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Self-trapping of electromagnetic beams in vacuum supported by QED nonlinear effects
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At very high radiation field intensities in vacuum, Maxwell equations need to be modified to account for the
QED photon-photon interaction. We show that such modified equations support nondiffracting spatial radiation
solitons that propagate for very long distances without changing their shapes. These solitons, and the under-
lying self-focusing and instability effects, should be observable in the near future.

PACS number~s!: 42.50.Gy, 42.65.Tg
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A localized wave packet propagating in linear homog
neous media has a tendency to change its spatial width
propagates. However, everything in nature is nonlinear,
cluding the vacuum@1#. More specifically, at very high elec
tromagnetic field intensities, Maxwell equations need to
modified by small nonlinear terms. These terms come fr
the quantum field theory of photon-photon scattering me
ated through exchange ofvirtual electron-positron pairs, a
discovered theoretically by Euler and Heisenberg in 19
@1#. The Euler-Heisenberg approximation of the~linear plus
nonlinear! polarization of a true vacuum holds when th
wavelengths of the interacting photons are all much lon
than the Compton wavelength of the electron, and, at
same time, the field is much weaker than the QED criti
field 2m2c3/(eh). Importantly, under these conditions, the
is no absorption, i.e., no real electrons and positrons are
erated in the process@1#. ~This is not surprising, because lik
all off-resonance interactions, the real part of the suscept
ity drops off much more slowly than the imaginary pa
when the carrier frequency moves away from the reson
frequency.!

The addition of nonlinear terms to the wave equation c
sometimes influence the dynamics of the wave pack
shape, so that its dimensions do not change at all as the w
packet propagates. Such a wave packet, in which the diff
tion, which tends to expand the pulse, is exactly balanced
the nonlinear effects that are trying to shrink the pulse
loosely refered to as a soliton. Ever since solitons were
entifically documented@2#, they have fascinated scientists
many different fields. A universal nonlinear phenomen
solitons have been found in many different forms in natu
For example, they were described on surface of shallow
ter @2#, in deep sea water@3#, in plasma@4#, on the surface of
black holes@5#, for torsional waves on DNA molecules@6#,
etc. Solitons have also been studied extensively in nonlin
optical systems; both spatial@7,21#, and temporal solitons@8#
have been investigated. Solitons also appear in quantum
tems; for example, nucleons are a kind of solitons@9#.

Over the years, various authors have studied the feas
ity of using high-intensity radiation in vacuum to obser
some nonlinear effects@10#, such as four-wave mixing@11#,
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self-action@12#, vacuum birefrengence@13#, etc. In this pa-
per, we show that Maxwell equations, when modified to
count for the lowest order photon-photon QED interactio
allow for the existence of bright spatial solitons. Such so
tons are wave packets of high-intensity light, propagating
long distances in a true vacuum, without changing their
mensions. We believe that these solitons, or at least the
derlying self-focusing, will be observed in a near future
specifically designed experiments.

Up to the lowest-order correction, the nonlinear effecti
Lagrangian density is given by

L52
1

16p
FmnFmn2

j

64p
†5~FmnFmn!2

214FmnFnkFklFlm], ~1!

where j5\e4/45pm4c7, and Fmn5]mAn2]nAm is the
electromagnetic-field tensor. The first term in Eq.~1! is just
the usual clasical term, and the rest is the so-ca
Heisenberg-Euler correction@1#. There are also QED correc
tions to the Lagrangian above that include the spatial
temporal derivatives ofFmn @20#. However, we intend to
work with light of characteristic wavelengths much long
than the Compton wavelength of an electron, and also at v
high intensities, so the leading terms are in our case given
Eq. ~1!, and we can safely ignore the lowest-order corre
tions to the Lagrangian that include the spatial and temp
derivatives ofFmn. Physically, these corrections are impo
tant when the wavelength of the light is comparable to
Compton wavelength of the electron, while the Heisenbe
Euler correction is important when the electric field becom
comparable to the critical electric field. One can show t
the derivative terms are much smaller than the ones we
cluded as long as (v/vc)

2!(4/p3)(E/Ec)
2, ~please see the

Appendix!, wherevc is the Compton frequency of the elec
tron, andEc is the critical field. We are interested in th
regime where the Heisenberg-Euler correction is much m
important than the correction that involves derivatives. Ne
ertheless, we have to be careful that all proposed experim
tal verifications of our concept satisfy this requirement.

