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Abstract: We predict the existence of transverse electric (TE) plasmons
in bilayer graphene. We find that their plasmonic properties are much more
pronounced in bilayer than in monolayer graphene, in a sense that they
can get more localized at frequencies just below h̄ω = 0.4 eV for adequate
doping values. This is a consequence of the perfectly nested bands in bilayer
graphene which are separated by ∼ 0.4 eV.
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of broadband slow and subwavelength lght in air,” Phys. Rev. Lett. 95, 063901 (2005).
6. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ ,” Sov. Phys.

Usp. 10, 509 (1968).
7. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41 (2007).
8. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966 (2000).
9. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305,

788 (2004).
10. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A.

Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666 (2004).
11. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of

graphene,” Rev. Mod. Phys. 81, 109 (2009).
12. K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and

A. K. Geim, “Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene,” Nat. Phys. 2,
177 (2006).

13. X. F. Wang and T. Chakraborty, “Coulomb screening and collective excitations in a graphene bilayer,” Phys. Rev.
B 75, 041404 (2007).

14. G. Borghi, M. Polini, R. Asgari, and A. H. MacDonald, “Dynamical response functions and collective modes of
bilayer graphene,” Phys. Rev. B 80, 241402 (2009).

15. X. F. Wang and T. Chakraborty, “Coulomb screening and collective excitations in biased bilayer graphene,” Phys.
Rev. B 81, 081402 (2010).

16. R. Sensarma, E. H. Hwang, and S. Das Sarma, “Dynamic screening and low-energy collective modes in bilayer
graphene,” Phys. Rev. B 82, 195428 (2010).

17. B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” N. J. Phys.
8, 318 (2006).

18. E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,”
Phys. Rev. B 75, 205418 (2007).

#141100 - $15.00 USD Received 13 Jan 2011; accepted 15 Mar 2011; published 25 May 2011
(C) 2011 OSA 6 June 2011 / Vol. 19,  No. 12 / OPTICS EXPRESS  11236



19. S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99, 016803 (2007).
20. F. Rana, “Graphene terahertz plasmon oscillators,” IEEE Trans. Nanotechnology 7, 91 (2008).
21. C. Kramberger, R. Hambach, C. Giorgetti, M. H. Rümmeli, M. Knupfer, J. Fink, B. Büchner, L. Reining, E.
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Plasmons are self-sustained collective electron excitations which are of great interest both for
fundamental physics and potential technological applications. Plasmon is a paradigmatic quan-
tum many-body phenomenon studied in condensed matter physics [1]. Closely related exci-
tations are surface plasmons which hold promise as a possible tool for controlling light at
subwavelength scales [2–5], giving rise to the field of nanophotonics, and they also play an
important role in metamaterials [6–9]; plasmons in essentially two-dimensional (2D) struc-
tures are similar in this respect to surface plasmons. These reasons are a great motivation for
studying plasmonic excitations and their properties in novel materials. Two such materials are
monolayer [10, 11] and bilayer (see e.g., [11, 12]) graphene. Graphene is a 2D sheet made
of carbon atoms organized in a honeycomb lattice [10, 11], whereas bilayer graphene con-
sists of two such layers stacked on top of each other in a certain way [11, 12]. While there
are only a few studies of plasmons in bilayer graphene [13–16], these collective excitations
have attracted substantially more attention in monolayer graphene [17–23]. Several years ago it
was predicted that graphene, besides the ordinary longitudinal plasmons [transverse magnetic
(TM) modes] [17–20, 23], also supports unusual transverse plasmons [transverse electric (TE)
modes] [19]. These excitation are possible only if the imaginary part of the conductivity of a
thin sheet of material is negative [19]. On the other hand, such a conductivity requires some
complexity of the band structure of the material involved. For example, TE plasmons cannot
occur if the 2D material possesses a single parabolic electron band. From this perspective,
bilayer graphene, with its rich band structure and optical conductivity (e.g., see [24] and refer-
ences therein), seems as a promising material for exploring the possibility of existence of TE
plasmons. Here we predict the existence of TE plasmons in bilayer graphene. We find that their
plasmonic properties are much more pronounced in bilayer than in monolayer graphene, in a
sense that the wavelength of TE plasmons in bilayer can be smaller than in monolayer graphene
at the same frequency.

