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We present both a new theoretical description and an experimental validation of a molecu-

lar gas optically pumped far infrared (OPFIR) laser (Fig. 1) at 0.25THz that exhibits 10⇥
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greater efficiency (39% of the Manley–Rowe limit) and 1000⇥ smaller volume than compa-

rable commercial lasers (Fig. 2). Unlike previous OPFIR-laser models involving only a few

energy levels1–4 that failed even qualitatively to match experiments at high pressures, our

ab-initio theory matches experiments quantitatively with no free parameters (Fig. 3) by ac-

curately capturing the interplay of millions of degrees of freedom in the laser. We show that

previous OPFIR lasers were inefficient simply by being too large, and that high powers favor

high pressures and small cavities. We believe that these results open the possibility of a new

generation of compact THz sources.

For many years, OPFIR gas lasers were the most powerful sources of continuous-wave (CW)

terahertz (THz) radiation,1–13 and such THz sources are crucial to a wide variety of sensing and

imaging applications.14–16 They employ population inversions excited in molecule-specific rotational–

vibrational transitions by a line-tunable CO2 laser. By changing the gas, isotope, and CO2 laser

line, different transition frequencies could be made to lase, typically in meter-long cavities operated

at low pressures (< 0.1 Torr) and producing up to 100 mW in a manner that depended strongly on

the rotational transition involved.17, 18 Initially, it was thought that low pressures and large cavities

were required, but this produced a “vibrational bottleneck” arising from diffusion-limited relax-

ation by molecule–wall collisions that quenched the inversion as pressure increased.2, 4, 7 It was

subsequently discovered that OPFIR lasers could operate at higher pressures in smaller cavities as

a result of collisional processes that excited high-energy vibrational levels.8, 10 This breakthrough

was never fully investigated or exploited, however, as it came at a time when new sources of tera-

hertz radiation were emerging19–21 and the use of OPFIR lasers was waning due to their supposed
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large sizes (e.g. 10cm in diameter and 1m in length) and low photon conversion efficiencies (e.g.

0.1-10%).

The advent of alternatives to line-tunable CO2 lasers22, 23 and the increasing need for pow-

erful, narrowband sources of terahertz radiation is reviving interest in compact OPFIR lasers,1

whose full potential has never been fully understood because of the thousands of quantized states

involved and the millions of collision cross sections required to simulate its behavior adequately.

Here we solve this problem, providing an accurate theoretical model with no adjustable parameters

that quantitatively matches new experimental measurements of a compact OPFIR laser. Not only

does the model match experiments, but it also unexpectedly shows that our compact laser exhibits

remarkable efficiency at high pressures, more than 10⇥ what is possible with the best commercial

OPFIR lasers (Fig. 2).

Figure 1 depicts our OPFIR laser: a line-tunable CO2 pump laser (� = 9.7µm) is focused

through a pinhole in the front copper mirror into a 5mm⇥14.3cm copper tube filled with 13CH3F

gas. The lasing transition is brought into resonance with the cavity by a copper-plunger rear mirror

that adjusts the cavity length, and the resulting laser power emerges from the same pinhole, after

which it is detected by a heterodyne receiver. The different rotational levels are characterized by

a rotational quantum number J , its projection quantum number K, and the vibrational state V` to

which it belongs.24, 25 For symmetric-top molecules, there are two degenerate symmetry types, A

and E,11, 24 due to nuclear-spin interactions. In 13CH3F, the pump process only couples to type-A

molecules: the coincidence between the 9P(32) line of the pump laser and the R3(4) ro-vibrational
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transition in 13CH3F produces two rotational population inversions, the “direct” J = 5 ! 4 (with

K = 3, type A) inversion in V3 with frequency 245.351 GHz, and a corresponding “refilling” ro-

tational transition in the type A ground vibrational level V0 with frequency 248.559 GHz (Fig. 1).1

The heterodyne receiver distinguishes the lasing transitions and measures their intensity as a func-

tion of pressure and the input pump power. Figure 3 shows that the refilling transition produces

the most terahertz power in a manner that depends nonlinearly on the input pump power, but the

direct transition thrives over a much broader range of pressures. In contrast with traditional OPFIR

lasers, these pressure-dependent behaviors in our compact OPFIR laser do not bottleneck with in-

creasing pump power on either transition, and increasing power allows higher-pressure operation,

so even stronger emission and higher pressures are achievable.

To understand the lack of power/pressure saturation, a thorough model of OPFIR laser opera-

tion must capture many different physical processes. Gas-phase molecules typically have hundreds

to thousands of thermally populated rotational energy levels in the same vibrational modes as the

pumped states (L ! U). It has previously been shown that rapid collisional thermalization main-

tains a Boltzmann distribution of population across most rotational states within a given vibrational

level V` and symmetry type (A or E); consequently, they may be modeled as a thermal pool.6, 9–11

This thermal-pool approximation dramatically simplifies models of the collision physics by reduc-

ing the number of levels that must be individually included and collision cross sections that must

be known to those few most closely connected to L and U. Nevertheless, after the pump excites

molecules from L to U, a complicated set of collisional relaxation processes ensue, both bimolecu-

lar rotational energy transfer and molecular diffusion to the walls for ro-vibrational thermalization,
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so that population inversions between L+1 and L (refilling) and U and U�1 (direct) occur in a

manner that depends sensitively on the input pump power, pressure, radial population distribution,

cavity length, and cavity mode. Because wall collisions are the primary pathway for vibrational

relaxation in OPFIR lasers and the diffusion rate goes as 1/pR2 for pressure p and cell radius R,

typical large-diameter glass OPFIR lasers require operation at low pressure, while small-diameter

metallic cells are favored for high-pressure operation with the tradeoff of increased ohmic losses

at the lasing frequency.

Various models have been developed in an attempt to understand the inversion process.1–4 A

troubling limitation in all these models, shown in Fig. S2 in the Supplementary Information (SI),

was that they exhibited an artificial bottlenecking of the gain at high pressures, regardless of the

input pump power, rendering them unable to explain high-pressure lasing such as that shown in

Fig. 3. Ref. 8 addressed the problem of high-pressure bottlenecking by including more vibrational

levels, but the model was too oversimplified and incomplete to provide useful quantitative guidance

for cavity design, and the lack of an efficient numerical solver prohibited any attempt at a more

realistic model.