Extremizing the action with respect to the four-vector p
tential Am, one finds

“•B50, “3E1
1

c

]B

]t
50,

t,
il
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“•D50, “3H2
1

c

]D

]t
50, ~2!

whereD andH are given by

D5
]L

]E
5E14pP,

P5
j

4p
@2~E22B2!E17~E•B!B#,

~3!

H52
]L

]B
5B24pM ,

M52
j

4p
@2~E22B2!B27~E•B!E#.

The reason that the nonlinearities include precisely
E22B2 and E•B terms is that these are the only Lorent
invariant scalar combinations ofE and B fields. However,
this implies that the nonlinear effects on a beam that i
plane wave modulated by some slowly varying envelope
only of the second order; a plane wave hasE andB perpen-
dicular to each other, andE25B2 for plane waves in
vacuum. Consequently, the lowest-order nonlinear effe
vanish identically in Eqs.~3!. One could, in principle, look
into cases of very large beam divergence~beyond the
paraxial approximation!, or include corrections toP and M
that include spatial derivatives, but all of these options w
require field intensities that are many orders of magnitu
higher than the sources available today, or else require w
lengths that are unaccessible to the laser technology. Th
fore, in order to decrease the radiation intensity required
observe self-trapped beams supported by the QED non
earities in vacuum, we explore slowly varying envelopes
perimposed on top of two crossed plane waves, so that
nonlinearities in Eq.~3! do not vanish to lowest order.

We proceed by forming the wave equations starting fr
Eqs. ~2!. Although the original motivation for going to th
equations with higher-order derivatives~namely, decoupling
E andB!, appears to be lacking, equations with higher-or
derivatives are easier to analyze, and fields actually do
couple for certain relative polarizations. The wave equati
are

“

2D2
1

c2

]2D

]t2 524pH“3~“3P!2
1

c

]

]t
~“3M !J ,

~4!

“

2B2
1

c2

]2B

]t2 54pH“3~“3M !2
1

c

]

]t
~“3P!J .

The beam we intend to study is a superposition of t
plane waves, modified by a slowly varying envelope in thx
direction. The twok vectors of the two carrier waves lie i
the yz plane, and they are mirror images of each other w
respect to thexy plane, as illustrated in Fig. 1. Our ‘‘beam
is therefore infinite in thez direction, propagating in they
direction, and has a finite widtha in thex direction~see Fig.
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2!. Without nonlinear effects, the beam’s width inx would
grow as a function ofz; the beam would diffract. Our goal is
to construct a beam~a ‘‘beam’’ in space! whose shape doe
not change in thex direction as the beam propagates. In t
slowly varying envelope approximation, we takea@l,
where l is the wavelength of the carrier. Then one of t
simplestE fields that satisfies all of these requirements
given to the lowest order by

E~x,y,z,t !5
A~x!

2
$n̂ cos~k•r2vt !1n̂ cos~k•r2vt !%,

~5!

wheren̂ is any unit vector, anda means the mirror inverted
image of a around the xy plane; for example, if a
5(ax ,ay ,az) is a vector, thena5(ax ,ay ,2az). A(x) is the
slowly varying amplitude; the characteristic length scale
A(x) is given bya. From the geometry shown in Fig. 1, it i
clear thatk has no component in thex direction; alsok•n̂
50 for lowest order fields in vacuum. Consequently, spe
fying n̂,v, the dispersion relation, and the sign ofky , speci-
fies k to the lowest order uniquely.

We substitute Eq.~5! into the second equation in Eq.~2!
to find B to the lowest order, assuming 1/a!1/l:

B~x,y,z,t !5
A~x!

2
$k̂3n̂ cos~k•r2vt !

2 k̂3n̂ cos~k•r2vt !%.
~6!

