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Abstract: We develop a coupled mode theory (CMT) model of the
behavior of a polarization source in a general photonic structure, and obtain
an analytical expression for the resulting generated electric field; loss,
gain and/or nonlinearities can also be modeled. Based on this treatment,
we investigate the criteria needed to achieve an enhancement in various
nonlinear effects, and to produce efficient sources of terahertz radiation, in
particular. Our results agree well with exact finite-difference time-domain
(FDTD) results. Therefore, this approach can also in certain circumstances
be used as a potential substitute for the more numerically intensive FDTD
method.
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1. Introduction

Since the emergence of nonlinear optics[1] in 1961, and the major breakthroughs[4, 3, 2, 5, 6, 7]
that subsequently marked its growth, the field of nonlinear optics has been producing con-
tinuous scientific excitement: Numerous nonlinear optical phenomena have been discovered,
and have significantly impacted scientific progress in many respects[9, 12, 10, 11, 8]. In par-
ticular, the generation of terahertz radiation via nonlinear optical techniques, such as opti-
cal rectification, difference frequency generation and parametric generation, presents unique
features[13, 14] that are also proving to be very useful tools for biomedical imaging, sens-
ing, spectroscopy, sample characterization, etc. This wealth of applications, made possible by
nonlinear phenomena, has necessitated the perpetual quest for improving the efficiency of non-
linear optical processes. In addition to phase matching considerations, the Purcell effect[15],
well known for its ability to control spontaneous emission rates, provides a hint on how to boost
nonlinear conversion efficiencies, by modifying (increasing) the local density of photonic states
(LDOS) at the location of the nonlinear polarization source. A light source embedded in a pho-
tonic structure is known to emit faster when the LDOS at the source frequency is larger, and
this applies for light sources originating from nonlinear polarization as well. Photonic crystals
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constitute a versatile tool for tailoring LDOS, and hence they offer extraordinary opportunities
to enhance nonlinear effects[16], also by exploiting the Purcell effect.

So far, a few proposals have been made to exploit the Purcell effect in order to improve
the nonlinear optical response of photonic crystals. For instance, the effective medium ap-
proach has been used to investigate how the density of states affects the conversion efficiency
for second harmonic generation in a one dimensional photonic band gap (PBG) structure[17].
The finite-difference time-domain (FDTD) method[18] could also be used to solve the prob-
lem numerically[19, 16, 20]. However, a better comprehension of the problem requires a more
elaborate treatment, that elucidates the implications of the Purcell effect on efficient nonlinear
conversion. A method using Green’s function has been developed[21, 22] to calculate the non-
linear optical response of a photonic crystal to an external polarization source. In this respect,
temporal coupled mode theory[23] (CMT) seems to be of great promise, since it provides a
physically intuitive framework that easily addresses the problem, where the photonic structure
can also exhibit any sort of loss or gain.

In this paper, we use CMT to study the response of a general photonic structure to a trav-
eling polarization source of arbitrary extent. As long as CMT is still valid (i.e. as long as the
quality factors are large enough), absorptive and/or radiative losses, as well as gain, can be
modeled. Given the current challenge of making high-power terahertz sources, we illustrate our
general approach, by proposing, for the first time, a method for efficient generation of terahertz
waves by optical rectification in a two-dimensional (2D) photonic crystal. For this purpose,
we theoretically investigate sending an optical beam into an appropriately designed 2D non-
linear photonic crystal, and we use our CMT-based result to calculate the total energy radiated
at terahertz frequencies. Next, we repeat the same calculation for the terahertz generated en-
ergy, but now using the exact FDTD method instead. The obtained close agreement between
the CMT and FDTD results, not only validates our CMT approach, but it also suggests that
our CMT treatment could serve as a substantially less numerically intensive alternative to the
FDTD method, for certain systems of interest. For instance, in problems involving frequencies
and wavelengths that range over many orders of magnitude, FDTD calculations are very diffi-
cult to perform. However, it is far less intricate to solve such problems by using our CMT-based
formalism. A specific example of such cases is the generation of terahertz radiation by optical
rectification, where a proper FDTD calculation should involve simultaneously wavelengths in
both the optical and terahertz regimes, resulting in a computational burden that could go beyond
the capabilities of currently available computers. Such complications, however, are not present
if one uses our CMT formalism, instead.

