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Transverse instability of incoherent solitons in Kerr media
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We calculate the growth rate of the small-amplitude perturbations superimposed on a one-dimensional
soliton that is fully coherent in the self-trapping dimension, yet uniform and partially incoherent in the other
transverse dimension. Such solitons become transversely stable only if the correlation distance is below a
specific threshold value. We show that this threshold for transverse instability fully coincides with the threshold
value for modulational instability.
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Localized light beams broaden during propagation in l
ear media due to the effect of diffraction. In nonlinear med
this broadening may be counterbalanced, resulting in s
trapped optical beams, i.e., spatial solitons, beams that do
change their shape during propagation. Coherent spatial
tons have been demonstrated experimentally for many n
linearities, such as Kerr, photorefractive and quadratic@1,2#.
Generally speaking, the formation of coherent solitons
closely related to modulational instability~MI !, the process
in which a plane wave launched in a nonlinear medi
breaks up into a train of filaments. MI is also related
another phenomenon that characterizes solitons, transv
instability ~TI!. For example, coherent (111)-dimensional
@(111)D# solitons, where (m11)D means the beam ma
diffract in m dimensions as it propagates in one dimensi
suffer from TI @3,4#. This means that a (111)D soliton that
is self trapped in thex dimension and is uniform in they
dimension, breaks up along they dimension into an array o
2D filaments. Thus, the observation of (111)D spatial soli-
tons requires limiting the diffraction to one transverse dim
sion. This may be achieved by launching the soliton in pla
wave-guide geometries so that diffraction is avoided in thy
dimension@5–7#. Saturation of the nonlinear response h
been shown to arrest TI@8,9#, which enables the observatio
of (111)D solitons in bulk media for several diffractio
lengths@10#, although saturation cannot eliminate TI.

For a long time, optical spatial solitons were thought
only as coherent entities. Recently, the existence of inco
ent solitons was demonstrated@11#. These are localized in
coherent light beams that can exist when the nonlinear t
response of the medium is slower than the random fluc
tions of the optical field. Modulational instability can als
occur with incoherent plane waves@12#, but for such inco-
herent MI to exist, the nonlinearity should be above a we
defined threshold determined by the degree of coherenc
the plane wave. This elimination of incoherent MI and t
existence of incoherent elliptical solitons with different c
herence properties in thex andy dimensions@13#, were the
clue that drove us to show that it is possible to produce
11)D solitons that do not suffer from TI@14#. The idea was
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to create a soliton that is fully coherent and self-trapped ix
and partially incoherent iny. Since the nonlinearity required
for trapping is determined by the properties of the be
alongx, the incoherence alongy may be increased until the
nonlinearity is below threshold and TI is eliminated. In th
Rapid Communication, we calculate the growth rate of
transverse perturbations of (111)D incoherent solitons and
the threshold of the degree of coherence for the elimina
of incoherent TI. In particular, we prove, numerically, th
for Kerr media, the threshold value for TI coincides with th
threshold for incoherent MI, irrespective of the shape of
coherence function.

In @14#, the analysis of the TI of the one-dimensional so
ton solution was made with the help of the mutual cohere
function. In the onset of elimination of the TI, i.e., at the T
threshold, this function takes a simpler form that allows t
calculation of the degree of coherence for the elimination
TI. But the analytic calculation that was presented in@14#
could predict only the TI threshold, and nothing else, es
cially not the full gain curve, that is, the growth rate as
function of spatial frequency and as a function of the cor
lation function. Furthermore, one could naively think th
perhaps it is possible to carry out a numerical calculat
following the 1D equations presented in@14#. But even that
is not trivial: the full analysis of TI of the one-dimension
soliton solution is cumbersome and expensive computat
ally within the framework presented there.

Here, we use a different approach, and work out the
calculation within the coherence density approach, which
much more convenient numerically and is complete
equivalent to the mutual coherence density approach@15#.
This approach allows us to calculate the entire growth r
curve for the unstable modes. Moreover, we can check
assumptions made in@14# to calculate the degree of cohe
ence for the elimination of TI.

We consider the transverse instability of incoherent o
dimensional Kerr solitons in the framework of the cohere
density method@16#. The linearly polarized beam propaga
ing in the z direction is assumed to be incoherent in they
dimension and coherent in thex dimension. The coheren
©2001 The American Physical Society01-1
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density functionf evolves according to the following norma
ized nonlinear integro-differential equation:

i
] f

]z
1 idu

] f

]h
1

1

2 F ]2f

]h2 1
]2f

]s2G1I f 50, ~1!

where the time-averaged normalized beam intensityI is
given by I (s,h,z)5*2`

` duu f (s,h,u,z)u2 and at z50, the
coherent density f is given by f (s,h,z50)
5G1/2(u)C0(s,h) where G(u) is the normalized angula
power spectrum of the beam, which is incoherent inh, yet
fully coherent ins, andC0(s,h) is the input spatial modu
lation function. In the above equations, we have used
following normalizations:s5x/x0 , h5y/x0 , wherex0 is an
arbitrary beam width,z5z/(k0n0x0

2) and d5k0n0x0 . k0 is
the wave number in vacuum andn0 is the linear refractive
index. The beam intensity is normalized toI 0

5(k0
2x0

2n0a)21, wherea is the nonlinear Kerr coefficient
Equation~1! has a one-dimensional soliton solutionf 0(s,u)
5u0(s)G1/2(u)exp(iA2 z/2) whereu0(s)5A sech(As), which
coincides with the well-known coherent Kerr soliton, mul
plied by G1/2(u).

