5, and we consider the first TM band. The reason for which we deal
with the first TM band in this case, is that the physical k-point of interest (with angular fre-
quency ∼ 0.4952πc/a) now lies in the first TM band. We first study the waveguide array struc-
ture having waveguide thickness t = 0.2a. This structure is the same as our proposed structure,
but with the rods removed. In Fig. 1(d), we show a projected band diagram of the first TM band,
and in Fig. 1(e) we show a color contour plot of the first TM band. We note from these last two
figures that the CFCs get flatter as the frequency increases (i.e. as kx increases). This is a con-
sequence of the fact that, as the frequency is increased, the modes tend to be more concentrated
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Fig. 3. Intensity profile of the propagating beam (of angular frequency 0.495(2πc/a), and
physical width corresponding to σky

= 0.12(2π/a)) as a function of y(a), at x = 0 (in blue)
and at x = 500a (in red), in (a) Our proposed PhC structure shown in Fig. 2, (b) The 2D
holes structure shown in Fig. 1(a), but with lattice constant a′ = (0.2124/0.495)a, where a
is the lattice constant in our proposed structure and in the waveguide array structures, (c)
The waveguide array structure with t = 0.2a. Note that the spikes in (a) and (c) correspond
to the positions of the “waveguide” strips.
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into the waveguides, and hence the overlaps between neighboring waveguides modes become
weaker and result in narrower frequency bandwidths Bkx . Note that because of the continuous
translational symmetry along x, the value of kx ranges from 0 to ∞, whereas the values of ky

range only between −0.5(2π/a) and 0.5(2π/a) due to the discrete translational symmetry in
the y-direction. In Figs 1(d) and 1(e), we show only k−points with values of kx ranging between
0 and 2(2π/a), because modes with the frequency of interest ( f = 0.495(c/a)) fall inside this
interval; (they have kx ∼ 1.25(2π/a)). Sending a beam of the same physical angular frequency
0.495(2πc/a) and same physical width σky = 0.12(2π/a) as in the structure of Fig. 2, we get
a collimation length of 160a, which is shorter than that of our proposed structure by a factor
of 3.125. In Fig. 3(c), we show how significantly this beam spreads after it has propagated a
distance of 500a, i.e. after it has propagated by a distance equal to the collimation length in Fig.
2.

One might argue that the sole role that the rods were playing in our structure was to merely in-
crease the effective index of refraction, and therefore to push the flat CFCs to lower frequencies.
To show that this is not the case, we considered a waveguide array structure having the same
effective index as our proposed structure in Fig. 2, namely we chose the waveguide thickness
to be t ′ = t + πr2= [0.2 + π(0.16)2]a= 0.28a. We then launched a beam of the same physical
frequency 0.495(2πc/a) and the same physical width as before, and we obtained a collimation
length of 275a, which is shorter than the collimation length of Fig. 2, by a factor of 1.8. So
the rods play a more important role in our proposed structure than just increasing the effective
index. In fact, the rods break the continuous translational symmetry along the waveguide direc-
tion, and as in the holes-in-dielectric structure [17], the discrete translational symmetry along
x results in a change of sign of the concavity somewhere in the interior of the flat band. Due
to this change in the sign of the concavity, there exists a value of kx where the concavity is
zero and the associated CFC is superflat. However, in the waveguide array case, the concavity
never changes sign because of the continuous translational symmetry along x. And therefore,
the leading deviation of ω(kx,ky) from ω(kx,0), in the waveguide array case is expected to be
larger than that in our proposed structure. This accounts for the longer collimation length in our
proposed structure, for beams of the same physical frequency and same physical width.

4. Conclusion

In conclusion, we proposed a PhC structure that exhibits long-scale super-collimation over
a large frequency range. We compared the super-collimation phenomenon exhibited by our
proposed structure to that in two other often used related structures. We have shown that our
structure supports super-collimation over longer propagation lengths than waveguide arrays
and 2D holes-in-dielectric PhCs, due to the different translational symmetries involved in each
structure type. Moreover, the operational frequency range over which our structure exhibits
super-collimation is 4 times larger than in the 2D holes case. These two features make our
proposed structure of importance in the design of super-collimation-based devices. In partic-
ular, the large operational frequency range of our proposed structure suggests the possibility
of achieving super-collimation of polychromatic beams. In addition to super-collimation, our
proposed structure exhibits negative refraction [8], since the group velocities of modes in the
second and third TM bands, point opposite to the phase velocities. Moreover, beam steering
[26] is possible in our structure as well, due to the sharp corners in the CFCs of the second and
third bands. Finally, we note that our structure could be used for directional thermal emission
[12], because the group velocities of most of the modes in its fourth TM band point in the same
direction. We leave detailed investigations of these possibilities as future work.
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