The structure of the paper is as follows: In Sec. II, we develop the CMT model and calculate
the generated electric field in the most general case. Then, in Sec. III, we discuss how the
Purcell effect follows from our general result, by calculating the power emitted by a point
dipole source. Finally, in Sec. IV, we apply our work to the specific problem of THz generation
and compare our results with FDTD results.

2. Coupled-mode-theory model

To start with, we suppose that there exists a polarization source �P(�r,t) inside a photonic struc-
ture. Let (�Eν , �Hν) label a mode of the source-free solutions to Maxwell’s equations obtained
by using linear real indices of refraction of the photonic structure; while calculating the modes
(�Eν , �Hν), we assume that the photonic structure does not involve any loss, gain or nonlineari-
ties. The effects of loss/gain will be addressed perturbatively below through the use of CMT.
Nonlinear effects that are of interest for THz generation are included in the sense that the
polarization source itself is generated through nonlinear effects, starting from some external
electric fields of different frequencies; this polarization source, in turn excites the modes of the
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structure. {�Dν(�r)/
√

ε(�r)}, where �Dν (�r) = ε(�r)�Eν(�r), form a complete set[24], since they are

eigenmodes of the hermitian operator 1√
ε(�r)

�∇×
(
�∇× 1√

ε(�r)

)
. The polarization source �P(�r,t)

induces in the structure electromagnetic fields �E(�r,t) and �H(�r,t). If we denote the electric dis-
placement vector by �D(�r,t), then �D(�r,t)/

√
ε(�r) =

√
ε(�r)�E(�r,t) can be expressed as a linear

superposition[24] of �Dν(�r)/
√

ε(�r) =
√

ε(�r)�Eν (�r). Hence, we can write

�E(�r,t) = ∑
ν

aν(t)
�Eν(�r)

√
∫

d3�r ε(�r)
2

∣
∣
∣�Eν(�r)

∣
∣
∣
2

(1)

where aν is the amplitude of the mode labeled by ν , normalized such that |a ν |2 is the total
energy in that particular mode.

A note about the mode labeling is in place. For a uniform medium, the modes are labeled by
the wavevector�k and polarization σ , hence ν is to be identified with (�k,σ) in this case. For a
photonic crystal, it is most convenient to label the modes by a band index n, a polarization σ ,
and a Bloch wavevector�k that lies in the first Brillouin zone. Therefore, we identify ν ≡ (n,�k,σ)
for photonic crystals. For a finite photonic crystal structure, the allowed values of �k consistent
with boundary conditions, are discrete. However, for infinite photonic crystal structures, there
is a continuum of allowed values of �k, and the sum in Eq. (1) transforms into a discrete sum
over n and an integral over�k.

Treating each mode as a CMT port, the CMT equation for the mode amplitude a ν
becomes[23]

daν
dt

= −iωνaν − (Γν
rad + Γν

abs −Γν
g)aν + κνsν

+ (2)

where ων is the frequency of the mode labeled by ν , Γν
rad and Γν

abs are the rates of radiative (out
of the structure) and absorptive decay, respectively, and Γ ν

g is the rate of gain. κνsν
+ is the square

root per unit time of the portion of the polarization source’s energy, that couples to the photonic
structure; i.e. this term models the excitation of the mode of the structure by the polarization
source. From Poynting’s theorem, κνsν

+ is given by

κνsν
+ =

∫
d3�r′�J(�r′,t) ·�E∗

ν(�r′)
√

∫
d3�r ε(�r)

2

∣∣
∣�Eν(�r)

∣∣
∣
2

(3)

where the current density source �J(r,t) is related to the polarization �P(�r,t) by �J(r,t) ≡
∂�P(�r,t)

/
∂ t. The general solution to Eq. (2) can be easily obtained by multiplying both sides

by an integrating factor Ξ(t) = e

t∫
(iων +Γν

rad+Γν
abs−Γν

g )dt ′
, to get

d
dt

(aν(t)Ξ(t)) = Ξ(t)κνsν
+ (4)

Hence

aν(t) = aν(to)e−iων (t−to)e−(Γν
rad+Γν

abs−Γν
g)(t−to)

+
t∫

to

dt ′

∫

all space
d3�r′�J(�r′,t ′) ·�E∗

ν(�r′)
√

∫
d3�r ε(�r)

2

∣
∣∣�Eν(�r)