In order to analyze the transverse stability of the o
dimensional soliton solution, we seek solutions of Eq.~1! of
the form

f 5@u0~s!G1/2~u!1F~s,u,z!cos~qh!#expS i
A2

2
z D , ~2!

whereq is the normalized spatial frequency of the perturb
tion. Inserting Eq.~2! into Eq.~1! and linearizing around the
soliton solution, we obtain a linear differential equation f
F,

]F

]z
2

i

2

]2F

]s2 1 i Fqu1
q2

2
1

A2

2 GF2 iu0
2~s!F

2 iu0
2~s!G1/2~u!E

2`

`

du G1/2~u!@F1F* #50. ~3!

We are only interested in the solutions of Eq.~3! that display
exponential growth, i.e., modes with F(s,u,z)
5F(s,u)exp(gz), whereg is the normalized growth rate o
the perturbation. If there would be several modes with d
ferent values ofg, we would be interested in the mode wi
the largest growth rate, since we expect this mode to do
nate the initial evolution of the perturbed soliton soluti
according to Eq.~1!. For q50, solutions of Eq.~3! can be
easily obtained. The soliton solutionf 0(s,u) still remains a
soliton under a change of the position of the peak of
soliton (s0), and under the addition of a global initial pha
~f!. Thus, perturbations that correspond to a change of p
tion or a global phase change should correspond to pertu
tions modes withg50. The most general form off 0(s,u) at
z50 ~the input to the medium! is given by f 0(s,u)
5A sech(As1s0)exp(if)G1/2(u). The solution of Eq.~3! for
q50 corresponding to a shift of the position of the soliton
F(s,u)[(] f 0 /]s0)s050,f5052A sech(As)tanh(As)G1/2(u).
The solution corresponding to a global phase change
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F(s,u)[(] f 0 /]f)s050,f505 iA sech(As)G1/2(u). For q

Þ0, Eq. ~3! should be solved numerically. For that purpos
we solve Eq.~3! for each value of the spatial frequencyq
with the method described in@17# and @18#. Namely, for a
given soliton solutionf 0 , we solve Eq.~3! with a general
nonzero initial condition F(s,u,z50) using a Crank-
Nicholson scheme@19#. In general, the inputF(s,u,z50)
will be composed of several perturbation modes. For la
propagation distances, the perturbation with the larg
growth-rateg will dominate since the growth is exponentia
We determine numerically the propagation distance bey
which the calculated value ofg and the profile of the corre
sponding mode do not change perceptibly. Equation~3! has a
first integral for each angular component given by

]

]z E2`

`

dsuF~s,u!u2

52G1/2~u!E
2`

`

ds Im@F~s,u!#u0
2~s!F~s!, ~4!

whereF(s)52*2`
` du G1/2(u)Re@F(s,u)#. This first integral

is used for checking the numerics of the calculations.
We consider typical experimental values. If we choos

normalization factorx05v0/1.763, wherev0 is the full
width at half maximum at intensity, the amplitude of th
soliton solution of Eq.~1! is A51. The maximum index of
refraction changeDn05aI 0 , whereI 0 is the peak intensity
of the soliton solution, is given by (Dn0 /n0)1/2

51.763l/(2pn0v0), wherel is the wavelength of the ra
diation. Forl50.5mm, w059 mm and n052.3, we have
Dn051.05631024 and d5147.546. Figure 1 shows th
growth-rate curve for a soliton withd5147.546. We assume
G(u) to be Gaussian, i.e.,G(u)5(p1/2u0)21 exp(2u2 /u0

2),
whereu0 is the width of the angular power spectrum. Th
uppermost curve in Fig. 1, ofu050°, represents a fully co-
herent beam, and coincides with the result given by K
netsovet al. @3#. A typical example of the field profile of the
calculated perturbations eigenmodes is shown in Fig. 2

FIG. 1. Growth rate~g! as a function of the spatial frequenc
(q), both in dimensionless units, for a Gaussian angular po
spectrum. Parameters:A51 and d5147.546. Dots correspond t
values calculated numerically by using Eq.~3!, while the solid lines
are used to help the eye.
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q51.25 andu050.2°. Notice that the perturbationsF are
symmetric in thes axis, while nonsymmetric in theu axis.
From Fig. 1 we see that the growth-rate curve is diminish
as the incoherenceu0 increases.