Retaining the spirit of Ref. 8, we construct a far more complete model that quantitatively de-

scribes how this artificial bottlenecking is overcome through the collisional excitation of molecules

into hundreds of excited vibrational levels in compact OPFIR lasers. In our new model, whose

complete mathematical details are provided in Methods, the degrees of freedom in the rate equa-

tions include axial molecular speed v, radial position r, time t, and different energy levels including
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nonthermal rotational levels and vibrational thermal pools. By calculating separate populations at

each v, unlike previous work, we can accurately model inhomogeneous broadening and spectral

hole burning (SHB) effects on the Doppler-broadened pumped infrared transition and the resulting

pressure-broadened terahertz gain profile. By additionally modeling each population density as

a function of r, the overlap between the inversion and the cavity mode is calculated for an accu-

rate estimation of the weighted gain coefficient. In the efficient regime where the pump intensity

reaches the entire cavity (i.e. infrared absorption, spectral hole burning, and saturation effects do

not cause the pump intensity to decay strongly before reaching the end of the cavity), the popula-

tions can be approximated as uniform in z with an effective z-averaged pump intensity (different

from the input pump intensity, see SI), which greatly simplifies the calculations. Given a set of

nonlinear rate equations, most authors evolve them in time until the steady state is obtained,1, 10

but this approach is severely inefficient, especially at high pressures where timescales for different

relaxation processes diverge widely. Instead, we solve for the steady state directly, without time

evolution, as a system of millions of coupled nonlinear equations, with computational cost equiv-

alent to less than 100 time-evolution steps. The enormous computational improvement allows us

to include not only millions of population degrees of freedom but also many physical processes

that other authors neglected or approximated. In particular, we include dipole–dipole collisions

between rotational states,13 symmetry-preserving thermalization (SPT, also called K-swap pro-

cesses) between nonthermal rotational states and vibrational thermal pools, V-swap process,11, 24

non-resonant collisions among thermal pools,24, 25 molecule–wall collisions,1, 10 and spatial diffu-

sion.1 For the inhomogeneously-broadened pump absorption,25 we include Doppler, AC-Stark,26
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and pressure27 broadening of velocity subclasses, and we determine the average pump intensity

self-consistently, including SHB and pump saturation, with the absorption coefficient calculated

from the populations. Given rate equations for the populations Nk(v, r, t) of each level k (see

Methods), by setting @Nk/@t = 0 we obtain a nonlinear system of equations for the steady-state

populations Nk(v, r). From the calculated radially-dependent population inversions, gain profiles,

and lasing mode geometry, the output of the model is the predicted lasing power Io, calculated

using modified standard formulas27 with a novel self-consistent characteristic time as described in

Methods.

Even with the thermal pool simplification and steady-state computation efficiency, the sheer

complexity of the inversion process makes it extremely challenging to model accurately. Previous

models needed to make many simplifying assumptions, and the reason they produced artificial

bottlenecking at high pressures was conjectured to be their inclusion of only two key vibrational

levels,8, 10 e.g. V0 and V3 for 13CH3F. The difficulty of including more vibrational levels seems

almost insurmountable at first: although the energies of hundreds vibrational levels are known,25

the relaxation processes among them are not known quantitatively and are infeasible to measure.

To deal with that problem, a crucial theoretical innovation of our work is to describe those levels

implicitly via an effective temperature (different from the ambient temperature!) that is determined

self-consistently from the few collisional cross sections whose values are known. Specifically, we

make the ansatz that vibrational transitions are rapid enough to “thermalize” those levels with a

Boltzmann distribution described by an effective temperature Tv, so they may be grouped together

into a population pool V⌃, for both A and E symmetries, as shown in Fig. 1(b). This is similar to the
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experimentally justified thermal-pool assumption9, 11 that maintains a constant temperature among

rotational states within a given symmetry type and vibrational level. The main justification of

this ansatz is that thermalization among vibrational states is collisional, meaning the rates increase

with pressure, while vibrational-state relaxation occurs through diffusion to the walls, which goes

as the inverse of pressure. Therefore, the higher the pressure, the more vibrational thermalizing

collisions occur before diffusion to the walls relaxes the excitation, and so our model becomes more

accurate precisely in the high-pressure regime where these extra vibrational levels are relevant to

the inversion.

To implement this thermalization ansatz, the populations of V0 and V3 are calculated ex-

plicitly, and we then assign the effective temperature of the remaining vibrational levels to be

Tv = (EV3 � EV0)/kBlog(NV3/NV0), where EV`
and NV`

are the energy and population of level

V`. Tv must be determined self-consistently by our nonlinear solver, simultaneously with NV3 and

NV0 , because any population assigned to NV⌃ according to Tv is removed from NV3 and NV0 . If

we replace these effective vibrational levels with an explicit 6-level model (or even a 3-level model

as in previous work1–4), but include all the other processes of our model, we find that the gain artifi-

cially bottlenecks similar to previous work: the gain disappears above 700 mTorr for all input pump

powers (see Fig. S2 in SI). Therefore, we confirm the conjecture that including a complete set of

vibrational levels through V⌃ eliminates high-pressure bottlecking. Indeed, Fig. 3 shows excellent

agreement between the experimentally measured power (a) and the predictions of our model (b),

with no free parameters except for the overall scaling, even for pressures > 1 Torr where previous

models exhibited bottlenecking. In the dotted parts of Fig. 3(b), the pump is highly focused in the
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front of the cavity and quickly decays to nearly zero (< 2%) by the back of the cavity, in which

case our model’s approximation of an effective z-uniform pump strength is inaccurate, and hence

the slight mismatch with experiment is unsurprising. Accurately modeling this attenuated-pump

regime is relatively unimportant because, as described below, that regime “wastes” the end of the

cavity, and it is preferable to use a shorter cavity.