∣
∣∣
2

e−iων (t−t′)e−(Γν
rad+Γν

abs−Γν
g)(t−t′) (5)
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where to is any reference time preceding the turn-on of the polarization source, and t > t o.
Plugging this into Eq. (1), the electric field induced in the photonic structure becomes

�E(�r,t) = ∑
ν

�Eν(�r)√∫
d3�r ε(�r)

2 |�Eν (�r)|2 aν(to)e−iων (t−to)e−(Γν
rad+Γν

abs−Γν
g )(t−to)+

∑
ν

�Eν (�r)
∫

d3�r ε(�r)
2 |�Eν (�r)|2

t∫

to
dt ′

∫

all space
d3�r′�J(�r′,t ′).�E∗

ν(�r′)e−iων (t−t′)e−(Γν
rad+Γν

abs−Γν
g)(t−t′)

(6)

The total power radiated out of the photonic structure, at time t, is ∑
ν

2Γν
rad|aν(t)|2, and the

flux through a surface A at time t is
∫

A

�S ·d�a =
∫

A

{
Real

[
�E(�r,t)

]
×Real

[
�H(�r,t)

]}
·d�a (7)

where �E(�r,t) is given by Eq. (6), and �H(�r,t) can be obtained from Faraday’s law: �∇×�E(�r,t) =
−∂ [μ0�H(�r,t)]

/
∂ t, μ0 being the magnetic permeability.

3. Connection with Purcell effect

To get more intuition on the above result, let us consider an oscillating point dipole of moment
�p, embedded at position�ro in the structure. If we denote the dipole’s angular frequency by ω s,
then the polarization is �P(�r,t) = �pδ (3)(�r−�ro)e−iωst . Let us further assume that Γν

g = 0 ∀ ν (no
gain). In this case, the resulting mode amplitude aν becomes

aν =
−iωs�p ·�E∗

ν(�ro)
i(ων −ωs)+

(
Γν

rad + Γν
abs

)
e−iωst

√
∫

d3�r ε(�r)
2

∣∣
∣�Eν(�r)

∣∣
∣
2

(8)

Denoting Γν = Γν
rad + Γν

abs, the total radiated power P = ∑
ν

2Γν
rad |aν |2 is

P = ∑
ν

Γν
rad

(ων −ωs)2 +(Γν)2

2(ωs)2
∣
∣∣�p ·�E∗

ν(�ro)
∣
∣∣
2

∫
d3�r ε(�r)

2

∣
∣∣�Eν(�r)

∣
∣∣
2 (9)

In the limit of zero loss (Γν → 0), we have Γν
/{

(ων −ωs)
2 +(Γν)2

}
→ πδ (ων −ωs). Hence

P =
4π(ωs)2 |�p|2

ε(�ro)
∑
ν

ε(�ro)
∣∣
∣p̂ ·�E∗

ν(�ro)
∣∣
∣
2

δ (ων −ωs)

∫
d3�rε(�r)

∣∣
∣�Eν(�r)

∣∣
∣
2 (10)

If we further assume that there is perfect polarization match between the source and all the

modes ν , then
∣
∣∣p̂ ·�E∗

ν(�ro)
∣
∣∣
2
=

∣
∣∣�Eν(�ro)

∣
∣∣
2 ∀ ν , and

P =
4π(ωs)2 |�p|2

ε(�ro)
g(ωs,�ro) (11)
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where

g(ωs,�ro) = ∑
ν

ε(�ro)
∣
∣
∣�Eν(�ro)

∣
∣
∣
2

δ (ων −ωs)

∫
d3�rε(�r)

∣∣
∣�Eν(�r)

∣∣
∣
2 (12)

is the local density of photonic states at �ro. Therefore, the total radiated power (even from a
nonlinear source) is proportional to the local density of states, as expected from the Purcell
effect. It also increases quadratically with the dipole moment of the polarization source.