Throughout this work we consider bilayer graphene as an infinitely thin sheet of material
with conductivity σ(q,ω). We assume that air with εr = 1 is above and below bilayer graphene.
Given the conductivity, by employing classical electrodynamics, one finds that self-sustained
oscillations of the charge occur when (see [19] and references therein)

1+
iσ(q,ω)

√
q2 −ω2/c2

2ε0ω
= 0 (1)

for TM modes, and

1− μ0ωiσ(q,ω)

2
√

q2 −ω2/c2
= 0 (2)

for TE modes. The TM plasmons can considerably depart from the light line, that is, their
wavelength can be considerably smaller than that of light at the same frequency. For this reason,
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when calculating TM plasmons it is desirable to know the conductivity as a function of both
frequency ω and wavevector q. However, it turns out that the TE plasmons (both in monolayer
[19] and bilayer graphene, as will be shown below) are quite close to the light line q= ω/c, and
therefore it is a good approximation to use σ(ω) = σ(q = 0,ω). Moreover, these plasmons are
expected to show strong polariton character, i.e., creation of hybrid plasmon-photon excitations.
At this point it is worthy to note that if the relative permittivity of dielectrics above and below
graphene are sufficiently different, so that light lines differ substantially, then TE plasmon will
not exist (perhaps they could exist as leaky modes).

The conductivity σ(ω) = ℜσ(ω) + iℑσ(ω) is complex, and plasmon dispersion is char-
acterized by the imaginary part ℑσ(ω), whereas ℜσ(ω) determines plasmon losses, or more
generally absorption of the sheet. From Eq. (2) it follows that the TE plasmons exist only if
ℑσ(ω)< 0 [19].
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Fig. 1. The band-structure of bilayer graphene. The two upper bands (as well as the two
lower bands) are perfectly nested and separated by γ ∼ 0.4 eV; q0 = γ/h̄vF . Horizontal
line depicts one possible value of the Fermi level, and arrows denote some of the possible
interband electronic transitions. See text for details.

In order to calculate the imaginary part of the conductivity, we employ Kramers-Kronig
relations and the calculation of absorption by Nicol and Carbotte [24], where ℜσ(ω) [see
Eqs. (19)–(21) in Ref. [24]] was calculated by using the Kubo formula. The optical conductivity
has rich structure due to the fact that the single-particle spectrum of graphene is organized in
four bands given by [24],

ε(k)
γ

=±
√

1
4
+

(
h̄vFk

γ

)2

± 1
2
, (3)

where vF = 106 m/s, the parameter γ ≈ 0.4 eV is equal to the separation between the two con-
duction bands (which is equal to the separation between the valence bands). The band structure
[Eq. (3)] is calculated from the tight binding approach, where vF is connected to the nearest-
neighbour hopping terms for electrons to move in each of the two graphene planes, and the
distance between Carbon atoms in one monolayer (see Ref. [24]), whereas γ is the hopping
parameter corresponding to electrons hoping from one layer to the other and vice versa [24].
The two graphene layers are stacked one above the other according to the so-called Bernal-type
stacking (e.g., see Ref. [11]). We emphasize that the perfect nesting of bands gives rise to the
stronger plasmon like features of TE plasmons in bilayer than in monolayer graphene. The four
bands are illustrated in Fig. 1 along with some of the electronic transitions which result in ab-
sorption. Absorption depends on γ and the Fermi level μ; the latter can be changed by applying
external bias voltage.
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The imaginary part of the conductivity can be calculated from ℜσ(ω) by using the Kramers-
Kronig relations

