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Transverse instability of incoherent solitons in Kerr media
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We calculate the growth rate of the small-amplitude perturbations superimposed on a one-dimensional
soliton that is fully coherent in the self-trapping dimension, yet uniform and partially incoherent in the other
transverse dimension. Such solitons become transversely stable only if the correlation distance is below a
specific threshold value. We show that this threshold for transverse instability fully coincides with the threshold
value for modulational instability.
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Localized light beams broaden during propagation in lin-to create a soliton that is fully coherent and self-trappex in
ear media due to the effect of diffraction. In nonlinear media,and patrtially incoherent ig. Since the nonlinearity required
this broadening may be counterbalanced, resulting in selffor trapping is determined by the properties of the beam
trapped optical beams, i.e., spatial solitons, beams that do natongx, the incoherence alongmay be increased until the
change their shape during propagation. Coherent spatial solonlinearity is below threshold and Tl is eliminated. In this
tons have been demonstrated experimentally for many norRapid Communication, we calculate the growth rate of the
linearities, such as Kerr, photorefractive and quadidtj2].  transverse perturbations of €11)D incoherent solitons and
Generally speaking, the formation of coherent solitons ighe threshold of the degree of coherence for the elimination
closely related to modulational instabilitil), the process of incoherent TI. In particular, we prove, numerically, that
in which a plane wave launched in a nonlinear mediumfor Kerr media, the threshold value for TI coincides with the
breaks up into a train of filaments. Ml is also related tothreshold for incoherent MI, irrespective of the shape of the
another phenomenon that characterizes solitons, transverseherence function.
instability (TI). For example, coherent (11)-dimensional In [14], the analysis of the Tl of the one-dimensional soli-
[(1+1)D] solitons, where ifi+1)D means the beam may ton solution was made with the help of the mutual coherence
diffract in m dimensions as it propagates in one dimensionfunction. In the onset of elimination of the TI, i.e., at the TI
suffer from TI[3,4]. This means that a (11)D soliton that  threshold, this function takes a simpler form that allows the
is self trapped in thex dimension and is uniform in thg  calculation of the degree of coherence for the elimination of
dimension, breaks up along tlgedimension into an array of TI. But the analytic calculation that was presented 14]
2D filaments. Thus, the observation of{1)D spatial soli-  could predict only the Tl threshold, and nothing else, espe-
tons requires limiting the diffraction to one transverse dimen-ially not the full gain curve, that is, the growth rate as a
sion. This may be achieved by launching the soliton in planafunction of spatial frequency and as a function of the corre-
wave-guide geometries so that diffraction is avoided inythe lation function. Furthermore, one could naively think that
dimension[5-7]. Saturation of the nonlinear response hasperhaps it is possible to carry out a numerical calculation
been shown to arrest T8,9], which enables the observation following the 1D equations presented[it4]. But even that
of (1+1)D solitons in bulk media for several diffraction is not trivial: the full analysis of Tl of the one-dimensional
lengths[10], although saturation cannot eliminate TI. soliton solution is cumbersome and expensive computation-

For a long time, optical spatial solitons were thought ofally within the framework presented there.
only as coherent entities. Recently, the existence of incoher- Here, we use a different approach, and work out the TI
ent solitons was demonstratgtil]. These are localized in- calculation within the coherence density approach, which is
coherent light beams that can exist when the nonlinear timenuch more convenient numerically and is completely
response of the medium is slower than the random fluctuaequivalent to the mutual coherence density apprddé&h.
tions of the optical field. Modulational instability can also This approach allows us to calculate the entire growth rate
occur with incoherent plane wavé$2], but for such inco- curve for the unstable modes. Moreover, we can check the
herent MI to exist, the nonlinearity should be above a well-assumptions made ifl14] to calculate the degree of coher-
defined threshold determined by the degree of coherence eihce for the elimination of TI.
the plane wave. This elimination of incoherent MI and the We consider the transverse instability of incoherent one-
existence of incoherent elliptical solitons with different co- dimensional Kerr solitons in the framework of the coherent
herence properties in theandy dimensiong13], were the density method16]. The linearly polarized beam propagat-
clue that drove us to show that it is possible to produce (ling in the z direction is assumed to be incoherent in the
+1)D solitons that do not suffer from TIL4]. The idea was dimension and coherent in the dimension. The coherent
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density functiorf evolves according to the following normal- 1 T T T
ized nonlinear integro-differential equation:
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where the time-averaged normalized beam intensitis
given by I(s,7,0)= [ .d6|f(s,7,6,{)|? and at{=0, the
coherent density f is given by f(s,%,{=0)
=GY(9) ¥ (s, ) where G(6) is the normalized angular
power spectrum of the beam, which is incoherentjryet

+1f=0, (1)

growth rate

fully coherent ins, andW (s, 7) is the input spatial modu- 0 0.5 1 15 2

lation function. In the above equations, we have used the spatial frequency

following normalizationss=x/Xqy, 7=Yy/Xy, wherexg is an

arbitrary beam width{ = z/(konox3) and 8=kgnoxo. Ky is FIG. 1. Growth rate(g) as a function of the spatial frequency

the wave number in vacuum amg is the linear refractive (a), both in dimensionless units, for a Gaussian angular power
index. The beam intensity is normalized tdo spectrum. Parameter&i=1 and 6=147.546. Dots correspond to