The agreement between theory and experiment allows us to use the theory to assess the

attainable quantum efficiency of the laser accurately and quantitatively, a parameter which was

difficult to measure in our experiment because only a fraction of the emitted photons were detected

by our heterodyne receiver (see Methods). Figure 3(c) plots the predicted lasing threshold and

differential quantum efficiency (DQE) at the threshold, defined as ⌘d = dPout
dPpump

/ ⌫out
⌫pump

. The figure

shows that the direct transition has lower pump threshold, but its DQE is smaller than the refilling

transition (which can reach as high as 64%). We also obtain the total quantum efficiency (QE),

defined as ⌘t = Pout
Ppump

/ ⌫out
⌫pump

, which is theoretically bounded by 100% from the Manley–Rowe

limit:27 the highest achievable power conversion efficiency is the ratio of output and pump fre-

quencies. Our computed QE can be as high as 29% at 350 mTorr for the refilling transition and, as

explained below, can increase to 39% in an optimized cavity. As shown in Fig. 2, both QE values

are considerably larger than those attained in previous commercial OPFIR lasers.

The remarkably high QE and DQE are an unexpected benefit of high pressure operation,

especially for the refilling transition. The model indicates that as pressure increases, Tv also in-

creases as more of the pumped molecules are collisionally transferred from V3 to V⌃ and are
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therefore removed from the V0 and V3 A-type thermal pools that quench the refilling and direct

inversions, respectively. DQE measures the likelihood that each additional pump photon above

threshold produces an additional terahertz photon at the threshold, and the high DQEs seen at the

highest operational pressures mean that both inversions are increasingly efficient as bottleneck-

ing traps molecules in higher vibrational levels. In other words, below threshold most pumped

molecules are quickly lost from the levels associated with the inversions due to rapid collisional

thermalization, but just above threshold for a given pressure, sufficient collisional redistribution

and equilibration of population has been achieved that additional pump photons simply add to the

strength of the inversions. This is particularly true for the refilling transition, where the inversion

with L+1 is produced as the pump laser removes molecules from L. The efficiency of the direct

transition is lower and less sensitive to pressure because the pumped molecules placed in U are

quickly removed by collisional processes. Consequently, the model indicates that it is the refill-

ing transitions, not the direct transitions typically used in traditional OPFIR lasers, that are most

attractive for compact, high pressure, efficient OPFIR lasers.

With this full understanding of the lasing physics at all pressures, we can finally explore

and optimize the cavity geometry to maximize the THz power for compact OPFIR lasers. In

particular, we consider the choice of cavity length and radius. Performing parameter variation

with our model indicates that output power is maximized by a cavity length of roughly 1/2↵p,

where ↵p is the average pump absorption coefficient (see SI), so here we define Lo = 1/2↵p to

be the “optimal” cavity length. Fortunately, operating with this cavity length also ensures the

validity of our z-averaged pump-intensity approximation, since Lo is several times smaller than
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the length where this approximation begins to fail due to nonuniform pump intensity. Calculating

Lo is nontrivial because ↵p itself depends on cavity length (see SI), so Lo must be obtained by

a self-consistent nonlinear search. Figure 4(a) shows the optimal cavity length as a function of

pressure with three different radii R = 0.15cm, 0.25cm, and 0.4cm, with pump power set at 10W.

Because pump absorption increases with increasing pressure, we can see that higher pressures favor

shorter cavities. The increase in optimal cavity length with decreasing cavity diameter derives from

the increasing pump intensity, the associated increase in AC-Stark broadening and SHB, and the

increasing saturation of the pumped L ! U transition for a given input pump power. Given that

our cavity length was maintained at approximately 14.3cm for all our measurements, the model

indicates that the experimental drop in OPFIR power with increasing pressure is caused in part by

excess cavity length and incomplete pumping of the entire volume. Another design improvement

can be achieved by placing the front pinhole at an optimized position: one chooses the pinhole

location to increase the output flux of the lasing mode, which increases both the output power and

the efficiency by decreasing the fraction of power lost to Ohmic absorption. For example, the TE01

mode28 has a maximum flux intensity around r = 0.48R, so an off-center pinhole will achieve

larger lasing power, as shown schematically in Fig. 1(a). We compute the effect of the pinhole

location by calculating the TE01 flux through the hole in SI.

With the input pump power set at 10W, the predicted output power for cavities of optimized

length and pinhole position is shown in Fig. 4(b). Comparison with Figs. 3(a,b) indicates how

severely the high-pressure lasing is hampered by excess cavity length. For optimized cavities, the

maximum output power can reach 31mW, which is 39% of the Manley–Rowe limit. Cavities with
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a larger radius of R = 0.4cm can achieve slightly higher output power at low pressures (around

100 mTorr). However, low pressure indicates longer cavity length (around 50cm) from Fig. 4(a).

In contrast, 0.15cm diameter cavities shorter than 20cm can generate output power about 25%

of the Manley–Rowe limit in a wide range of pressure above 400 mTorr. This requirement for

widely adjustable cavity lengths is in stark contrast to traditional fixed geometry OPFIR lasers,

typically 10cm in diameter and 1 meter in length.17 Our analysis explains why these huge cavities

are inefficient, can only operate at very low pressures, and may not be long enough!

Our compact laser is 1000⇥ smaller in volume while delivering 10⇥ greater efficiency than

previous OPFIR lasers at this wavelength. This is shown in Fig. 2, where the quantum efficiency

normalized by the Manley–Rowe limit is plotted for both our experimental setup and our optimized

compact laser, as well as for the best commercial OPFIR lasers. The Manley–Rowe limit indicates

that for a given input pump power and quantum efficiency, output power increases linearly with

decreasing lasing wavelength, so our analyses suggest that future OPFIR lasers can produce even

higher powers with a careful choice of cavity and gas. Moreover, we have only scratched the

surface of the design possibilities offered by our ability to model the full physics of OPFIR lasers

accurately, and we believe that many further discoveries await the extension of our approach to

new gases (e.g. for shorter-wavelength operation) and new cavity designs.