ℑσ(ω) =−2ω
π

P
∫ ∞

0

ℜσ(ω ′)
ω ′2 −ω2 dω ′, (4)

which yields

ℑσ(ω)

σ0
= f (Ω,2μ)+g(Ω,μ ,γ)

+ [ f (Ω,2γ)+g(Ω,γ,−γ)]Θ(γ −μ)
+ [ f (Ω,2μ)+g(Ω,μ ,−γ)]Θ(μ − γ)

+
γ2

Ω2

[
Ω

π(2μ + γ)
+ f (Ω,2μ + γ)

]

+
γ2

Ω2

[
Ω
πγ

+ f (Ω,γ)
]

Θ(γ −μ)

+
γ2

Ω2

[
Ω

π(2μ − γ)
+ f (Ω,2μ − γ)

]
Θ(μ − γ)

+
a(μ)
πΩ

+
2Ωb(μ)

π(Ω2 − γ2)
, (5)

where

f (x,y) =
1

2π
log

∣∣∣∣
x− y
x+ y

∣∣∣∣ ,

g(x,y,z) =
z

2π
(x− z) log |x−2y|+(x+ z) log |x+2y|−2x log |2y+ z|

x2 − z2 ,

a(μ) =
4μ(μ + γ)

2μ + γ
+

4μ(μ − γ)
2μ − γ

Θ(μ − γ),

b(μ) =
γ
2

[
log

2μ + γ
γ

− log
2μ − γ

γ
Θ(μ − γ)

]
, (6)

σ0 = e2/2h̄, Θ(x) = 1 if x ≥ 0 and zero otherwise, and Ω = h̄ω . Here we assume zero tem-
perature T ≈ 0, which is a good approximation for sufficiently doped bilayer graphene where
μ � kBT . Formulae (5) and (6) are used to describe the properties of TE plasmons.

In Fig. 2 we show the real and imaginary part of the conductivity for two different values of
the Fermi level: μ = 0.4γ and μ = 0.9γ (we focus on the electron doped system μ > 0). Because
plasmons are strongly damped by interband transitions, it is instructive at this point to discuss
the kinematical requirements for the excitation of electron-hole pairs. If the doping is such that
μ < γ/2, a quantum of energy h̄ω (plasmon or photon) with in-plane momentum q = 0 can
excite an electron-hole pair only if h̄ω > 2μ (excitations from the upper valence to the lower
conduction band shown as red dot-dashed line in Fig. 1). If μ > γ/2, the (q= 0,ω)-quantum can
excite an electron-hole pair only for h̄ω ≥ γ (excitations from the lower to the upper conduction
band shown as green solid lines in Fig. 1 occur at h̄ω = γ). If the plasmon/photon has in-plane
momentum q larger than zero, then interband transitions are possible for smaller frequencies
(see blue dashed lines in Fig. 1). There is a region in the (q,ω)-plane where electron-hole
excitations are forbidden due to the Pauli principle (e.g., see figures in Refs. [14–16]). Because
plasmons are strongly damped by these interband transitions (this is Landau damping), in our
search for the TE plasmons, we focus on their dispersion curve in the regime where electron-
hole pair formation is inadmissible (via first-order transition).
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Fig. 2. The real (red dotted lines) and imaginary (blue solid lines) part of the conductivity of
bilayer graphene for two values of doping: μ = 0.4γ (a), and μ = 0.9γ (b). The conductivity
is in units of σ0 = e2/2h̄, and the frequency is in units of ω0 = γ/h̄. The δ -functions in
ℜσ(ω) at ω = 0 (intraband transitions) and ω = γ/h̄ (transitions from the lower to the
upper conduction band depicted as green solid arrows in Fig. 1) are not shown (see [24]).