Although E•B50, the other scalar combination ofE andB
appearing in Eq. ~3!, E22B25A2(x)@ny

21nx
2(kz /k)2#

3$cos(2kzz)1cos@2(kyy2vt)#%/2Þ0; as one might expect
the dc term vanishes identically. More importantly, in o
configuration of two beams propagating under an angle w
respect to each other, there is a symmetry with respect to
xy plane. Because of this symmetry, there can be no te

FIG. 1. The QED soliton is a slowly varying amplitude mod
lating two carrier plane waves. The figure shows thek vectors of
these carrier waves along with their polarization vectorsn̂. Solid
vectors refer to one of the carrier waves, and the dashed vec
refer to the other. The polarization vector of each wave is perp
dicular to thek vector to which it corresponds. Thek vectors of
both waves lie in theyz plane, and are mirror images of each oth
with respect to thexy plane. The polarization vectors of the tw
carrier waves are also mirror images of each other with respec
the xy plane.
7-2
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SELF-TRAPPING OF ELECTROMAGNETIC BEAMS IN . . . PHYSICAL REVIEW A62 043817
like cos@2(kyy1kzz2vt)# appearing inE22B2. This will
have profound consequences below. The second-harm
terms that survived combine withE andB in Eqs.~3! for P
andM , respectively, to produce the first-harmonic terms, a
also third-harmonic terms. After a few lines of algebra,
obtain nonvanishingP andM to the lowest order:

P5
j

4p
A2~x!Fny

21nx
2S kz

k D 2GE1~TOH!,

~7!

M5
j

4p
A2~x!Fny

21nx
2S kz

k D 2GB1~TOH!,

wherenx andny are components of the unit vectorn̂. In Eqs.
7, ~TOH! stands for ‘‘third-order harmonics,’’ such as tho
proportional to cos(3kzz), etc. Specifically, these terms a
proportional to cos(3kzz)cos(kyy2vt), and cos(kzz)cos@3(kyy
2vt)#. One might worry that these terms might lead to s
nificant energy drainage from the initial carrier beam. Ho
ever, as we will see below,ky is of the same order askz .
Thus these third-order harmonics do not satisfy the disp
sion relationc2(ky

21kz
2)5v2. Thereby, in any equilibrium

self-trapped shape, the corrections to Eq.~5! that they induce
have to be tiny in order to be well behaved when plugg
into Eqs.~4!; in particular, the corrections toE andB have to
beO(G/v2) smaller than the fields in Eqs.~5! and~6!. ~Here
G is the nonlinear correction to the dispersion relation
vacuum@to be defined in Eq.~9! below#; as one would ex-
pect, and as we show below, this correction is indeed tin!
In the language of nonlinear optics, this is very similar
saying that terms like cos(3kzz)cos(kyy2vt) are not phase
matched with our beam, and terms like cos(kzz)cos@3(kyy
2vt)# are asynchroneous with our beam. Therefore, b
types of third-harmonic terms can be neglected. The lack
terms like cos(3kzz)cos@3(kyy2vt)# in Eq. ~7! differs mark-
edly from the usual nonlinear optics systems. Algebraica
it is a direct consequence of the fact that there are no te
like cos@2(kyy1kzz2vt)# in E22B2, which in turn is caused
by the fact that our ‘‘carrier wave’’ is not a plane wave b
an intersection of two plane waves. Physically, one can th
of our configuration as being equivalent~apart for the bound-
ary conditions! to a beam propagating between two infin
conducting sheets parallel with thexy plane. In such a con
figuration, there is an effective dispersion created by the
ometry rather than the presence of some absorption r
nance. This is the intuitive reason why our system displ
no third-harmonic generation~THG!, although one might ex-
pect THG to occur since one normally thinks of vacuum
being essentially dispersionless.

The only thing we have to be careful about is that t
~TOH! terms from Eq.~7! can in principle~through the non-
linearity! induce terms proportional to cos(3kzz)cos@3(kyy
2vt)#, which are phase matched with the starting beam,
thus can drain the energy from the original beam. Howev
since this is only an indirect process, that requires drain
of energy from the first into the third harmonic~through the
non-phase-matched and/or asynchroneous terms negl
above!, and then back from the third harmonic into the fir
04381
nic

d

-
-

r-

d

f

.

h
of

,
s

k

e-
o-
s

s

d
r,
e

ted
t

~by interaction between those small terms and the ca
beam!, one expects the efficiency of this process to be v
significantly suppressed; therefore, it should be unobserv
for fairly long propagation distances, compared to the s
trapping length. SubstitutingE, B, P, andM from Eqs.~5!,
~6!, and ~7!, into the wave equations~4!, and keeping only
the lowest order terms, yields

¹2E2
1

c2

]2E

]t2 522jA2~x!Fny
21nx

2S kz

k D 2Gkz
2E,

~8!