4. Connection with Doppler radiation in a PhC crystal

To verify further the validity if our approach, we apply our general result (Eq. (6)) to another
well-known special case: the radiation emitted by an oscillating dipole moving with a fixed
velocity�v in a PhC[25]. In this case, the current density can be simply expressed as

�J(�r,t) = �joe−iωstδ (�r−�vt) (13)

Plugging this into Eq. (6), and assuming that Γν = 0 ∀ ν , we obtain

�E(�r,t) = ∑
ν

�Eν (�r)
∫

d3�r ε(�r)
2 |�Eν (�r)|2

t∫

−∞
dt ′e−iωst′�jo.�E∗

ν (�vt ′)e−iων (t−t′) (14)

As we mentioned before, the modes of a PhC are labeled by ν ≡ (n,�k,σ), and from Bloch

theorem �En�k(�r) = ei�k.�r�un�k(�r), where�un�k(�r) has the periodicity of the PhC, and hence only recip-

rocal lattice vectors �G appear in its Fourier expansion �un�k(�r) = ∑�G�en�k,�Gei�G.�r. Hence Eq. (14)
becomes

�E(�r,t) = ∑
n�kσ

�En�kσ (�r)
∫

d3�r ε(�r)
2 |�En�kσ (�r)|2 ∑�G

�jo.�e∗n�k,�G
t∫

−∞
dt ′e−iωst′e−i(�k+�G).�vt ′e−iωn�kσ (t−t′) (15)

which simply evaluates to

�E(�r,t) = ∑
n�kσ

�En�kσ (�r)
∫

d3�r ε(�r)
2 |�En�kσ (�r)|2 ∑�G

−i[�jo.(�en�k,�G)∗]
ωn�kσ−[ωs+(�k+�G).�v]

e−i[ωs+(�k+�G).�v]t (16)

which is consistent with Eq.(1) in ref(25) in the limit ωn�kσ � ωs +(�k+ �G).�v.
Thus, while our formalism properly reproduces the well-known predictions of the Purcell

effect (Eq. (11)) and of Doppler radiation in PhCs (Eq. (16)), its scope extends further, because
it analyzes in a systematic and quantitative way the behavior of an arbitrary polarization in
any photonic structure. Note that the polarization source can have complicated spatiotemporal
variations, and is not restricted to static collections of point dipoles.

A glance at Eq. (6) enables us to recognize the various possibilities for boosting the magni-
tude of the electric electric field �E(�r,t) induced in the structure by a given external polarization
source. Clearly, we need to have the largest possible density of modes that yield a significant
value of the summand on the right hand side of Eq. (6). To achieve such large values of the
summand, the phase-matched modes ought to have their resonance frequency ω ν close enough
to the frequency ωs of the source. Their polarization should also be matched to the source’s
polarization, and their spatial overlap with the source’s extent should be considerable. This lat-
ter requirement suggests that the modes should be highly concentrated at the position of the
source. And of course, we should attempt to reduce losses to the lowest possible level.
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5. Numerical validation and terahertz generation

5.1. Optimizing the structure

Having identified the essential features required to enhance the response of a photonic structure
to an external polarization source, and motivated by the existing need for efficient high-power
terahertz sources, we apply our formalism to the specific problem of terahertz generation by
optical rectification. To this end, we select a nonlinear photonic crystal (PhC) structure that
features a χ (2) nonlinearity, and that satisfies as many as possible of the criteria stated in sec-
tion III. Before getting into the details of the structure, let’s outline briefly the fundamental
principles. We propose to excite our PhC structure with a beam centered around an optical fre-
quency; we denote the optical electric field by �Eopt . By optical rectification, this optical beam
generates a polarization P THz ∼ χ (2)EoptE∗

opt in the terahertz frequency range[26]. According
to our formalism, the rate at which this polarization P THz excites terahertz waves depends on
several considerations pertaining to the PhC structure. First, one of course strives to use a ma-
terial with χ (2) as large as possible. Next, another option is to increase the magnitude of �Eopt

as much as possible; ultimately there is a limit to which one can pursue this approach, imposed
by the optical breakdown threshold. Finally one can adjust the properties of the PhC structure
at terahertz frequencies, to achieve high density of states and good spatial overlap between the
terahertz modes and the source P THz.

A promising PhC structure, in this respect, has been proposed by some of the current
authors[27]. Here we consider a very similar structure consisting of a two-dimensional (2D)
square lattice of rods in air. The spacing between the rods is denoted by a, the nonlinear sus-
ceptibility by χ (2), and the linear refractive index at terahertz frequencies by n r. The rods of
radius r are connected along the x-direction by thin waveguides, each of thickness t and consist-
ing of the same material as the rods. These waveguides are needed, in order to provide guiding
for the optical light. A unit cell of the 2D periodic PhC structure is depicted in Fig. 1(a) as a
color contour plot of the linear dielectric function ε(x,y). A similar contour plot is presented in
Fig. 1(b), showing 5 units of the structure in each direction, together with the optical beam.
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Fig. 1. (Color online) Color contour plot of the dielectric function ε(x,y) of the 2D PhC
srtucture: (a) 1a×1a cell, and (b) 5a×5a cell, showing the optical beam through the central
waveguide.

