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Abstract: We present numerical experiments showing how coupled-mode
theory can be systematically applied to join very dissimilar photonic crystal
waveguides with 100% transmission. Our approach relies on appropriately
tuning the coupling of the evanescent tail of a cavity mode to each waveg-
uide. The transition region between the waveguides may be as short as a
few lattice spacings. Moreover, this technique only requires varying a small
number of parameters (two for each waveguide in our example) and the
tuning to each waveguide may be done separately, greatly simplifying the
computations involved.
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1. Introduction

In this paper, we provide a general prescription for, and specific examples of, how abrupt in-
terfaces between a photonic crystal cavity and two waveguides may be tailored so that 100%
transmission between the waveguides is achieved. Photonic crystals enable an extraordinary de-
gree of control over the propagation of light and a rich variety of phenomena [1–3]. Connecting
different photonic crystal devices in an efficient manner is therefore critical to enabling complex
integrated photonic devices. Slow-light waveguides, for example, have greatly enhanced sensi-
tivity to nonlinear effects, thus facilitating the design of compact electro-optical devices [4–7],
but coupling to them can be particularly challenging [8]. For a variety of applications, our
proposal may present an alternative to approaches such as butt-coupling [9, 10], mode-field
matching [11–13], anti-reflection coating-like injectors [14,15], optical stub tuners [16,17], and
tapered transitions between waveguides [18–26]. The approach explored in this paper exploits
the property known as “Q-matching” in the abstract framework of coupled-mode theory [27],
which provides an accurate phenomenological approximation to the full physics, provided that
the coupling between any two distinct structures is sufficiently weak. A Q-matching structure
typically only needs to be a few lattice spacings long: little more than a single period of the
slow-light coupled-cavity waveguide (shorter than typical adiabatic tapers). Although resonant
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Fig. 1. Projected band diagram along the Γ−X direction for TM modes in a square lattice of
rods of radius a/4 (shaded region) and band structures for a singly-wide line defect, triply-
wide line defect, and coupled-cavity waveguide (identified by their dielectric profile). The
defect radii are, respectively, a/12, 0.325a, and a/12. The constant Λ (x–axis of the figure)
is 4 for the CCW and 1 for the other structures, due to the longer primitive cell (4a) of the
former, along the direction of the propagation.
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Fig. 2. Graphical representation of a coupled-mode theory treatment of two waveguides
(red and blue strips) coupled by means of a cavity tuned to resonate at the angular frequency
ω0 and couple to each waveguide with quality factors Q1 and Q2. The direct coupling
between the two waveguides is neglected. 100% transmission occurs at the frequency ω0
when Q1 = Q2.

phenomena are necessarily narrow bandwidth, in our case the resonance bandwidth is compa-
rable to that of the slow-light waveguide itself, so the Q-matching strategy does not worsen the
intrinsic sensitivity of the problem to perturbations. Furthermore, the reliance of our design on
only a small number of tuned parameters makes post-fabrication tuning a possibility to com-
pensate for imperfections. We begin by introducing three different photonic crystal waveguides
within a square lattice of silicon rods in silica. Next, we show how coupled-mode theory may
be applied to split the overall transmission problem into substantially more tractable parts by al-
lowing each waveguide to be separately matched to a single-defect cavity. Finally, once all three
waveguide-cavity structures are properly tuned, we check the validity of the tuning procedure
and demonstrate 100% transmission by fully simulating the transmission for all combinations
of two distinct waveguides. Both the tuning and verification are done via full simulations of
Maxwell’s equations with no approximation except for the discretization [28].

2. Exemplar waveguides

For concreteness, we consider three different kinds of waveguides formed by introducing linear
defects into a two-dimensional square lattice (with lattice constant a) of rods of radius r =
a/4 and permittivity εhigh = 12.25 embedded in a dielectric material with εlow = 2.25. (These
values of the dielectric constants approximately correspond to those for silicon and fused silica
in the near infrared, respectively.) The first waveguide is a standard linear defect waveguide
formed by substituting one column of rods in the original square lattice by a column of rods
with smaller radius a/12. The second waveguide is a triply-wide linear defect wherein three
adjacent columns of the square lattice are replaced with rods of larger radius 0.325a, and the
last waveguide is a coupled-cavity waveguide [29, 30] (CCW) in which every fourth rod along
a column is replaced with a rod of radius a/12. The permittivity of the defect rods is the same
as that of the original rods (εhigh) in all three waveguides. Figure 1 shows the dielectric function
profiles for the three waveguides analyzed as well as the relevant TM bands (computed by

#147123 - $15.00 USD Received 9 May 2011; revised 15 Jun 2011; accepted 16 Jun 2011; published 30 Jun 2011
(C) 2011 OSA 4 July 2011 / Vol. 19, No. 14 / OPTICS EXPRESS  13717



0.32 0.34 0.36 0.38 0.4
400

450

500

550

600

650

700

750

800

Defect Radius (a)