Methods

Experimental measurements. The pump beam from a grating-tuned Apollo CO2 laser (Model

570), producing as much as 15W on the 9P(32) line at 9.657 µm, was focused through a 1mm
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diameter pinhole in a gold-coated copper plate by a 10cm focal length ZnSe lens into the 0.5cm

diameter, 14.3cm long OPFIR laser cavity with a base pressure of < 10�4 Torr and a transmitted

laser power 2/3 of the incident power (e.g. 10W input pump power at maximum output). The

cavity was composed of copper tubing with a gold-coated cylindrical copper plunger inserted into

the rear of the cavity to adjust the cavity length while using a bellows to maintain a vacuum seal.

In each measurement for a given pressure and pump power, the plunger was adjusted to tune the

cavity resonance either to the direct or refilling transition, then the detuning of the CO2 laser was

adjusted with a piezoelectric transducer mounted on a pump cavity mirror to maximize the OPFIR

laser output intensity. The 1.2mm wavelength laser radiation strongly diffracted from the 1mm

diameter pinhole, so only a fraction was captured for detection through a series of copper pipes,

copper mirrors, and Teflon lenses. Attenuators with unknown absorbance were used to limit the

power reaching the detector to ensure it remained in the linear-response regime. A Virginia Diodes

heterodyne receiver operating in the 220–330GHz band was used to measure the frequency and

strength of the OPFIR laser emission. The width of the measured emission lines was less than

3MHz, determined not by the laser but by the detection bandwidth of the spectrum analyzer used

to display the intermediate frequency.

Theoretical model. The infrared pump creates non-thermal rotational populations N r

` and non-

equilibrium populations of vibrational thermal pools Nv

p , and the theoretical goal is to predict

these differences N from the equilibrium (unpumped) populations and their consequences for THz

gain. Our semiclassical theoretical model consists of a set of rate equations giving Ṅ = @N/@t

for both N r

` and Nv

p . Below, we begin by describing these rate equations (which include various
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transitions, coupling to the pump, and an effective-temperature model for unknown vibrational

levels), then explain how the Ṅ = 0 steady state is found, and finally how the output power is

extracted self-consistently from the populations. Additional technical details are presented in SI.

The rotational-level rate equations for the symmetry type A being pumped are given by:

Ṅ r

` (v, r, t) =
X

`0

��``0N
r

` (v, r, t) + �`0`N
r

`0(v, r, t)

�
�
�SPT

`p + �VS

`p

�
N r

` (v, r, t)

+Rpump(v, r, t)

+Dr2N r

` (v, r, t).

(1)

Here, population density N r

` (v, r, t) depends on molecular axial (the direction of the pump beam)

velocity v, position r, time t, and energy level `. Because the problem is axisymmetric, we sim-

plify r to only the radial position, eliminating the axial dependence by an averaging procedure

described in SI. The first two terms in equation (1) describe dipole–dipole collisions, with �``0 de-

noting the transition rate from ` ! `0, obtained from �``0 = ntothvreli�``0 , where ntot is the total

population density, hvreli is the thermally averaged relative velocity between molecules, and �``0

is the collision cross section measured to be 320Å2 between adjacent rotational levels.13 The sec-

ond line in equation (1) describes both a symmetry-preserving thermalization (SPT) process that

moves non-thermal population in rotational level ` to its associated vibrational thermal pool p with

the same A or E symmetry type,11 and a slower “V-swap” (VS) process that moves non-thermal ro-

tational population to both A and E thermal pools with an equal probability.11 Their cross sections

are11, 24 �SPT = 137Å
2 and �VS = 21Å

2 at room temperature. The Rpump(v, r, t) term involves
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only levels L and U as the L!U transition rate induced by absorption of the pump laser:25

Rpump(v, r, t) =


N tot

L
(v, r, t)� gL

gU
N tot

U
(v, r, t)

�
pL!U · (�l,U � �l,L), (2)

in which N tot

L
(v, r, t) and N tot

U
(v, r, t) are the sum of non-thermal and thermal population for

levels L and U, gL and gU are the degeneracy of the two levels, and the transition probability is

given by pL!U = 8⇡3

3h2c
|hJ 0,K,V+1|µ|J,K,V i|2

⇡R2

⇥
P forw

pump
f forw

b (⌫, ⌫p) + P back

pump
fback

b (⌫, ⌫p)
⇤
. Here, h is the

Planck constant, c is the speed of light, R is the cell radius, |hJ 0, K, V + 1|µ|J,K, V i|2 is the

measured25 dipole matrix element 0.027 Debye2 for the pump transition, Ppump is the effective z-

averaged pump power, and fb(⌫, ⌫p) is the area-normalized lineshape function including pressure27

and AC-Stark26 broadening. Both forward (incident direction of pump beam, or +z) and back-

ward (�z) directions are included due to the reflection of the back mirror. The formulae for Ppump

and fb(⌫, ⌫p) are further discussed in SI. The final term in equation (1) describes the spatial dif-

fusion with a diffusion coefficient D = 1

3
hvabsi`mf where hvabsi is the averaged absolute velocity

and `mf is the mean free path.1 We discretized the diffusion equation with a second-order finite-

difference approximation in cylindrical coordinates and with a spatial resolution 10µm divided by

pressure/Torr (since higher pressures have smaller `mf that requires finer resolution), with boundary

conditions described below. As mentioned above, we approximate the populations as uniform in z

with an averaged pump power, which is accurate in the optimal regime where the pump intensity

mostly “fills” the cavity, and allows us to solve only a 1d (radial) diffusion equation.

The rate equations for the vibrational thermal pools are dominated by collisions with the

cell walls (which introduces a radial dependence) and inter-molecular collisions. For a symmetry
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type S (= A or E), they are:

Ṅv

p,S(r, t) =
X

p0

��pp0N
v

p,S(r, t) + �p0pN
v

p0,S(r, t)

+ ṄVS

p,S(r, t)

+
X

`

"
�S,A�

SPT

`p +
�VS

`p

2

#Z
dvN r

` (v, r, t)

+Dr2Nv

p,S(r, t).