¹2B2
1

c2

]2B

]t2 522jA2~x!Fny
21nx

2S kz

k D 2Gky
2B=,

whereB=5(2Bx ,By ,Bz) if B5(Bx ,By ,Bz).
Unlike any other case in nonlinear optics, where we ha

equations for the electric field only, here we have two eq
tions, one forE and one forB, which represent the sam
electromagnetic field. This is a manifestation of the full sy
metry betweenE and B in QED: the nonlinearity here is
driven neither by electric dipoles of the medium nor by ma
netic dipoles of the medium, but by the interaction of ele
tromagnetic field with itself in vacuum, for which the sym
metry betweenE and B is complete. Thus one must find
way to make these two equations consistent with each ot
The only way to do this, and to keep Eqs.~8! self-consistent
after substituting Eqs.~5! and ~6! into them, is to haveky
5kz , andn̂5 x̂. Therefore, in the case of the ansatz of Eq
(5) and (6), the two carrier waves have to intersect perpe
dicular to one another, and the radiation has to be polariz
in the x direction. After setting ky5kz and n̂5 x̂, both of
these equations reduce to

d2A~x!

dx2 1GA~x!52
j

2
A3~x!/k2, ~9!

whereG[(v/c)22(kz
21ky

2) is the correction to the disper
sion relation due to the nonlinear effects. One can think oG
as an eigenvalue that has to be specified together with
eigenfunction A(x) in order to solve Eq. ~9! self-
consistently. From Eq.~9! we see thatuGu5O(1/a2)!k2, so
this correction is small.

Equation ~9! is the famous (111)D cubic nonlinear
Schrödinger equation~NLSE! @14,21#. This equation is inte-
grable, so all of its solutions can be written in an analytic
form. The equation supports bright solitons, and solitons
all orders can be found. The lowest order soliton is given
A(x)52 sech(x/a)/(akAj), and its correspondingG5
21/a2.

Having found nondiffracting solutions, the question abo
their stability arises naturally. Stability of (111)D solitons
of Eq. ~9! has been studied extensively@14#, and there is no
doubt that these solitons are very stable. Nevertheless,
should also think about the stability of the solutions w
respect to the underlyingtwo wave equations. For the ansa
of Eqs.~5! and~6!, we have found a self-consistent solutio
only if the two carrier beams are propagating under a
angle with respect to each other. Thus one should
whether our solution is also stable under small deviations
this angle. Furthermore, one should also question the sta
7-3
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MARIN SOLJAČIĆ AND MORDECHAI SEGEV PHYSICAL REVIEW A62 043817
ity regarding the particular polarization of theE field neces-
sary for the solution in Eqs.~5! and ~6! to be valid. These
kinds of stability are much more complicated to study th
the ‘‘conventional’’ stability analyses of solitons of the cub
NLSE, because of the complicated underlying interplay
the vectorialE andB fields. Thus far, even after an intensiv
effort, we were not able to prove or disprove their stabili
Further study of the stability of these QED solitons will ha
to address these questions.

Our initial reason for investigating QED solitons in th
(111)D topology proposed above were the facts that
calculation is fully analytic, and more importantly, that th
solutions are known to be stable, at least in the context
single nonlinear equation@14# as given by Eq.~9!. Of course,
it would be much nicer to have solitons of a (211)D topol-
ogy. If nothing else, this might relax the power requireme
for experimental observation. Therefore, as an avenue
ward further research we propose forming necklace solit
@15,16# out of the QED solitons we just created, and study
their properties, and also stability. Intuitively, a neckla
soliton is the soliton solution of Eq.~9!, wrapped around its
own tail, to form a ring. It is best if the radius of the ringL
is much larger than the thickness of the ringa. In the limit of
L→`, keeping everything else fixed, the necklace soli
reduces to the soliton solution of Eq.~9!. Thus, if the QED
solitons of Eq.~9! are stable, the necklace solitons should
stable as well. Such necklace solitons offer a major adv
tage over the (111)D geometry offered above: the two su
perimposed beams propagating at 90° with respect to e
other will experimentally ‘‘walk off’’ each other, because i
any such experiment the extent of each beam in its ‘‘u
form’’ direction will be finite. Therefore, in a (111)D ge-
ometry the beams will intersect only over a finite distan
which will limit the observation length, and also the pos
bilities of many applications, like shooting these solitons b
tween planets in outer space. In contrast, the necklace
tons could experimentally exist in principle forever in
vacuum.

