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Surface-Plasmon-Assisted Guiding of Broadband Slow and Subwavelength Light in Air

Aristeidis Karalis,™ E. Lidorikis, Mihai Ibanescu, J. D. Joannopoulos, and Marin Solja¢i¢

Center for Materials Science and Engineering and Research Laboratory of Electronics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, USA
(Received 23 April 2005; published 2 August 2005)

A class of axially uniform waveguides is introduced, employing a new mechanism to guide light inside
a low-index dielectric material without the use of photonic band gap, and simultaneously exhibiting
subwavelength modal size and very slow group velocity over an unusually large frequency bandwidth.
Their basis is the presence of plasmonic modes on the interfaces between dielectric regions and the flat
unpatterned surface of a bulk metallic substrate. These novel waveguides allow for easy broadband
coupling and exhibit absorption losses limited only by the intrinsic loss of the metal.
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Precise control of the properties of light propagation
along linear waveguides has always been of great impor-
tance in the world of optics. One challenging goal has been
to guide light through air in the presence of higher-refrac-
tive-index dielectric media, since light tends to localize
itself mostly in these high-index regions. So far, photonic
band gaps [1] and other index-guiding based mechanisms
[2] have been ways to address this issue. Another very
desirable attribute for modern nanophotonics is the trans-
verse confinement of guided light in subwavelength-size
regions. Such compact guidance has been accomplished by
exploring surface-plasmon modes [3] into designing wave-
guides, by using conductors of a finite cross section [4—8],
combinations of surface plasmons with band gaps [9], or
coupled-metallic-nanoparticle chains [10]. Finally, great
effort has been focused recently on slowing down light
[11], but so far the proposed systems have the undesirable
characteristic of a fairly small frequency bandwidth, which
is often described as a fundamental limit to the achievable
delay-bandwidth product [12]. In this Letter, we introduce
a new class of axially uniform waveguides that simulta-
neously accomplish all the desired properties discussed
above. They are implemented on a simple flat conducting
surface of a large extent and rely on a nonperiodic dielec-
tric distribution on top of this substrate to generate trans-
versely confined guided modes. The new mechanism for
confining much more field in the low-index region rather
than in the adjacent high-index region is based on the
relative dispersive characteristics of different surface-
plasmon modes present in these structures and is appli-
cable within a finite but wide frequency regime that abides
by certain cutoff conditions. Supporting subwavelength
modal sizes is a common property of all surface-plasmon
structures. Similarly, supporting very slow group velocities
over unusually large frequency bandwidths is a unique
physical property inherent to most layered plasmonic
structures, that is, to our knowledge, pointed out here for
the first time and extended to linear waveguides. The
promises of the proposed systems in the field of nano-
photonics are exciting, including a significant reduction
in all (spatial, temporal, and operational energy) device
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scales. These novel waveguides can easily be coupled to
other systems and exhibit propagation losses minimized to
the limit set by the intrinsic loss of the metallic substrate.

Surface plasmons (SP) are well known [3] electromag-
netic waves that propagate along the interface between a
dielectric material and a metal of permittivities € and €,,.
The conditions for the existence of a SP are TM polariza-
tion (magnetic field parallel to the interface) and €, <
—€ < 0. For example, with €,(w) = 1 — w%/w?, where
w , is the bulk plasma frequency, these conditions lead to a
high frequency cutoff at w.(€) = w,/+/1 + €. The disper-

sion relation k = a)/c\/e - €,(w)/[€ + €,(w)]is shown by

curves A and B in Fig. 1 for two different dielectric
materials (€; > €, in insets A and B).