Q

0.18 0.2 0.22 0.24 0.26 0.28
400

450

500

550

600

650

700

750

800

Defect Radius (a)

Q

0.32 0.34 0.36 0.38 0.4 0.42
400

450

500

550

600

650

700

750

800

Defect Radius (a)

Q

(a) (b) (c)

0.3843 0.3723 0.2350

Fig. 3. Results of a finite-difference time-domain (FDTD) simulation of a cavity resonant
at ω0 = 0.265× (2πc/a) decaying into a singly-wide line defect waveguide (a), a triply-
wide line defect waveguide (b), and a slow-light coupled-cavity waveguide (c). The top
panels show the z component (parallel to the rods) of the electric field. The insets show the
dielectric profile of the area indicated. The lower panels show the dependence of the cavity
Q on the defect radius of the rod closest to the waveguide (insets, in red). The latter are
tuned so that the Q of the cavity is 550 in each case. The values of the defect radii indicated
in blue are used in the full simulations of the coupled waveguides.

preconditioned conjugate-gradient minimization of the block Rayleigh quotient in a planewave
basis [31]) and the projected band diagram for TM modes of the square lattice of rods. Since
the CCW has its inflection point (and thus zero group velocity dispersion) at the center-gap
frequency ω0 = 0.265×(2πc/a), we take ω0 as the target frequency for which the transmission
is to be maximized.

3. Design and tuning of the coupling cavity

We now turn to the design of a compact resonant cavity to mediate the transmission between any
two waveguides. If we impose the requirement that the resonant structure be weakly coupled to
each waveguide and that the direct coupling between waveguides be in turn negligible compared
to their interaction with the cavity, then the key phenomenon of interest is well described by
the temporal coupled-mode theory equations [3, 27]

dA
dt

= −iω0

(
1− i∑

m

1
2Qm

)
A

+ ∑
m

√
ω0

Qm
S(+)

m , (1)

S(−)
m = −S(+)

m +

√
ω0

Qm
A, (2)

where A(t) denotes the complex amplitude of the cavity’s excitation and is normalized such
that the energy associated with the cavity is |A|2, ω0 is the resonant frequency of the cavity, the
index m denotes the different waveguides, and Qm is the quality factor of the cavity’s decay into

waveguide m. S(+)
m and S(−)

m represent, respectively, the complex amplitudes of the waveguide
modes going towards and away from the cavity, and are normalized such that the power flowing

in each mode is given by
∣∣∣S(±)

m

∣∣∣2. A schematic of the coupled-mode theory of the particular
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system considered in this paper (one cavity coupled to two waveguides) is shown in Fig. 2. The

transmission T (ω) =
∣∣∣S(−)

2 /S(+)
1

∣∣∣2 for this setup is readily found by solving Eqs. (1) and (2)

when S(+)
1 is set to a constant and S(+)

2 = 0:

T (ω) =
ω2

0/(Q1Q2)

(ω −ω0)2 +
(

1
2Q1

+ 1
2Q2

)2
ω2

0

, (3)

which equals unity (100% transmission) at ω = ω0 if Q1 = Q2 (a property often referred to as
the Q-matching condition [32]) and has a bandwidth set by the quality factors. It follows that
we can approach the problem of coupling two dissimilar waveguides with a three-step process:
1) design a cavity that resonates at the desired frequency, 2) separately model the cavity in con-
junction with a single waveguide and tune each cavity-waveguide interface so as to achieve a
target coupling Q, and 3) as a check (if desired), simulate the full system with two waveguides
and the cavity. For each step, we performed simulations using the finite-difference time-domain
method [33] (FDTD), implemented in a freely available software package [28], with a resolu-
tion of 16 pixels per lattice spacing and subpixel smoothing of the dielectric function [34] in
order to more accurately model the finer features of the structure. In the first two steps, we
used the filter-diagonalization method [35] to extract the resonant frequency and Q of the cav-
ity and the waveguide. Note that because the discretization of the system is the same across
all FDTD simulations, the resonant frequency and Q values extracted from the decay compu-
tations (which may differ from the exact result because of the finite resolution) are directly
applicable to the simulation of the transmission. Thus, regardless of errors introduced by the
discretization, the transmission spectrum should peak at 100% in the transmission calculation
provided that the coupling Q’s of the cavities extracted from the decay computations match, as
predicted by coupled-mode theory arguments. Similar considerations may be used to correct
for perturbations introduced in fabrication, which can be circumvented as long as the Q’s of the
fabricated cavity can be retuned and matched to the same value. Although we have assumed
that the system is lossless, it is straightforward to modify the coupled-mode theory treatment to
account for losses due to, e.g., radiation or absorption [3] (which would then reduce the peak
of the transmission from 100%). Since we presently work with coupling Q < 103 between the
cavity and the waveguides and photonic crystal cavities with loss Q’s in excess of 106 have been
demonstrated experimentally [36], our assumption that the cavity is lossless (and consequently
enables 100% transmission between waveguides) should be a reasonable approximation for
appropriately designed experimental systems.