_ (kgxgnoa)_l, where « is the nonlinear Kerr coefficient. values calculated numerically by using E8), while the solid lines
Equation(/lz) has a oge—dimensional soliton solutibg(s,¢) '€ used to help the eye.
= Uo(S) G4 8) exp(A? {/2) whereuy(s) =A sechfs), which _
coincides with the well-known coherent Kerr soliton, multi- ©(8:0)=(fo/d¢)s ~04=0=1A sech@9G"4(9). For q
plied by GY4( ). #0, Eq.(3) should be solved numerically. For that purpose,
In order to analyze the transverse stability of the onewe solve Eq.(3) for each value of the spatial frequengy
dimensional soliton solution, we seek solutions of Bg.of ~ with the method described if17] and [18]. Namely, for a
the form given soliton solutionf,, we solve Eq.(3) with a general
nonzero initial condition®(s,6,{=0) using a Crank-
. Nicholson schem¢19]. In general, the inputb(s,6,{=0)
f=[uo(s)G*A 0)+<I>(s,0,§)cos(q77)]exp(| 75)' 2 will be composed of several perturbation modes. For large
propagation distances, the perturbation with the largest
whereq is the normalized spatial frequency of the perturba-growth-rateg will dominate since the growth is exponential.
tion. Inserting Eq(2) into Eq.(1) and linearizing around the We determine numerically the propagation distance beyond
soliton solution, we obtain a linear differential equation for which the calculated value af and the profile of the corre-
D, sponding mode do not change perceptibly. Equat®ias a
first integral for each angular component given by

2

o i&2(1)+' 6+ 2+ 2(1) iu2(s)®
o7 29 A0 T g P

ﬁwd(b 2
] adecso)

—iué(s)G”z(e)fm doGYA9)[d+D*]=0. (3) .
- :261’2(0)f dsim[®(s, ) ]ui(s)F(s), (4)

We are only interested in the solutions of E8). that display

exponential  growth, i.e., modes with®(s,0,{) whereF(s)=2f"_.d0GY(9)Rgd(s,6)]. This first integral
=®d(s,0)exp@y), whereg is the normalized growth rate of s used for checking the numerics of the calculations.

the perturbation. If there would be several modes with dif- We consider typical experimental values. If we choose a
ferent values ofj, we would be interested in the mode with normalization factorx,=wy/1.763, wherew, is the full

the largest growth rate, since we expect this mode to domiwidth at half maximum at intensity, the amplitude of the
nate the initial evolution of the perturbed soliton solution spliton solution of Eq(1) is A=1. The maximum index of
according to Eq(1). For q=0, solutions of Eq(3) can be  refraction change\n,=al,, wherel, is the peak intensity
easily obtained. The soliton solutidig(s, #) still remains a of the soliton solution, is given by Ang/ng)?
soliton under a change of the position of the peak of the=1.763\/(27nyw,), where\ is the wavelength of the ra-
soliton (sp), and under the addition of a global initial phase diation. ForA=0.5um, wo=9 um andn,=2.3, we have
(¢). Thus, perturbations that correspond to a change of posihn,=1.056< 10 * and §=147.546. Figure 1 shows the
tion or a global phase change should correspond to perturbgrowth-rate curve for a soliton with=147.546. We assume
tions modes_ witlg=0. The mos_t genera! form dfy(s,0) at G(6) to be Gaussian, i.eG(6)=(7"26,) " exp(_gz/gg),
{=0 (the input to the mediumis given by fo(s,6)  where g, is the width of the angular power spectrum. The
=Asechfsts,)exp(¢)G'%(6). The solution of Eq(3) for | ppermost curve in Fig. 1, af,=0°, represents a fully co-
=0 corresponding to a shift of the position of the soliton isperent beam, and coincides with the result given by Kus-
D(s,0)=(0fo/S0)s,~04-0=—Asechp9tanh@9G"(6).  netsovet al.[3]. A typical example of the field profile of the
The solution corresponding to a global phase change isalculated perturbations eigenmodes is shown in Fig. 2 for
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b) FIG. 3. Slope of the normalized growth-rate curve for Ml in the
1 ( long-wave limit (@=0), as a function of the degree of coherence
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(6y). Both a Gaussian and a Lorentzian angular power spectrum are
08 . considered. Parameters=1 and = 147.546.