Several extensions of this simple structure in the form of
planar layers have been examined in the past [13,14]. As
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FIG. 1. w-k diagrams (solid curves) for conventional layered
surface-plasmon structures (insets A—D) with €,; = 4 and €,,, =
1 (air). Layer thicknesses d/ A, = 0.015, 0.02, and 0.025 are
used for C and D (solid + dotted curves). The light lines
w/w, = \Jek/k, (“vertical” dashed lines) and the cutoff fre-
quencies .(€)/w, = 1/4/1 + € (horizontal dashed lines) are
shown.
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motivation for the designs that follow, let us consider here
the case of a ¢;-dielectric layer of thickness d inserted
between a €,,,-dielectric space and the plasmonic material
€, (Fig. 1, inset C). The dispersion relation of the mode
(curve C) is implicitly determined by tanh(u;epd) =
—(1+ up /o) /(ni/Uiow + u,/uy;),  where — upy =
€' VK> — w?/c?ey and similarly for u,, and u,. The
localization of the mode to the metal-€,; interface increases
with the wave vector k. Therefore, for low frequencies w
(and small k) the mode has most of its energy stored in the
outer dielectric €,,,,, and thus follows the behavior of a SP
in €, (curve B), while in the limit of large k the mode
does not ““see’’ much of the outside material, and thus must
asymptote to the SP in €,; (curve A). The smaller the
thickness d the higher the wave number k where this
change in behavior happens, as depicted in Fig. 1 with
dotted curves. Furthermore, for d smaller than a certain
threshold, the mode exhibits a regime of negative group
velocity. Similarly, if the two dielectric materials are in-
terchanged (inset D), there still exists a vertically confined
(namely, exponentially decaying as |y| — oo) surface wave
(curve D), which now has opposite asymptotic behavior
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FIG. 2 (color). w-B diagrams (red curves calculated via the
effective-index method) for SP-based waveguide structures [in-
sets (i)] with w/A, = 0.25 and d/), = 0.02. The SP modes
A-D (from Fig. 1) of the individual vertical slices (thick solid
black curves) and the €;; light line (dashed black curve) limit
the regions where fully confined modes can exist. The H,
component of the first two modes at (a) w/ w, = 0.705 and
(b) w/wp = (.65 is shown [insets (ii) and (iii) calculated via a
finite-difference frequency-domain eigenmode solver].

from C in the two limits of low w and high k values, so its
group velocity is always positive.

A significant remark for both cases is that sufficiently
decreasing the layer thickness can lead to arbitrarily small
group velocity (negative or positive, respectively) over the
entire large bandwidth [w (€y), w (€,y)], and actually
with small group velocity dispersion. This is a unique
physical property for layered plasmonic systems, since
any other known system that can support very low group
velocities (such as electromagnetically induced transpar-
ency or a photonic crystal) does so only within a narrow
frequency band. This striking attribute of unlimited ‘‘fre-
quency bandwidth over group velocity’ ratio carries over
immediately to linear plasmonic waveguides, such as the
ones discussed below.

All of the above surface plasmons are vertically (along
y) confined, but infinitely extended in the x-z plane of
propagation. We would like to design linear, axially uni-
form waveguides that can support modes guided along z
[with exp(iBz — iwt) dependence], but confined also in the
lateral x direction. Consider, for the x-y cross section of
such a waveguide, a semi-infinite vertical slab of width w
and permittivity €, placed on top of the semi-infinite
space of conducting medium €,, and surrounded by a
higher-index medium e€,;, as shown in inset (i) of
Fig. 2(a). If we divide this waveguide cross section into
three vertical slices, then the central slice has an average
dielectric permittivity lower than that of the exterior slices.
Thus, one might expect that light confinement in x is not
possible, by invoking the common index-guiding mecha-
nism. However, we now show that this structure, devoid of
a photonic band gap or a finite-sized conductor, supports
well-defined guided modes with the desired property of
having much more energy stored inside the €,,,, slab rather
than the neighboring €,; space. The central slice, if exam-
ined individually being uniform in x-z, supports the SP B
from Fig. 1, which lies in the w-k plane above the SP A,
supported by the high-index outer slices. Let now SP B
travel inside the plasma-€,,,, slice at a small angle with the
z axis (namely, with a large k, = 8 component of its total
wave vector k). Then, upon incidence on the €,; boundary
(uniform in z), it couples to A only for frequencies below
(&), in which case, in order to preserve 8 phase match-
ing along z, A has to radiate outwards in x (since 8 < kg <
ky = k2, = ki — B> > 0), excluding, indeed, the possi-
bility for the existence of confined guided modes.
However, above this cutoff the SP mode A disappears,
and the lowest order mode of the outer slices that can
lead to radiation laterally or vertically becomes just the
first mode within the continuum described by the ey,; light
line. This line now lies above the SP B (w/c\/e_hi' < kp) for
a narrow frequency range below w.(€),y), SO B can now
couple only to decaying modes inside the high-index side
claddings. Thus in this frequency regime fully transversely
confined guided modes can exist, with propagation con-
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stants B between the €, light line and B, and with a
significant part of the energy stored inside the low-index
core. To our knowledge, this is a new guiding mechanism
that is enabled by the unique cutoff properties of SP modes.