We point out that the group velocity of all the solitons w
described isc/&. This means that we can Lorentz boost
the frame in which they are not propagating at all. In pr

FIG. 2. The geometry of the proposed configuration. The ene
is transported along they direction, and the beam is self-trapped
the x direction; the characteristic length of the beam in thex direc-
tion is a. The two carrier waves interfere, forming interferen
fringes.
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ciple, these solitons, or at least the underlying self-focus
effects, can therefore be observed in vacuum, in space
perhaps even in a laboratory environment, as creature
stationary, nonvarying, and nonpropagating shapes that
made solely of photons. These creatures would be suppo
by the mutual interaction between the photons that make
the soliton.

Finally, it is instructive to discuss possible experimen
realizations. The solitons we propose are not observable
the laser technology available today. Nevertheless, given
rate at which the laser technology has been advancing in
recent decades, the solitons proposed here should prob
be observable within a decade or two. The peak inten
needed to support the soliton is given by approximat
«0c(l/a)2j21/p2'1037W/m2. Although 1037W/m2 is an
enormous intensity, we have a great flexibility in decreas
the intensity requirements for an experimental observa
by making the size of the soliton large compared to the c
rier wavelength. The largest laser intensities available to
areO(1024W/m2), and they are in the near-infrared@17#. On
the other hand, the shortest wavelength lasers demonst
thus far are x-ray lasers, with a carrier wavelength
O(10 nm) @18#. When designing an experiment, the first co
sideration is the available propagation length required
confirm that a beam forms a soliton~or at least to see con
siderable self-focusing effects!: the diffraction length. We
envision that such experiments will be done with ultrash
lasers pulses, so this will enormously reduce the requirem
on the total pulse energy required, to be within reach
near-future technology. A possible realization is under la
ratory conditions: the idea is to superimpose two sheets
light propagating at a 90° angle with respect to each othe
the length of the sheets in thez direction is of a size similar
to that of the propagation length in they direction, one
should be able to observe solitonic effects before the sh
‘‘walk off’’ each other. So, for example, ifl510 nm and
a/l5104, and the peak intensity is 1029W/m2 ~which cor-
responds to the fieldE56.1531015V/m), such soliton ef-
fects should be observed after a propagation distance~dif-
fraction length! of 1 m. Since the beams propagate at 9
with respect to each other, the cross section of the confi
ration has to be at least 1 m tall if we do not want the beam
to stop overlapping before we observe the effect. Thus
peak power required is 1028W. Finally, we have to check
whether this experimental configuration satisfies our assu
tion that we can ignore the corrections to the Lagrangian
Eq. ~1! that include the spatial and temporal derivatives
Fmn: i.e., is (v/vc)

2!(4/p3)(E/Ec)
2 satisfied, as explained

in the Appendix. This condition translates into 1!466 for
the parameters proposed, so neglecting the corrections to
Lagrangian, due to the derivatives, is safe.

Observations and studying of QED solitons~or of the un-
derlying effects of self-focusing and modulation instabilit!
could offer several fundamentally new aspects to physic
general. First, they would be the first experiments of phot
photon scattering in vacuum, which involve the creation
virtual electron-positron pairs. Thus far, ‘‘nonlinear optics
with QED nonlinearities in vacuum was demonstrated o
for the creation of real electron-positron pairs@19#, and the