imaginary part

0.6 This will enable us to obtain the threshold for Tl by solving
the much simpler analytically solvable problem of MI.
S 04 Modulational instability of partially coherent beams has
been recently addressed, and the threshold condition for a
0.2 .
Lorentzian angular power spectrum was calculgfed]. The
0 MI calculations are addressed through the evolution of the
mutual coherence functiof20]. Following the method of
0.2 - '1 cl) ; ) [12] and using the normalizations of this paper, we arrive at
O (degrees) o A2
f do———{G(0—q/26)—G(6+ql26)}=1, (5
FIG. 2. The profile of the real and imaginary parts of the per- ~» 1g+4q6

turbation ® with a normalized spatial frequenay=1.25, for a )
Gaussian angular power spectrum with=0.2°. ParametersA ~ Which allows us to calculate the growth-rate curym).
=1 and &= 147.546.(a) Spatial profile andb) angular profile. Since the threshold for elimination of Ml is related to the

slope of the growth-rate curve qt=0, we expand Eq5) in
terms ofq by usingg=g,q-+9,q% - In the limit g—0, we

g=1.25 andf,=0.2°. Notice that the perturbatiorB are ;
obtain

symmetric in thes axis, while nonsymmetric in thé axis.
From Fig. 1 we see that the growth-rate curve is diminished 2 02
as the incoherence, increases. f _ﬁ ( ): ,

It is interesting to observe that, although the maximum \/—0052 7+ (91192 % L ®
gain of the unstable modes diminishes when decreasing the
degree of coherendé@ncreasingf,), but quite unexpectedly, for a Gaussian angular power spectrum, and
this does not mean that the region of spatial frequencies for 2 5
which such instability exists shrinks. In the coherent case, 2A ‘QOJ' de 4 1
6,=0°, the region of instability stops @f=v3. When the 92+(91/5)2 (6°+ 65)°
degree of coherence is decreased, modes with higher spatial
frequencies become unstable, as can be readily seen frof@r a Lorentzian angular power spectrum, i.65(6)
Fig. 1. But eventually, a further decrease of the degree of=(6y/m)(6*+ 62)~*. Figure 3 shows the value @, as a
coherence reduces the domain of spatial frequencies witfunction of the degree of coherenég for both the Gaussian
gain, arriving to the complete elimination of Tl. On&®  and Lorentzian angular power spectrum. Bg=0°, we re-
reaches a threshold value, the growth rate is no longer reaover the coherent limit i.e.g;=A. The curve for the
and positive and Tl is eliminated. We also observe that td_orentzian case coincides with the appropriate limit of the
calculate the threshold, all we need to do is to monitor thecorresponding expression given [ii2], which was calcu-
slope of the growth rate @t=0, and see when it goes from lated with an alternative method.
positive (6, below thresholiito zero(6, at thresholgl The As can be readily observed in Fig. 3, the slope of the
calculation of the threshold value 6§ for the elimination of — growth-rate curve neag=0 (g;), depends on the specific
TI following the previous numerical procedure is cumber-form of the profile of the angular power spectrum, so it does
some and we seek an alternative way. We will next showdepend on the degree of coherence for the elimination of TI.
numerically that the growth-rate curve for Tl and MI for At threshold,g;=0 and the evaluation of the integrals in
smallq coincide and therefore they have the same thresholdgs. (6) and(7) give the threshold conditiody=v2A/é for

=1, (7
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for both the MI and TI cases is the same, so the threshold
value obtained for Ml applies as well to TI.

We should note that coherent Tl and MI in the long-
wavelength limit also coincide. In the case of coherent Mi
the growth-rateg is given[21] by g(q)=(A%q%—q*/2)*>.

By expanding this expression for small valuesgpfwe ob-
taing=Aq. In the case of coherent TI, the growth-rate curve
should be calculated numerically, although in the long-
wavelength limit, the growth rate may be shown to go as
g(q)=Aq [3]. Notice that both MI and Tl should coincide at
g=0, since in both cases, a small uniform change of ampli-
tude or phase correspond to the modes wjithO and zero
growth rate[22)].

To conclude, we have calculated the growth-rate curve for
the transverse perturbations upon a one-dimensional Kerr

(solid lineg for small values ofj, for several values of the degree of soliton that is fully coherent in the self-trapping direction,

coherencef,. The growth rate and the spatial frequency are i
dimensionless units. The angular power spectrum is Gaussian.
rametersA=1 and 6= 147.546.

the Gaussian angular power spectrum agetr A/ 5 for the

nYyet uniform and partially coherent in the other transverse

F,gimension. We have shown that the threshold for transverse
instability, above which the beam breaks up into 2D fila-
ments, fully coincides with the threshold value for modula-
tional instability of uniform-intensity plane waves of the
same coherence function. We have proven that, for Kerr me-
dia, the threshold value of Tl and MI coincide for Kerr soli-

Lorentzian one. Figure 4 shows the comparison between th®ns, irrespective of the shape of the transverse coherence

growth-rate curve for Tl neag=0 calculated using Eq23)
and the growth-rate curve for Ml calculated using Bj, for

function. Furthermore, we conjecture that the coincidence of
the Tl and Ml threshold values holds for any form of non-

a Gaussian angular power spectrum. Only small values of thiénearity. This carries much importance, because the Ml
spatial frequency, where this comparison is meaningful, aréhreshold value can always be readily calculated analytically
considered. The curves drawn in Fig. 4 show us that th¢12,14], whereas the Tl growth-rate curve requires extensive
slope of the growth-rate curve at the long-wavelength limithumerical simulations.
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