(3)

(Unlike the rotational populations, we do not distinguish the vibrational levels Nv

p,S by axial veloc-

ity v since they do not directly absorb the pump.) The first two terms describe the intermolecular

collision between vibrational level p ! p0 and vice versa, for instance between V3 and V6 with

a cross section �V6!V3 = 3.21Å
2.11 V-swap transitions also occur among vibrational states, de-

scribed by the second line in equation (3). We consider the most common form of this collision

between a V3A and a V0E molecule: V3A + V0E $ V0A + V3E.11 The third line in equation

(3) describes the SPT and VS processes between non-thermal rotational level ` and the vibrational

thermal pool p, as described in equation (1). The final term describes the diffusion process similar

to above.

Although we use a standard Neumann boundary condition (@N/@r = 0) for rotational lev-

els to represent impermeable walls, we define a different vibrational-level boundary condition that

expresses relaxation via molecule–wall collisions. Similar to previous work,1 we assume that wall

collisions “thermalize” the vibrational levels and redistribute molecules into all possible vibra-

tional levels of the same symmetry S according to a Boltzmann distribution characterized by Twall.

Similar to “surface-reaction” boundary conditions used in chemistry,29 we use a Robin boundary
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condition:

�D
@Np

@r
= v̄(1� qp)Np/2� v̄qp

X

p0 6=p

Np0/2, at r = R (4)

in which qp is the population fraction of vibrational level p for a Boltzmann distribution at the

wall temperature (Twall = 300K) and v̄ is the average velocity of the population flux perpendicular

to the wall. A detailed derivation in SI shows v̄ = hvabsi/2. There is an extra factor of 1/2

in equation (4) because only half of the population is moving towards the wall. (Note that the

diffusion term Dr2N already captures motion of molecules to/from the wall, so the purely local

boundary condition here is more correct than the nonlocal collision rate used in past work.1)

Effective vibrational temperature (EVT) model. As mentioned in the main text, more higher-

lying vibrational levels must be included in the high-pressure regime. Although the energies

of these vibrational levels are known,25 the millions of relaxation processes among them are

infeasible to measure. To solve this problem, we propose to model all accessible vibrational

levels with one expandable thermal pool V⌃ which contains all 120 vibrational levels higher

than V3 up to 6959 cm�1 (⇠ 35kBTwall), taking into account the specific energies and degen-

eracies of each. We argued in the main text that due to fast relaxation processes, all vibra-

tional levels satisfy a Boltzmann distribution with a spatially varying temperature Tv that is de-

termined self-consistently by the population density of V0 and V3 for both A and E symmetries:

T S
v = ��E

kB
1

log(Ntot
3,S/N

tot
0,S)

where �E = E3 � E0 is the energy difference between V3 and V0.

In order to maintain the Boltzmann distribution for V⌃, we introduce transition rates between V3

and V⌃ that satisfy �3!⌃

�⌃!3
= exp

⇣
E3�

P
k2V⌃

gkEk

kBTS
v

⌘
, and, by taking the limit �3!⌃, �⌃!3 ! 1, we

obtain N⌃,S(r) = exp
⇣

E3�
P

k2V⌃
gkEk

kBTS
v

⌘
N3,S(r) for the steady state.
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Numerical Solver. The nonlinear rate equations are solved directly by setting Ṅ` = 0 and Ṅp = 0

in Eqs. (1, 3). The nonlinearity of the rate equations arises from the pump term, V-swap collision

between vibrational levels, and the EVT model. Our nonlinear solver is based on fixed-point iter-

ation with Anderson acceleration,30 which is convenient because it does not require us to compute

an explicit Jacobian matrix and makes it easy to add new physics and modify the Ṅ equations.

Typically, we have ⇡ 5 ⇥ 105 degrees of freedom (20 energy levels ⇥ 50 radial points ⇥ 500

velocity subclasses). The solution typically converges within 20 Anderson iterations.

Output Power. The lasing output power can be obtained by matching terahertz absorption ↵THz

with the gain:

↵THz =

R
V �(⌫, r)|E(r)|2drR

V |E(r)|2dr
, (5)

where ↵THz is the cavity loss, including ohmic loss and leakage through the front window. Ohmic

loss can be computed analytically for the modes of a hollow metal waveguide,28 and the lowest-

loss mode is TE01, but which mode lases will depend on the degree of radial and frequency overlap

between the gain and mode profiles. Since the lasing mode pattern could not be observed directly

in the experiment, we used the ↵THz from TE01 for all curves except for refilling lasing with input

pump power 6.6W. The 6.6W experimental refilling curve exhibited a jump in amplitude compared

to adjacent powers, and we believe that this is due to a different mode being excited by a mistuned

cavity; using ↵THz and the mode profile from TE22 best fit the data, indicating that the model could

enable us to determine which mode is lasing without directly measuring the mode profile! Since

the gain is a small perturbation (< 0.01%) to the permittivity, the electric field E(r) is accurately

approximated by the passive waveguide mode. For convenience, we normalize the mode so that
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R
V |E(r)|2dr =

R
V dr = V . The gain coefficient �(⌫, r) at lasing frequency ⌫ and radial position

r is then expressed as27

�(⌫, r) =

Z
dv

�N(v, r)�(⌫)

1 + �|E(r)|2/�s
(6)

which includes contributions from all velocity subclasses. �N(v, r) is the population inversion ob-

tained by solving the rate equations, and �(⌫) is the transition cross section: �(⌫) = �2g(⌫)/8⇡tsp,

where � is the lasing wavelength, the spontaneous emission lifetime tsp is taken to be 10sec,1 much

longer than all other transition lifetimes in the considered system (see SI for a detailed discussion:

tsp has little effect on the peak efficiency), and g(⌫) = 1

⇡
�⌫P

(⌫�⌫v)2+�⌫2P
is the pressure-broadening

lineshape function (⌫v is the center frequency for molecules with velocity v). �s is the saturated

photon flux density: �s = 1/⌧s�(⌫), where ⌧s is the characteristic time for the lasing transition.