y

7-4
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SELF-TRAPPING OF ELECTROMAGNETIC BEAMS IN . . . PHYSICAL REVIEW A62 043817
demonstration could not provide a direct quantitative m
surement of nonlinear QED effects in a vacuum. Furth
more, the solitons we described would provide a direct qu
titative test of QED vacuum nonlinearities in the regime
much higher photon wavelengths, and much smaller p
intensities than were tested so far. Moreover, in contras
previously performed QED experiments, a macrosco
number of photons would participate in the effect. Seco
exploration of the QED radiation soliton ideas might provi
a means of communicating in space by line-of-sight: o
might be able to launch a very narrow beam from a sate
orbiting the Earth to a nearby planet~or to an asteroid! and
back, in order to investigate the reflection at a pin-point p
cision. Furthermore, these ideas could be used to deliver
large powers to small, far-away objects, such as asteroid
a trajectory too close to earth and deflect them. Fina
soliton-related mechanisms of self-focusing and catastro
collapse could offer ideas for explaining astronomical obs
vations of bursts of EM radiation~gamma ray Bursts! that
are localized in space in a narrow divergence angle~self-
focused ‘‘jets’’?!. It is possible that QED-related sel
focusing might naturally occur near active stars, where
EM fields are huge. All this, together with the possibility
perhaps exciting applications, make the QED radiation s
tons and their related effects well worth studying.

In conclusion, we have shown that modified Maxw
equations in vacuum can give rise to spatial solitons~nondif-
fracting solutions!, which are supported by the nonlineari
that arises from QED photon-photon interactions at v
high radiation intensities. These solitons present an exci
physical system to be studied experimentally but there
many questions left open. Some questions about the stab
of such (111)D and (211)D solutions are yet to be stud
ied theoretically. From an experimental standpoint, we
lieve that these solitons should be observable in the n
future.

We are grateful to Professor A.E. Kaplan from Joh
Hopkins University for useful discussions and for finding t
error in our estimates for the peak intensity. In addition,
would like to thank Professor C. Callan Jr., Professor E
Prebys of Princeton University, Amir Levinson of Tel Avi
University, Professor M. Moshe, and Professor M. Reznik
of the Technion for useful discussions. This work was s
ported by the U.S. Army Research Office.
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APPENDIX

In this appendix, we determine in which regime of th
parameters are the Heisenberg-Euler corrections, the d
nant lowest-order QED corrections to the classical Lagra
ian, while the terms involving the derivatives can be n
glected, and vice versa. To simplify the algebra we work
units wherec5\51. In these units, the Heisenberg-Eul
correction@1# is given by

LHE5
e4

360p2m4 $4F217G2%, ~A1!

whereF5(B22E2)/2, andG5E•B. Similarly, the correc-
tions involving derivatives@20# are given by

LD5
e2

360pm2 H 2~]aFb
a!~]nFnb!1FabS ]2

]t22¹2DFabJ ,

~A2!

whereFab is just the usual~real! electromagnetic field ten
sor.

We would like to compareLHE and LD for an arbitrary
typical field configuration. Thus the best we can do is dime
sional analysis. Unless we are dealing with a particula
pathological field configuration,LHE'e4E4/(90p2m4),
while LD'e2E2v2/(360pm2), whereE is the electric field
magnitude andv is the carrier frequency. Thus,LD!LHE is
satisfied if and only ifv2!4e2E2/(pm2). To make this
more easily transferable between the different systems
units, we note that the Compton frequencyvc5m, while the
critical field Ec5m2/(pe) in this system of units. Thus ou
constraint can be written as:

v2

vc
2 !

4

p3

E2

Ec
2 , ~A3!

which is the expression we use in the text. This express
compares two dimensionless ratios, thus it is the same in
systems of units. Just to be able to make the compar
quantitative, we note that inSI,vc5mc/\, while Ec
5m2c3/(ep\).
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@16# M. Soljačić and M. Segev, Phys. Rev. E62, 2810~2000!.
04381
@17# G. A. Mourou, C. P. J. Barty, and M. D. Perry, Phys. Today51
~1!, 122 ~1998!.

@18# D. V. Korobkin, C. H. Nam, S. Suckewer, and A. Goltso
Phys. Rev. Lett.77, 5206~1996!.

@19# C. Bula et al. Phys. Rev. Lett.76, 3116 ~1996!; D. L. Burke
et al., ibid. 79, 1626 ~1997!. These are the only experimen
reported with photon-photon scattering in vacuum. Both e
periments involve real electrons and positrons, and they co
not provide any quantitative measurement of the vacuum n
linearity due to QED.

@20# S. G. Mamaev, V. M. Mostepanenko, and M. I. Eides, Ya
Fiz. 33, 1675~1981! @Sov. J. Nucl. Phys.33, 569 ~1981!#.

@21# V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz.61, 118
~1971! @Sov. Phys. JETP34, 62 ~1972!#.
7-6