A simple method to quickly obtain an estimate for the
propagation constants 3, of the guided modes is the
effective-index method [15]: each ith vertical slice is re-
placed by a homogeneous dielectric layer of refractive
index equal to the effective index [ng; = k;/(w/c)] of
the lowest order mode (k;, ¢;(y)) supported within this
slice; the complicated cross section of the waveguide
thus gets reduced into a simpler but approximately equiva-
lent dielectric layered structure, whose modes can easily be
found, making sure that the most appropriate polarization
of the fields is used. The method is most accurate when the
transverse profiles ¢;(y) of these lowest order modes are
nearly the same, so that the couplings to higher order
modes can be safely ignored. To implement the method
for the structure of Fig. 2(a), the effective indices of the SPs
B and A should be used, respectively, for the central and
outer layers of the resulting symmetric slab waveguide,
while the E field is chosen to be polarized along y, since B
and A are TM polarized with the H field in the x-z plane.
The resulting dispersion curves are shown in Fig. 2(a). An
infinite number of modes is found just below the w =
w.(€y) cutoff line, since in that frequency region k —
oo, for curve B, so the effective slab waveguide is one with
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FIG. 3 (color). - diagrams (red curves) for SP-based wave-
guide structures [insets (i)] with w/A, = 0.25 and d/A,, = 0.02
and the H, component of their first two modes at
(@) w/w, = 0.444 and (b) ©/w, = 0.47 [insets (ii) and (iii)].

an infinite index contrast, which indeed supports an infinite
number of modes inside its core. The effective-index
method is within 1% accuracy for the fundamental mode
by comparison to “exact’ (but technically difficult) simu-
lations with a finite-difference frequency-domain (FDFD)
eigenmode solver for a few frequencies. The exact TM-like
H, component of the first two modes is shown in insets (ii)
and (iii) and is, indeed, found to be 2 orders of magnitude
larger than the TE-like components.

The case in which the central low-permittivity slab has a
finite height d is shown as inset (i) in Fig. 2(b) and can be
treated similarly. The only difference here is that the inner
slice alone supports the SP D from Fig. 1, which still lies
above the SP A for w < w_(€p;), but below the € light line,
the lowest order mode supported by the sides for w.(€;;) <
o < w,(€,,). Therefore, for a fixed frequency w within
this broad range, guided modes exist with wave numbers 3
between the e,; light line and D, since only in this regime is
the field composed only by decaying modes in the outer
regions. The effective-index method indicates how the
dispersion curves approximately look [Fig. 2(b)], while
the FDFD modes are again shown in insets (ii) and (iii).

For completeness, let us examine also the case where the
values of the dielectrics for the structures presented in
Fig. 2 are interchanged, leading to those in insets (i) of
Figs. 3(a) and 3(b). The existence of modes is less surpris-
ing for these configurations, since they do follow the
simple index-guiding intuition and do not rely on the
presently introduced mechanism. The effective-index
method can again be employed using for the central slice
the SPs A or C [for Figs. 3(a) and 3(b), respectively] and for
the outer slices the SP B, yielding the results shown in
Fig. 3. The FDFD fundamental mode [insets (ii)] is again at
most 1% away from this estimate. Note that for Fig. 3(a)
the conserved wave number 8 must be larger than that of
the mode supported by the €, — € — €, Waveguide
standing vertically on top of the substrate for the field to
couple only to decaying modes in y. More interestingly, the
modes in Fig. 3(b) exhibit for small enough d a frequency
regime of negative group velocity [13], bounded by two
points of zero group velocity at nonzero wave vector 3 that
can be used to design very high-Q cavities of nanoscale
size [16].