4. Discussion

We found that a point-defect formed by replacing one lattice rod with a rod of same dielec-
tric constant εhigh and radius 0.1095a had a resonant frequency within 0.05% of the target
ω0 = 0.265× (2πc/a). For tuning the Q of the cavity coupled to each waveguide (Fig. 3), we
varied two parameters: the number of lattice periods separating the cavity from the waveguide
(a discrete parameter) and the radius of the rod closest to the waveguide. We found that at a sep-
aration of four lattice spacings, all three systems had local minima in the vicinity of Q = 550,
which we chose as our target. (Note that it may often be desirable to tune Q to a value close
to a local minimum, as this is where the slope of Q as a function of the continuous parameter
is smallest, thereby improving the robustness of the tuning with respect to perturbations in the
tuning parameter due to imperfections in the fabrication.) After finding the optimal tuning pa-
rameters for each system, we verified that all combinations of dissimilar waveguides coupled
by means of the cavity and properly tuned intervening structure exhibited 100% transmission
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Fig. 4. FDTD simulations showing the z component of the electric field (top panels) and
the transmission spectrum of a singly-wide line defect waveguide coupling to triply-wide
waveguide (a), a singly-wide waveguide coupling to a CCW (b), and a triply-wide waveg-
uide coupling to a CCW (c). Each system is tuned to the points indicated (in blue) in Fig. 3
and exhibits 100% transmission near ω0 = 0.265× (2πc/a). For reference, the transmis-
sion spectra of the corresponding butt-coupled geometries are shown as dash-dotted lines.

at ω = ω0 by a direct FDTD calculation of the transmission between waveguides (Fig. 4). This
simulation involves driving the leftmost waveguide with a spatially localized and temporally
gaussian excitation and letting the resulting electromagnetic pulse propagate through the struc-
ture while recording the values of the fields through a flux plane intersecting the rightmost
waveguide. The transmission spectrum at a given frequency may then be calculated by Fourier-
transforming the fields at the flux plane, computing the associated Poynting vector, integrat-
ing it over the flux plane, and normalizing the result to the power spectrum of the excitation.
Although we terminate the waveguides with absorbing boundaries (pseudo perfectly matched
layers, pPMLs [37]), we have further minimized the effect of possible numerical artifacts due
to the pulse being reflected at the pPMLs by tuning the running time of the simulation and the
length of the waveguides so that the electromagnetic pulse substantially propagates through the
flux plane exactly once [38]. Because of the increased size of the computational volume and
longer timescales, these transmission simulations are considerably more numerically intensive
than those shown in Fig. 3 (a single transmission computation typically taking more time to
complete than a full decay parameter search such as those shown in the lower panels of Fig. 3)
and it would be far less practical to use them directly to search for the appropriate tuning pa-
rameters, especially for three-dimensional systems. Nevertheless, they bear out the prediction
of 100% transmission from the coupled-mode theory combined with a set of much simpler
cavity decay simulations. Note that the bandwidth of the CCW is comparable to the Q = 550
between the cavity and each waveguide, and the transmission spectra to the CCW [Figs. 4(b)
and 4(c)] deviate from the Lorentzian shape predicted by Eq. (3) as they approach the band-
edges of the CCW (beyond which the transmission drops to zero as there are no propagating
CCW modes to couple to). Also shown (as dash-dotted lines) in Fig. 4 are the transmission
spectra of the corresponding butt-coupled structures, where the terminal defect rods of the two
coupled waveguides are in neighboring periods of the underlying photonic crystal lattice. One
can see that, although the butt-coupled transmission spectra have broader bandwidths than the
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Q-matched results, they do not achieve 100% transmission over the frequency range of interest.
Although the butt-coupled transmission could be improved by tweaking the interface between
the two waveguides, this would generally require solving a mode-field matching problem in
its own right, and any delicate cancelation of the reflected wave would itself be a narrow-
bandwidth resonant effect.

5. Applicability to other waveguide junctions

Note that due to the symmetry of the square lattice of the underlying photonic crystal, the junc-
tions shown in Fig. 3 could have just as well been used in a 90◦ bend coupling one waveguide
to another. Indeed, the prescription outlined in this paper may be applied directly to any system
comprising two single-mode waveguides and a single-mode cavity that fulfills the condition
of sufficiently weak coupling required for a coupled-mode theory treatment. Provided these
simple conditions are met, Q-matching could be used, for instance, to couple modes of very
different symmetry and polarization (e.g. TE to TM or TEM01 to HE11) and is not limited to
photonic crystals. Note that even if the cavity mode happens to be doubly degenerate [39], such
symmetry-induced degeneracies will only support one mode that couples to the waveguide
mode in waveguides with mirror symmetry, yielding effectively single-mode behavior [40].
Finally, it should be possible to obtain broader transmission bandwidths by extending this tech-
nique to (non-degenerate) multi-mode cavities [41].
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