Unlike a three- or four-level system in which ⌧s can be analytically derived,27 our system requires

⌧s to be obtained numerically from the model. A stimulated emission rate wst is introduced be-

tween the two lasing levels, and ⌧s is obtained by fitting the population inversion as a function

of wst: �N(wst) = �N(wst = 0)/(1 + ⌧swst). Once all �N , �, �s and cavity mode E(r) are

known, we numerically solve equation (5) for the intensity of photon flux density � by a Newton

method. Finally, the THz output power is obtained from Io = h⌫AT�/2, where A is the cross

section of the cavity and T is the transmission coefficient, computed by integrating the waveguide

mode’s Poynting flux over the output pinhole (since the pinhole is comparable to the wavelength;

see SI). The formula is divided by 2 to count only photons flowing in the outward direction.27
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Figure 1: Schematics of (a) the laser cavity and (b) molecular energy levels of 13CH3F. The cavity
is a copper tube with a movable back wall used to tune the cavity frequency to match the laser
gain, pumped with an IR laser through a pinhole in the front window. The energy levels consist
of vibrational levels V`, with A and E symmetries,11 composed of rotational levels with quantum
numbers J and K. The IR pump excites a transition between levels L and U as shown, and lasing
occurs for both the “direct” inversion between U and U–1 and the “refilling” inversion between
L+1 and L.
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Figure 2: Total quantum efficiency27 (QE = THz power out / IR power in) of commercial OPFIR
lasers17 and our compact OPFIR laser, normalized by the Manley–Rowe (MR) limit27 on QE. Our
experimentally demonstrated laser achieves a QE that is 29% of the MR limit (29% of 0.8%) which
improves to 39% after cavity optimization. Both are 10⇥ better than the best commercial laser at
the same frequency (0.25THz, or 1.2mm wavelength), while being 1000⇥ smaller—in fact, we
show theoretically that this efficiency boost is mainly due to the fact that our cavity is so much
smaller.
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Figure 3: (a) Experimental and (b) theoretical THz laser output power as a function of gas pressure,
for various input pump powers (3.3W, 6.6W, and 10W), and for both the direct (solid lines) and
refilling (dashed lines) transitions. Quantitative agreement is obtained even though the theoretical
model has no adjustable parameters; in contrast to previous work,1–4 our theory captures the fact
that higher powers allow operation at higher pressures, in part because of a novel technique to
model a large number of high-energy vibrational levels. The dotted parts of the direct lasing curves
represent an inefficient regime in which the pump intensity is nearly zero in the back of the cavity.
In this case our model’s approximation of an effective z-uniform pump strength is inaccurate, but
it is not desirable to operate in this regime. Our model also predicts (c) the input pump power at
lasing threshold (blue) and the differential quantum efficiency (DQE, yellow)27 normalized by the
MR limit at threshold versus pressure for both inversions. The refilling inversion is both higher
power and higher efficiency, with a modeled DQE that can reach 64%.
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Figure 4: Theoretical predictions of (a) the roughly optimal cavity length for various radii and (b)
the optimized laser power, both as a function of pressure for an input pump power of 10W. The
cavity length is optimized to equal half the decay length of the pump beam. The output power (b) is
shown for the optimal cavity length at each pressure and radius so that each data point is a separate
cavity design. The peak efficiency is increased from 29% of Manley–Rowe in the experimental
cavity to 39%, but more importantly this optimization allows efficient operation at a wider range
of high pressures and hence in smaller cavities.
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Supplementary Information

1 Broadening linewidth

As explained in Methods, fb(⌫, ⌫p) is the area-normalized lineshape function (including pres-

sure1 and AC-Stark2 broadening), ⌫p is the pump frequency, and ⌫ is the transition frequency

of molecules with axial velocity v. By the Doppler effect, ⌫±
= (1 ± v/c)⌫0 for the forward (+)

and backward (�) directions, where ⌫0 = 31.04THz is the intrinsic transition frequency between

L and U for 13CH3F. The lineshape function f
±
b (⌫

±
, ⌫p) is a convolution of pressure and AC-Stark

broadening effects:

f
±
b (⌫

±
, ⌫p) = fp(⌫

±
, ⌫p) ⇤ f±

S
(⌫

±
, ⌫p)

where

fp(⌫
±
, ⌫p) =

1

⇡

�⌫P

(⌫± � ⌫p)
2 +�⌫

2

P

is the pressure broadening (with linewidth �⌫P =
1

2⇡�⌧ ⇡ 15MHz/Torr with �⌧ being the mean

collision time3), and the AC-Stark broadening f
±
S
(⌫

±
, ⌫p) is also approximately Lorentzian with

linewidth2

�⌫
±
S
=

|hJ 0
, K, V + 1|µ|J,K, V i|

2⇡h̄

s
2P±

pump

⇡✏0cR
= 0.38

q
P±
pump

/Watt

R/cm
.

(Note that the average pump power P±
pump

is different for the +z direction and the reflected power

in the �z direction, as described below.) The convolution of two Lorentzians is also a Lorentzian
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with the sum of the linewidths, so we obtain

f
±
b (⌫

±
, ⌫p) =

1

⇡

�⌫b

(⌫± � ⌫p)
2 + (�⌫±)2

with

�⌫
±
= �⌫p +�⌫

±
S
.
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2 Pump absorption coefficient ↵ and the average pump power

The pump absorption coefficient as a function of radial position r is3

↵
±
(r) =

8⇡
3
⌫p

3hc
|hJ 0

, K, V + 1|µ|J,K, V i|2
Z

g
±
(v)


N

tot

L (v, r)� gL

gU
N

tot

U (v, r)

�
dv

in which h is the Planck constant, c is the speed of light, R is the cavity radius, ⌫p is the pump

frequency, and |hJ 0
, K, V + 1|µ|J,K, V i|2 is the measured3 dipole matrix element 0.027 Debye2

for the pump transition. In the integral over velocity, g±(v) = f
±
b (⌫

±
(v), ⌫p) denotes the pump

absorption spectrum for molecules with axial speed v, so that g±(v) is larger if the pump frequency

is closer to the Doppler-shifted L!U transition frequency at that v. Note that ↵±
(r) is different in

forward (+) and backward (�) directions since they have different Doppler shifts and powers. The

spatially averaged pump absorption coefficient is obtained by:

↵
±
=

R R

0
↵
±
(r)rdr

R R

0
rdr

.