It is interesting to observe that, although the maximu
gain of the unstable modes diminishes when decreasing
degree of coherence~increasingu0), but quite unexpectedly
this does not mean that the region of spatial frequencies
which such instability exists shrinks. In the coherent ca
u050°, the region of instability stops atq5). When the
degree of coherence is decreased, modes with higher sp
frequencies become unstable, as can be readily seen
Fig. 1. But eventually, a further decrease of the degree
coherence reduces the domain of spatial frequencies
gain, arriving to the complete elimination of TI. Onceu0
reaches a threshold value, the growth rate is no longer
and positive and TI is eliminated. We also observe tha
calculate the threshold, all we need to do is to monitor
slope of the growth rate atq50, and see when it goes from
positive ~u0 below threshold! to zero~u0 at threshold!. The
calculation of the threshold value ofu0 for the elimination of
TI following the previous numerical procedure is cumbe
some and we seek an alternative way. We will next sh
numerically that the growth-rate curve for TI and MI fo
smallq coincide and therefore they have the same thresh

FIG. 2. The profile of the real and imaginary parts of the p
turbation F with a normalized spatial frequencyq51.25, for a
Gaussian angular power spectrum withu050.2°. Parameters:A
51 andd5147.546.~a! Spatial profile and~b! angular profile.
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This will enable us to obtain the threshold for TI by solvin
the much simpler analytically solvable problem of MI.

Modulational instability of partially coherent beams h
been recently addressed, and the threshold condition f
Lorentzian angular power spectrum was calculated@12#. The
MI calculations are addressed through the evolution of
mutual coherence function@20#. Following the method of
@12# and using the normalizations of this paper, we arrive

E
2`

`

du
A2

ig1dqu
$G~u2q/2d!2G~u1q/2d!%51, ~5!

which allows us to calculate the growth-rate curveg(q).
Since the threshold for elimination of MI is related to th
slope of the growth-rate curve atq50, we expand Eq.~5! in
terms ofq by usingg5g1q1g2q2

¯ In the limit q→0, we
obtain

2A2

Apu0
3d2 E2`

`

du
u2

u21~g1 /d!2 expS 2
u2

u0
2D 51, ~6!

for a Gaussian angular power spectrum, and

2A2u0

pd2 E
2`

`

du
u2

u21~g1 /d!2

1

~u21u0
2!2 51, ~7!

for a Lorentzian angular power spectrum, i.e.,G(u)
5(u0 /p)(u21u0

2)21. Figure 3 shows the value ofg1 as a
function of the degree of coherenceu0 for both the Gaussian
and Lorentzian angular power spectrum. Foru050°, we re-
cover the coherent limit i.e.,g15A. The curve for the
Lorentzian case coincides with the appropriate limit of t
corresponding expression given in@12#, which was calcu-
lated with an alternative method.

As can be readily observed in Fig. 3, the slope of t
growth-rate curve nearq50 (g1), depends on the specifi
form of the profile of the angular power spectrum, so it do
depend on the degree of coherence for the elimination of
At threshold,g150 and the evaluation of the integrals
Eqs.~6! and~7! give the threshold conditionu05&A/d for

-

FIG. 3. Slope of the normalized growth-rate curve for MI in th
long-wave limit (q50), as a function of the degree of coheren
(u0). Both a Gaussian and a Lorentzian angular power spectrum
considered. Parameters:A51 andd5147.546.
1-3
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the Gaussian angular power spectrum andu05A/d for the
Lorentzian one. Figure 4 shows the comparison between
growth-rate curve for TI nearq50 calculated using Eq.~3!
and the growth-rate curve for MI calculated using Eq.~6!, for
a Gaussian angular power spectrum. Only small values o
spatial frequency, where this comparison is meaningful,
considered. The curves drawn in Fig. 4 show us that
slope of the growth-rate curve at the long-wavelength lim

FIG. 4. Comparison of the growth rate for TI~dots! and for MI
~solid lines! for small values ofq, for several values of the degree o
coherenceu0 . The growth rate and the spatial frequency are
dimensionless units. The angular power spectrum is Gaussian
rameters:A51 andd5147.546.
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for both the MI and TI cases is the same, so the thresh
value obtained for MI applies as well to TI.

We should note that coherent TI and MI in the lon
wavelength limit also coincide. In the case of coherent
the growth-rateg is given @21# by g(q)5(A2q22q4/2)1/2.
By expanding this expression for small values ofq, we ob-
tain g.Aq. In the case of coherent TI, the growth-rate cur
should be calculated numerically, although in the lon
wavelength limit, the growth rate may be shown to go
g(q).Aq @3#. Notice that both MI and TI should coincide a
q50, since in both cases, a small uniform change of am
tude or phase correspond to the modes withq50 and zero
growth rate@22#.

To conclude, we have calculated the growth-rate curve
the transverse perturbations upon a one-dimensional K
soliton that is fully coherent in the self-trapping directio
yet uniform and partially coherent in the other transve
dimension. We have shown that the threshold for transve
instability, above which the beam breaks up into 2D fi
ments, fully coincides with the threshold value for modu
tional instability of uniform-intensity plane waves of th
same coherence function. We have proven that, for Kerr
dia, the threshold value of TI and MI coincide for Kerr so
tons, irrespective of the shape of the transverse cohere
function. Furthermore, we conjecture that the coincidence
the TI and MI threshold values holds for any form of no
linearity. This carries much importance, because the
threshold value can always be readily calculated analytic
@12,14#, whereas the TI growth-rate curve requires extens
numerical simulations.
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