An important lesson is that the index-guiding mecha-
nism rigorously relates to appropriate effective and not
actual material indices. In all-dielectric structures the two
follow the same trend, but this is not the case always in the
presence of metals, allowing for the design of what are
basically surface-plasmon effective-index-guiding wave-
guides, like the ones above. Note, also, that care should
be taken when searching for guided modes of such struc-
tures, in that the correct way to interpret the concept that
the dispersion line of a mode lies above or below another is
to compare their effective indices n.s = ck/w at a fixed
frequency w and not the other way around, so perhaps the
terms left and right, respectively, seem more appropriate.
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The new class of waveguides presented here has features
that could greatly impact the field of nanophotonics by
being able to shrink light in all (spatial, temporal, and
energy) scales. At the very high k values close to w,, the
characteristic longtitudinal length and the transverse modal
profile have sizes in the nanoscale, allowing for very high
device compactness. The fact that the group velocity can
become arbitrarily small by decreasing the core thickness
is a very important attribute that can be used to signifi-
cantly enhance nonlinearities or gain in devices, and thus to
reduce their required operational power [17]. Furthermore,
the amazing feature that this is achievable over a large
bandwidth and with small group velocity dispersion im-
plies that these waveguides can slow down and shrink
ultrashort pulses without introducing distortion to them,
thereby allowing for exciting promises in the fields of
ultrafast optics, optical memories, and quantum comput-
ing [11].

An issue arising is whether light could be efficiently
coupled into or out of these waveguides over their entire
large bandwidth of operation. This should be feasible,
since by adiabatically tapering the size of the waveguide
core its modal dispersion curve can be brought into broad-
band alignment with that of a regular waveguide mode, and
this is the key requirement for all coupling mechanisms.

The most important concern relating to the feasibility
of surface-plasmon optics is that metallic structures ex-
hibit high losses at optical wavelengths. The intrinsic loss
of conducting materials stems from inelastic scattering
mechanisms, namely, the predominant electron-phonon
scattering, which can be suppressed only by cooling, and
electron-electron scattering, which is negligible compared
to the first at room temperatures. Additional loss mecha-
nisms are those due to elastic scattering, as from impurities
or imperfections of the crystal, dictating the need for very
clean samples, and from the metal crystal boundaries,
which can be very important if the geometry of the con-
ductor has features of length scale smaller than the mean
free path (I =3 pum at 7 = 300 °K for copper) [13,18].
Here lies the advantage of the currently presented plas-
monic waveguide design, in that it does not suffer from
boundary scattering, since it involves only a large bulk and
completely unpatterned metallic substrate, limiting thus
the loss only to its intrinsic (electron-phonon) part, which
can be decreased by lowering temperature. By using again
the Drude model €,(w) = 1 — w3 /(w* + iyw) to account
for losses, a calculation for the planarly layered structures
of Fig. 1 showed that their propagation characteristics stay
intact up to large k values, while absorption loss increases
as group velocity decreases and temperature increases.
Specifically, for copper (@, =5 X 10'° rad/s) at the fre-
quency where the group velocity reaches ~0.1c¢ the loss
is =58 dB/um at room temperature (T = 300°K =

y=5x108 rad/s [18]) and much lower =5.8 X
10~* dB/um at liquid He temperature (T = 4 °K = y =~
5 X 108 rad/s [18]), while for = 0.01¢ these numbers are
~72 dB/um and ~72 X 1074 dB/um for the two tem-
peratures, respectively. Lower losses might also be achiev-
able by working with polaritonic materials.
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