In Fig. 3 we show the plasmon dispersion curves for μ = 0.4γ and μ = 0.9γ; in the spirit of
Ref. [19], we show Δq = q−ω/c as a function of frequency ω . Plasmons are very close to the
light line and thus one can to a very good approximation write the dispersion curve as

Δq ≈ ω
8ε2

0 c3
ℑσ(ω)2. (7)

To the left (right) of the vertical red dotted line in Fig. 3, plasmon damping via excitation of
electron-hole pairs is (is not) forbidden.
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Fig. 3. The plasmon dispersion curve Δq = q−ω/c vs. ω for μ = 0.4γ (a), and μ = 0.9γ
(b) is shown as blue solid line. To the right of the vertical red dotted lines plasmons can be
damped via excitation of electron-hole pairs, whereas to the left of this line these excitations
are forbidden due to the Pauli principle. Black dashed line in (b) (which closely follows
the blue line) corresponds to Eq. (8). The wave vector is in units of q0 = γ/h̄vF , and the
frequency is in units of ω0 = γ/h̄.

For μ = 0.4γ , ℑσ(ω) is smaller than zero for ω in an interval of frequencies just below 2μ .
From the leading term in ℑσ(ω) we find that departure of the dispersion curve from the light
line is logarithmically slow: Δq0<μ<γ/2 ∝ [log |h̄ω − 2μ |]2. The same type of behavior occurs
in monolayer graphene [19].

However, for μ = 0.9γ , one can see the advantage of bilayer over monolayer graphene in
the context of TE plasmons. The conductivity ℑσ(ω) is smaller than zero in an interval of
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frequencies below γ . In this interval, the most dominant term to the conductivity is the last one
from Eq. (5), that is,

Δqγ/2<μ<γ ≈
ωσ2

0

2π2ε2
0 c3

[
h̄ωb(μ)

γ2 − (h̄ω)2

]2

. (8)

This approximation is illustrated with black dashed line in Fig. 3, and it almost perfectly
matches the dispersion curve. Note that the singularity in ℑσ(ω) at h̄ω = γ is of the form
1/(γ− h̄ω), whereas the singularity at h̄ω = 2μ is logarithmic (as in monolayer graphene [19]).
As a consequence, the departure of the dispersion curve from the light line in bilayer graphene
is much faster for μ > γ/2 than for μ < γ/2, and it is faster than in monolayer graphene as
well [note the two orders of magnitude difference between the abscissa scales in Figs. 3(a) and
3(b)]. Thus, we conclude that more pronounced plasmonic features of TE plasmons (shrink-
ing of wave length which is measured as departure of q from the light line) can be obtained
in bilayer graphene. The term in ℑσ(ω) which is responsible for TE plasmons for μ > γ/2
corresponds (via Kramers-Kronig relations) to the absorption term b(μ)δ (h̄ω − γ) [24], which
arises from the transitions from the first to the second valence band (shown as green solid ar-
rows in Fig. 1), which are perfectly nested and separated by γ . Thus, this unique feature of
bilayer graphene gives rise to TE plasmons with more pronounced plasmon like features than
in monolayer graphene.

Before closing, let us discuss some properties and possible observation of TE plasmons. First,
note that since the electric field oscillations are both perpendicular to the propagation vector q,
and lie in the bilayer graphene plane, the electric current j = σ(ω)E is also perpendicular to q.
Thus, j ·q = 0, and the equation of continuity yields that the charge density is zero (i.e., one
has self-sustained oscillations of the current). In order to excite plasmons of frequency ω with
light of the same frequency, one has to somehow account for the conservation of the momentum
which is larger for plasmons. Since the momentum mismatch is relatively small, the standard
plasmon excitation schemes such as the prism or grating coupling methods (e.g., see [2] and
references therein) could be used for the excitation of these plasmons.

In conclusion, we have predicted the existence of transverse electric (TE) plasmons in bilayer
graphene. Since they exist very close to the light line, these plasmons are expected to show
strong polariton character, i.e., mixing with photon modes. However, due to the perfectly nested
valence bands of bilayer graphene, their dispersion departs much more from the light line than
in monolayer graphene.
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