Note that ↵p in the main text for the definition of optimal cavity length (Lo = 1/2↵p) is the same

with ↵
+. Figure S1 shows IR absorption spectrum ↵

+ in the forward direction at 100 mTorr and

400 mTorr with various input pump powers. ⌫0 = 31.0427 THz is the frequency of the L–U

transition, while the CO2 pump laser is incident at a frequency 25MHz > ⌫0. The figure shows a

dip at the pump frequency with nonzero pump power because of reduced population in the L state.

The width of the dip increases with pressure and pump power, as described in the previous section,

becoming so broad at 400 mTorr that its effect is hard to see. There is an extra dip at �25MHz due

to the Doppler-shifted pump reflection at the back mirror of the cavity.

Since the pump photon can travel back and forth inside the cavity, reflecting off of the front

3



Figure 1: IR absorption spectrum at 100 mTorr and 400 mTorr with various input pump powers.

⌫0 = 31.0427 THz is the frequency of the L–U transition, while the CO2 pump laser is incident at

a frequency 25MHz > ⌫0.

and back gold-coated copper mirrors, we sum all the trips to obtain an effective z-averaged pump

power in each direction. The loss for one round trip is � = e
�↵+L�↵�L

R1R2, where R2 = 0.95 is

the reflection on the back mirror at IR frequency 31.04THz incident on a gold-coated copper plate,

R1 = 0.96 ⇥ 0.95 is the reflection of the front mirror considering an extra 4% leakage from the

pinhole. Then the average pump power is computed by a z-averaging procedure:

P
+

pump
=

P0

1� �

R L

0
exp (�↵

+
z) dz

L
=

P0

1� �

1� exp(�↵
+
L)

↵+L

P
�
pump

=
P0R2 exp(�↵

+
L)

1� �
· 1� exp(�↵

�
L)

↵�L

where P0 is the input pump power. The average pump power decreases as pressure and IR absorp-

tion coefficient increase for a given input pump power.
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3 Artificial bottlenecking at high pressures

As mentioned in the main text, the reason why previous models produced artificial bottlenecking

at high pressures was conjectured to be their inclusion of only a few vibrational levels. Here, we

demonstrate this artificial bottlenecking phenomena by including all the rotational levels as shown

in Fig. 1 of the main text, but only the 6 vibrational levels that are most directly connected to the

lasing energy levels. In this 6-level model, we used measured transition rates between the vibra-

tional levels, and all of the collisional and diffusion processes mentioned in the main text were

included. The only difference is that it has no effective temperature to model the “missing” higher-

lying vibrational levels, and the population of all 6 vibrational levels is solved exactly. The output

THz powers with different input pump powers (3.3W, 6.6W, and 10W) are shown in Fig. S2. A

clear pressure bottlenecking is seen around 700 mTorr, above which no lasing is achieved. This

confirms the long-held understanding that including only few vibrational levels in the model in-

duces artificial high-pressure quenching of the inversion through vibrational bottlenecking.
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Figure 2: THz output power as a function of gas pressure, for various input pump powers (3.3W,

6.6W, and 10W), and for both the direct (solid lines) and refilling (dashed lines) transitions by a

6-level model. It is clearly observed that no gain is obtained above 700 mTorr by the 6-level model,

known as high-pressure artificial bottlenecking.
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4 Radial distribution of population inversion and effective temperature Tv

The radial distribution of the population inversion �NU for the direct transition at 100 mTorr, 200

mTorr, 400 mTorr, and 1 Torr with 10W input pump power is plotted in Fig. S3. Since the primary

pathway for vibrational relaxation is molecule–wall collisions, the population inversion is larger

at radial positions closer to the cavity wall, as shown in the figure. This effect is crucial for cavity

design.

cavity wall

Figure 3: Radial distribution of population inversion for direct transition at 100 mTorr, 200 mTorr,

400 mTorr, and 1 Torr, with 10W input pump power.

The effective vibrational temperature Tv provides a deeper understanding of the system dy-

namics. Figure S4 shows a contour plot of Tv for the A-type vibrational thermal pools as a function

of radial position and molecular pressure, for an input pump power of 10W and a cavity length
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L = 14.3cm. The effective vibrational temperature is higher in the cell center, where the pump is

more saturated and the gain is smaller. One would normally expect Tv to increase with pressure

due to faster intermolecular collisions, but in this figure Tv actually decreases above 400 mTorr

because the z-averaging of the pump power lowers the pump rate and brings the effective temper-

ature down. If we plot the Tv with optimal cavity length (which decreases with pressure so that the

whole cavity remains pumped) as discussed in the main text, the result (shown in Fig. S5) exhibits

effective temperatures that increase with pressure as expected.

cavity wall

Figure 4: The effective temperature Tv (in Kelvin) of type-A vibrational thermal pools as a func-

tion of radial position and molecular pressure, for an input pump power of 10W. The cavity is

5mm⇥14.3cm as in experiments.
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Figure 5: The effective temperature Tv (in Kelvin) of type-A vibrational thermal pools as a function

of radial position and molecular pressure, for an input pump power of 10W. The cavity length is

optimized to match the IR absorption: Lo = 1/2↵p, and the cavity diameter is 5mm.

5 THz gain spectrum

The small-signal gain spectrum is computed as

�0(⌫) =

Z
dv h�N(v)i �(⌫)

where h�N(v)i is the spatially averaged population inversion of velocity subclass v, and �(⌫) is

the transition cross section (see Methods). Typical gain spectra are plotted in Fig. S6 at 100 mTorr

and 400 mTorr with the input pump power equal to 3W and 10W. The width of THz gain spectrum

is proportional to the gas pressure due to pressure broadening.
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Figure 6: THz gain spectrum at 100 mTorr and 400 mTorr with the input pump power equal to 3W

and 10W. The width of spectrum is proportional to the gas pressure due to pressure broadening.