If we choose r = 0.13a, t = 0.04a and nr = 3.5 (close to the refractive index of GaP[28,
29], commonly used for terahertz generation by optical rectification), the second band (n =
2) of the transverse magnetic (σ =TM) modes is characterized by a saddle point where the
band is ultraflat, and consequently the density of states is enhanced. The band structure was
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computed by preconditioned conjugate-gradient minimization of the block Rayleigh quotient
in a planewave basis, using a freely available software package[30]. The projected band diagram
for σ =TM, shown in Fig. 2 along with a color contour plot of the second band, indicates that
the second TM band is narrowest at kx = 0.1559(2π/a), where it has a width of only 1.27%
around the central frequency f = 0.509(c/a); thereby if the targeted frequency is e.g. f = 1
THz, one needs to choose a = 152.7μm.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k
x
 (2π/a)

fr
eq

ue
nc

y 
(c

/a
)

(a)

k
x
 (2π/a)

k y (
2π

/a
)

 

 

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.4

0.42

0.44

0.46

0.48

0.5

0.52

(b)

Fig. 2. (Color online) (a) Projected band diagram of the first three bands. (b) Color contour
plot of the second band, showing the saddle point where the band is narrowest.

So, the PhC structure we have chosen indeed has a considerable number of modes polarized
along z (parallel to the rods), with kx = 0.1559(2π/a), and by choosing a appropriately, we can
tune the structure to be optimized for any frequeny in the THz regime. Since we are interested
in the very small frequency range around the saddle point of the second band, we consider a
narrow-bandwidth excitation. To this end, we assume that the optical beam is sent through the
waveguide centered at the origin, and is particularly chosen such that the current density �JTHz

associated with the polarization source P THz, has the form:

�JTHz(x,y; t) = ẑe
iks

xx− y2

2ζ2 e
−iωst− (t−500a/c)2

2τ2 (17)

where ks
x = 0.1559(2π/a) to ensure phase matching with the modes at the ultraflat portion of the

second band. The angular frequency of the terahertz polarization source is ω s = 0.509(2πc/a),
and the values of the remaining parameters are: ζ = 0.02a and τ = 100(a/c). The time t is
expressed in units of a/c. Since �JTHz points along ẑ, all the TM modes have their polarization
perfectly matched to that of the source. For convenience in subsequent calculations, and because
�JTHz(x,y; t) is separable in space and time, we write it as

�JTHz(x,y; t) = �JTHz
space(x,y) ·F (t) (18)

where

�JTHz
space(x,y) = ẑe

iks
xx− y2

2ζ2 (19)

and

F (t) = e
−iωst− (t−500a/c)2

2τ2 (20)

We also set �JTHz(x,y; t) = 0 for t < 0 and t ≥ 1000a/c.
Up to this point most of the criteria for efficient THz generation have been met, and we are

left with the issue of the spatial overlap between the modes (n = 2; kx = 0.1559(2π/a),ky;
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σ =TM) and the terahertz polarization source. The degree of localization of the modes
�En=2;(kx=0.1559(2π/a),ky;σ=TM)(�r) at the source’s extent can be checked by looking at the color
contour plot of

wky (x,y) ≡ ε(x,y)
∣
∣
∣�En=2;(kx=0.1559(2π/a),ky;σ=TM)(x,y)

∣
∣
∣
2

(21)

for several ky values. We computed the fields �En=2;(kx=0.1559(2π/a),ky;σ=TM)(�r) by using the same

software package [30], and calculated wky (x,y) for different ky values. A representative plot is
shown in Fig. 3 for ky = 0. Despite the good localization of the modes of interest close to the
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Fig. 3. (Color online) Color contour plot of wky=0(x,y).

source’s extent, this does not guarantee an optimum for the overlap integral

On�k ≡
∫

all space

d3�r′�JTHz
space(�r

′) ·�E∗
n�k

(�r′) (22)

for n = 2. Indeed, for most of the different possible k y in the first brillouin zone, the integrand of
the overlap integral On=2;(kx=ks

x,ky) oscillates along x̂, and hence integrates to a negligible value.
That is, for n = 2 and for many ky, the integrand is observed to flip the sign at x �±0.25a. One
way to circumvent this problem is to periodically pole the structure every half period. More
specifically, we propose to flip the sign of χ (2) at x = ±(0.25a + � 0.5a) where � is a zero or
positive integer, as illustrated in Fig. 4. Mathematically, this corresponds to multiplying the
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Fig. 4. (Color online) Periodically poled PhC structure. The red portions correspond to
the original orientation of the nonlinear crystal when χ(2) is positive, while in the blue
portions, the crystal’s orientation is flipped resulting in a negative χ(2).

integrand in Eq. (22) by a factor q(x ′), which is +1 in regions where χ (2) is positive, and −1
where χ (2) is negative. In this way, the integrand of the overlap integral O n=2;�k preserves the
same sign for most of x, and therefore the integral evaluates to a substantially higher value than
without any poling. Although this looks similar to quasi-phase matching[31], one should keep
in mind that our motivation behind poling was to prevent the overlap integral of the ‘second’
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band from vanishing. For the first band, the integrand of the overlap integral O n=1;�k does not
change sign along x̂, and so we wouldn’t have to pole the structure if we were interested in
modes of the first band. Similarly, if we were interested in modes of the third band, we would
have to use a poling configuration different from that used in the second band. Also note that
although periodic poling leads to much more efficient coupling between the nonlinear polariza-
tion source and the second-band modes of the PhC structure, all the linear properties on which
the numerical calculations are based, remain intact.

5.2. Calculation of generated energy

Let us now calculate the total emitted energy at THz frequencies. First, we need to calculate the
electric field �E(�r,t) induced by the THz current source (Eq. (17)) in the periodically poled PhC
structure, using Eq. (6). We consider a time of t = 1010(a/c) (which is 10a/c later than source
turn-off), and we assume that an�k = 0 ∀ (n,�k) prior to source turn-on at t = 0; this corresponds
to the case where none of the modes of the PhC were excited before t = 0. We use only modes

with kx = 0.1559(2π/a)= ks
x, and we further assume Γn�k

g = Γn�k
abs = 0. From Eq. (6), it is evident

that we cannot proceed before computing the following two functions of k y

O poled
all space(ky) ≡

∫

all space

d3�r′q(x′)�JTHz
space(�r

′) ·�E∗
n=2;(ks

x,ky)(�r
′)

=
∫

all space

d3�r′q(x′)e
iks

xx′− y′2
2ζ2 ẑ ·�E∗

n=2;(ks
x,ky)(�r

′) (23)

and

Tt(ky) ≡ e−iω(n=2;ks
x,ky)t

t∫

0

dt ′F (t ′)eiω(n=2;ks
x ,ky)t

′

= e−iω(n=2;ks
x,ky)t

t∫

0

dt ′e−i(ωs−ω(n=2;ks
x,ky))t

′− (t′−500a/c)2

2τ2 (24)
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Fig. 5. (Color online) Overlap integral O poled
one period as a function of ky for modes at the

narrowest portion (kx = 0.1559(2π/a)) of the second band.
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The integral in Eq. (23) can be simplified by noting that in a PhC, the electric fields can be
written as

�En�k(�r) = ei�k.�r�un�k(�r) (25)

where�un�k(�r) has the same periodicity as the PhC. Consequently, O poled
all space(ky) becomes

O poled
all space(ky) =

∫

all space

d3�r′q(x′)e
−ikyy′− y′2

2ζ2 ẑ ·�u∗n=2;(ks
x,ky)(�r′) (26)

The integrand of this equation is periodic function of x ′. Hence the integral over all x′ simpli-
fies to the number Nx of periods in the x-direction times the integral over a single period, with
x′ ranging from −a/2 to a/2. The integration over y ′ can also be taken to range between −a/2
and a/2, because the optical beam is sent through the central waveguide only, and thus �JTHz

space is
zero for y′ outside the interval [−a/2,a/2]. Therefore

O poled
all space(ky) = Nx ·O poled

one period(ky) (27)

O poled
one period(ky) =

a/2∫

−a/2

dx′
a/2∫

−a/2

dy′q(x′)e
−ikyy′− y′2

2ζ2 ẑ ·�u∗n=2;(ks
x,ky)(�r′) (28)