6 Spontaneous-emission lifetime

To compute the gain coefficient and the output power, the spontaneous emission lifetime tsp is

taken to be 10 seconds in Methods. In fact, the precise value of tsp has little effect on the peak

output power far above threshold. In this section, we first demonstrate the effect of tsp by explicit

numerical calculations (re-running our model with different values of tsp, shown in Figure S7), and

then we present a simple analytical explanation for the lack of influence of tsp .

Figure S7 shows the numerical output power of both direct (solid lines) and refilling (dashed

lines) lasing as a function of pressure with the input pump power equal to 10W, and with three

different spontaneous emission lifetimes tsp: 1sec (blue), 10sec (red), and 100sec (green). The
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Figure 7: Numerical output power of both direct (solid lines) and refilling (dashed lines) lasing

versus pressure with the input pump power equal to 10W, and with three different spontaneous

emission lifetimes tsp: 1sec, 10sec, and 100sec. tsp has little effect on the peak output power far

above threshold for both lasing transitions.

output power curves are very close, especially in the high-power regions far above the threshold,

for both direct and refilling inversions. The biggest effect of tsp is on the high-pressure cutoff for

the direct transition, but in this (uninteresting, low-efficiency) high-pressure regime our model’s

z-averaging assumption is inaccurate as discussed in the main text.

It is straightforward to show analytically that the effect of tsp approximately cancels in the

high-power regime. In that regime, far above threshold, � � �s, and Eq. (5) from the main text
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becomes

↵THz ⇡
1

V

Z Z
�N(v) �(⌫)

� ⌧s �(⌫)
dv dr =

h�Ni
�⌧s

where h�Ni is the spatially averaged population inversion and � is the transition cross section

(which depends on tsp). This equation yields an approximate flux density � ⇡ h�Ni/⌧s↵THz, in

which � has cancelled and therefore the dependence on tsp has vanished.
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7 Average velocity of the population flux into the wall

The boundary condition for the vibrational levels, discussed in Methods, is written in terms of v̄,

the average molecule speed in the direction perpendicular to the wall (say, +x). In this section,

we briefly review the computation of v̄ by standard methods. In particular, the molecule velocities

follow a Maxwell–Boltzmann distribution

fMB(vx) =

r
m

2⇡kBT
e
� mv2x

2kBT

By averaging the velocities in the +x direction, one obtains

v̄ =

R1
0

vxfMB(vx)dvxR1
0

fMB(vx)dvx
= 2

Z 1

0

vxfMB(vx)dvx

=

r
m

2⇡kBT

Z 1

0

e
� mv2x

2kBT d(v
2

x) =

r
2kBT

⇡m
.

On the other hand, the average absolute velocity is

hvabsi =
✓

m

2⇡kBT

◆3/2 Z
|v| exp

✓
� mv

2

2kBT

◆
dv =

r
8kBT

⇡m
.

Therefore v̄ = hvabsi/2.
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8 Transmission through the output pinhole

THz radiation transmitted through the output pinhole affects the calculation of total loss, lasing

threhold, and the output power. Instead of using the ratio of pinhole area and the cavity cross sec-

tion,1 which is only correct for a uniform intensity (e.g. a plane wave), the transmission coefficient

T is computed by integrating the waveguide mode’s Poynting flux over the output pinhole. (This

is also an approximation, which is valid because the 1mm diameter pinhole is not small compared

to 1.2mm wavelength. The radiation through a very subwavelength hole would require an entirely

different approach.4) For a circular waveguide’s TEnm mode,5

Prad =

Z

S

1

2
Re (E⇥H

⇤
)z dr =

Z
TE

nm

2

Z

S

(|Hr|2 + |H�|2)dr

in which Z
TE

nm = (k0/�nm)Z0 is the modal wave impedance. k0 is the free space wave number,

�nm =

p
k
2

0
� (p0nm/R)2 is the propagation constant, and Z0 is the vacuum impedance. Here

we consider the TE01 mode in a circular waveguide, since it has the lowest Ohmic loss. It is

straightforward to do a similar analysis for other cavity modes.

The radiated power through an area S for the TE01 mode is Prad =
ZTE
01
2

⇣
�01p001
Rk2c,01

⌘2 R
S
J
2

1

⇣
p001r
R

⌘
dr

where p
0
01

= 3.83 is the first zero of the Bessel function derivative J
0
0
(x) and kc,01 = p

0
01
/R is

the wavenumber corresponding to the TE01 mode. The total radiation over the whole waveguide

cross section is Ptot =
ZTE
01
2

⇣
�01

k2c,01

⌘2

2⇡
R p001
0

J
2

1
(x)xdx =

⇡ZTE
01 �2

01

2k4c,01
p
02
01
J
2

0
(p

0
01
). In the experiment,

the pinhole is centered at r = 0 with radius equal to R/5, so the radiation through the pinhole is
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Ppinhole =
⇡ZTE

01 �2
01

k4c,01

R p001/5

0
J
2

1
(x)xdx. So the effective transmission coefficient is

Texp =
Ppinhole

Ptot

=

R p001/5

0
J
2

1
(x)xdx

R p001
0

J
2

1
(x)xdx

⇡ 0.016.

Texp is smaller than the area ratio 0.04, due to the fact that the Poynting flux of TE01 mode is

higher around r = 0.48R, instead of r = 0. This indicates that an off-centered pinhole would

give larger transmission, which would increase the lasing efficiency (and the threshold power) by

increasing the THz radiation rate compared to the Ohmic loss rate. Here, we compute the optimized

transmission coefficient for a pinhole centered at r = 0.48R with the same radius R/5:

Topt =

R
2⇡

0

R Rpinhole

0
J
2

1
(p

0
01
x(r, ✓)/R) rdrd✓

2⇡
R R

0
J
2

1
(p

0
01
r/R)rdr

⇡ 0.075,

where x(r, ✓) =

p
r
2

0
+ r2 � 2rr0 cos ✓ with r0 = 0.48R is the pinhole center. This enhanced

transmission coefficient for an off-center pinhole increases both the output power and the efficiency

by decreasing the fraction of power lost to Ohmic absorption.
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