To evaluate this integral, we discretize space with a resolution of 256 gridpoints/a, and cal-
culate the TM fields �un=2;(ks

x,ky)(�r) based on the TM modes �En=2;(ks
x,ky)(�r) computed by using

the software package[30]. Note that the TE modes have their electric field polarized in the
xy plane, and hence they don’t get excited by the polarization source. So, in all what fol-
lows, when we refer to PhC modes, we consider only the TM modes, and we omit the nota-
tion σ = TM. While computing the modes, we make sure that all of them have their phases
fixed relative to each other, and that they are all normalized in the same way, e.g. such that

∫

one cell
d3�rε(�r)

∣
∣
∣�En,�k(�r)

∣
∣
∣
2
= 1. A plot of the overlap integral O poled

one period(ky), as a function of ky, is

shown in Fig. 5 (after poling is performed). Clearly, the integral takes values close to maximum
for most of the ky’s. The reason for which it vanishes as ky →±0.5(2π/a) is that those modes
have an extended node over the whole source, and consequently the integrand in Eq. (28) van-
ishes almost everywhere, either because the source is zero or because the electric field of the
modes is zero. So whether the structure is poled or not, the overlap integral vanishes for modes
with ky = ±0.5(2π/a).

Next, we calculate Tt(ky) at t = 1010(a/c), using the previously calculated band structure.
Eq. (6) becomes

�E(�r,t) = ∑
ky

�En=2;(ks
x,ky)(�r)

NxNy/2
Nx ·O poled

one period(ky)Tt(ky) (29)

Since the PhC is of infinite extent in the x and y directions, the ky values consistent with periodic
boundary conditions, become dense enough that to a good approximation, the discrete sum over
ky can be converted into an integral

�E(�r,t) =
aNy

2π

0.5(2π/a)∫

−0.5(2π/a)

dky

�En=2;(ks
x,ky)(�r)

NxNy/2
Nx ·O poled

one period(ky)Tt(ky) (30)
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=
a
π
·

π/a∫

−π/a

dky�En=2;(ks
x,ky)(�r)O

poled
one period(ky)Tt(ky) (31)
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Fig. 6. (Color online) CMT calculations: (a) Color contour plot of the unnormalized tera-
hertz energy density ε(x,y)|E(x,y,t)|2 at t = 1010(a/c), in a 2D box of size 1a×80a. (b)
A zoom-in version of the plot in Fig. a, showing more details of the interval y ∈± [8a,19a].
Note that the optical beam was originally sent through the waveguide at y = 0.

To calculate the total emitted energy, we consider calculating the electric field �E(�r,t) at time
t = 1010(a/c), over a region of space large enough in the y direction, hoping that no energy
would have left it by t = 1010(a/c). So, we take our computational domain to be a 2D box of
size 1a along x and 80a along y. To save on computational memory, we use a spatial resolution
of 64 gridpoints/a only, and calculate the TM fields �En=2;(ks

x,ky) for 201 equally spaced values
of ky ranging between −π/a and π/a, again using the software package[30]. Next we multiply

each field labeled with ky, by O poled
one period(ky) ·T1010(a/c)(ky), and sum the resulting fields over

all values of ky. Finally, we multiply the result by a/π and obtain the THz electric field induced
by the optical beam in the PhC at time t = 1010(a/c). Note that we attempted to use a denser
grid of ky values (334 equidistant ky points), without change in the final result. The electric
energy density profile ε(x,y)|E(x,y,t)|2, at t = 1010(a/c), can now be simply calculated over
the computational domain, and is presented in Fig. 6.
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As we intended, all the emitted energy is still confined inside our large computational do-
main; more specifically, the energy density is non-vanishing only in the regions y ∈± [8a,19a].
Thus, to calculate the total emitted energy, it is sufficient to integrate the energy density at
t = 1010(a/c) over a 2D box of size 1a along x, and large enough in the y direction to enclose
the regions y ∈ ± [8a,19a]. Setting a = 1, we obtain a value of 0.7108 for the total THz energy
emitted in the PBG. To enable comparison with the FDTD results, we normalize the total emit-
ted energy and express it in dimensionless units; that is, we divide the above-mentioned integral
of the energy density in the poled PhC case, by the same quantity (0.1839) similarly calculated
in an unpoled bulk of the same nonlinear material as that used in the PhC structure. We obtain
a dimensionless value of 3.86.

To confirm the validity of our analytical model in general, and of the result for the total
emitted energy in the specific example of terahertz generation, we repeat exactly the same cal-
culation for the terahertz emitted energy, but now instead of using our analytical formalism, we
employ the finite-difference time-domain (FDTD) method[18], using a freely available software
package with subpixel smoothing for increased accuracy[32]. We consider a computational cell
(centered at the origin) of size 1a along x, and 90a along y, and we discretize the structure with
a resolution of 128 pixels/a. We send the same source described before through the waveguide
centered at y = 0, and we impose Bloch-periodic boundary conditions along x, with a wavevec-
tor kx = 0.1559(2π/a). At the boundaries in the y direction, we set up perfectly matched layers
(PML), each of thickness 3a. We simulate the effect of periodic poling by explicitely reversing
the sign of the polarization source at x = ±0.25a. To compute the total emitted energy at tera-
hertz, we record the time evolution of the energy E in a box of size 1a (along x)×80a (along
y), centered at the origin. We also place flux calculation planes at y = ±40a, and compute the
flux that leaves through each of the flux planes as a function of time. The total emitted energy
at a particular time t is then given by the sum of the integral up to time t of the net flux through
the flux planes, and the energy remaining in the box surrounded by the flux planes, at time t.

Fig. 7. (Color online) FDTD calculation for the terahertz emitted energy in the PhC struc-
ture (not normalized to the bulk).

The time development of the energy E , and of the time integral of the net flux, is shown in
Fig. 7, together with the total emitted energy, which is given by their sum. Again, we normalize
the total energy emitted in the poled PhC to that emitted in the corresponding unpoled bulk,
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Fig. 8. (Color online) FDTD calculations: (a) Color contour plot of the terahertz energy
density ε(x,y)|E(x,y,t)|2 at t = 1010(a/c), in a 2D box of size 1a× 80a. (b) A zoom-in
version of the plot in Fig. a, showing more details of the interval y ∈ ± [8a,19a]. Note that
the optical beam was originally sent through the waveguide at y = 0.

and we get a value of 3.94 in dimensionless units. Thus, our result for the normalized emitted
energy at terahertz, differs only by � 2% from the exact result computed by FDTD. To gain
even more confidence in the validity of our analytical result, we perform FDTD calculations
of the energy density profile in the poled PhC, at t = 1010(a/c), and we show the result as a
color contour plot in Fig. 8. The agreement between Fig. 6 and Fig. 8 is indeed remarkable;
not only do we get a coincidence of the intervals y ∈ ± [8a,19a] in which the energy density
is nonvanishing, but also the waveguides at which the energy density is maximum occur at
exactly the same position, namely y = ±13a, according to both methods (FDTD and CMT-
based analytics). In addition to validating our analytical CMT-based formalism, the agreement
of the results obtained from our analytical model with the exact FDTD results, suggests that our
approach would work as a simpler alternative to the numerically intensive FDTD method. Our
procedure has the advantage of being far less demanding than the brute-force FDTD technique,
in terms of the computational time and resources, especially in problems involving frequencies
that range over many orders of magnitude, such as terahertz generation by optical rectification.
To get a concrete estimate, we mention that, although we assumed the terahertz polarization
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source to be given from the beginning, and dealt with terahertz frequencies only, the calculation
of energy density profile shown in Fig. 6 took around 15 minutes on a single processor, while
the FDTD calculations resulting in Fig. 7 took around 10 hours using 360 processors on a
supercomputer. Finally, the FDTD calculations of Fig. 8 took � 10 minutes using 32 processors
on a supercomputer when a spatial resolution of 64 gridpoints/a was used, and � 2 hours using
360 processors when the spatial resolution was 128 gridpoints/a. Note that the only assumption
on which our analytical formalism is based is that CMT be valid, meaning that the rates Γ ν be
much smaller than the frequency ων for each mode ν of the photonic structure[23].

6. Conclusion

In conclusion, we developed an analytical model for calculating the electric field produced by
an external polarization source in a photonic structure. Then, we investigated how the implica-
tions of this formalism can provide an insight on enhancing the efficiency of nonlinear effects.
We illustrated the procedure, by applying it to the specific case of terahertz generation by opti-
cal rectification in a 2D nonlinear photonic crystal, and finally we checked our results against
exact calculations based on the FDTD method. The results are in a good agreement with each
other, thus validating our approach, and motivating us to propose our technique as a potentially
simpler alternative to FDTD, as long as CMT is applicable.
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