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Self-trapping of electromagnetic beams in vacuum supported by QED nonlinear effects
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At very high radiation field intensities in vacuum, Maxwell equations need to be modified to account for the
QED photon-photon interaction. We show that such modified equations support nondiffracting spatial radiation
solitons that propagate for very long distances without changing their shapes. These solitons, and the under-
lying self-focusing and instability effects, should be observable in the near future.

PACS numbsgps): 42.50.Gy, 42.65.Tg

A localized wave packet propagating in linear homoge-self-action[12], vacuum birefrengencil3], etc. In this pa-
neous media has a tendency to change its spatial width asper, we show that Maxwell equations, when modified to ac-
propagates. However, everything in nature is nonlinear, incount for the lowest order photon-photon QED interaction,
cluding the vacuuniil]. More specifically, at very high elec- allow for the existence of bright spatial solitons. Such soli-
tromagnetic field intensities, Maxwell equations need to bgons are wave packets of high-intensity light, propagating for
modified by small nonlinear terms. These terms come fromong distances in a true vacuum, without changing their di-
the quantum field theory of photon-photon scattering medimensions. We believe that these solitons, or at least the un-
ated through exchange ofrtual electron-positron pairs, as derlying self-focusing, will be observed in a near future in
discovered theoretically by Euler and Heisenberg in 193@pecifically designed experiments.

[1]. The Euler-Heisenberg approximation of thimear plus Up to the lowest-order correction, the nonlinear effective
nonlineaj polarization of a true vacuum holds when the Lagrangian density is given by

wavelengths of the interacting photons are all much longer

than the Compton wavelength of the electron, and, at the L=—LF F’”—i[S(F Fay2

same time, the field is much weaker than the QED critical 167 *~¥ 644t wy

field 2m2c®/(eh). Importantly, under these conditions, there \

is no absorption, i.e., no real electrons and positrons are gen- —14F ,, F"F o F T, @
erated in the proce$4]. (This is not surprising, because like 4 47 )
all off-resonance interactions, the real part of the susceptibiiwhere ¢=#e"/45mm"c’, and F,,=dJ,A,—d,A, is the

ity drops off much more slowly than the imaginary part €lectromagnetic-field tensor. The first term in Eg). is just
when the carrier frequency moves away from the resonarif’® usual clasical term, and the rest is the so-called
frequency). Heisenberg-Euler correctidd]. There are also QED correc-

The addition of nonlinear terms to the wave equation carfions to the Lagrangian above that include the spatial and
sometimes influence the dynamics of the wave packerdemporal derivatives of*” [20]. However, we intend to
shape, so that its dimensions do not change at all as the wa¢rk with light of characteristic wavelengths much longer
packet propagates. Such a wave packet, in which the diffraghan the Compton wavelength of an electron, and also at very
tion, which tends to expand the pulse, is exactly balanced bigh intensities, so the leading terms are in our case given by
the nonlinear effects that are trying to shrink the pulse, is=d- (1), and we can safely ignore the lowest-order correc-
loosely refered to as a soliton. Ever since solitons were scilions to the Lagrangian that include the spatial and temporal
entifically documente(i2], they have fascinated scientists in derivatives ofF*”. Physically, these corrections are impor-
many different fields. A universal nonlinear phenomenon @nt when the wavelength of the light is comparable to the
solitons have been found in many different forms in nature COmpton wavelength of the electron, while the Heisenberg-
For example, they were described on surface of shallow waEuler correction is important when the electric field becomes
ter[2], in deep sea watdB], in plasmd4], on the surface of Ccomparable to the critical electric field. One can show that
black holes[5], for torsional waves on DNA moleculgs],  the derivative terms are much smaller than the ones we in-
etc. Solitons have also been studied extensively in nonlinegfiuded as long asaf/ wc)*<(4/m°) (E/E,)?, (please see the
optical systems; both spatig,21], and temporal solitong] ~ Appendix, wherew, is the Compton frequency of the elec-
have been investigated. Solitons also appear in quantum sy&on, andE; is the critical field. We are interested in the
tems; for examp|e, nucleons are a kind of SOlIt@a} regime where the Heisenbel’g-EuleI’ correction is much more

Over the years, various authors have studied the feasibilmportant than the correction that involves derivatives. Nev-
ity of using high-intensity radiation in vacuum to observe ertheless, we have to be careful that all proposed experimen-

some nonlinear effec][g_o], such as four-wave mixinml], tal Verifica:tipns of Our_COHCQDt Satisfy this requirement.
Extremizing the action with respect to the four-vector po-

tential A,, one finds
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V-D=0, VXH 1&D—0 2
: — VY, X _EW_, ()

whereD andH are given by

D(QLE4P
_E_—’_W,

¢
p— 5[2(52—52)E+7(E. B)B],

X

()
H=— ﬂ: B—47M FIG. 1. The QED soliton is a slowly varying amplitude modu-
0B ' lating two carrier plane waves. The figure shows kheectors of
these carrier waves along with their polarization vectrsSolid
& ) 5 vectors refer to one of the carrier waves, and the dashed vectors
M=— E[Z(E —B)B—7(E-B)E]. refer to the other. The polarization vector of each wave is perpen-
dicular to thek vector to which it corresponds. THe vectors of
é)oth waves lie in the/z plane, and are mirror images of each other
with respect to thexy plane. The polarization vectors of the two
carrier waves are also mirror images of each other with respect to
atlhe Xy plane.

The reason that the nonlinearities include precisely th
E2—B? andE-B terms is that these are the only Lorentz-
invariant scalar combinations & and B fields. However,
this implies that the nonlinear effects on a beam that is
plane wave modulated by some slowly varying envelope ar
only of the second order; a plane wave kaandB perpen-
dicular to each other, an&?=B? for plane waves in
vacuum. Consequently, the lowest-order nonlinear effect
vanish identically in Eqs(3). One could, in principle, look
into cases of very large beam divergen@eeyond the
paraxial approximation or include corrections t® and M
that include spatial derivatives, but all of these options will
require field intensities that are many orders of magnitudg

%). Without nonlinear effects, the beam’s width xnwould
grow as a function of; the beam would diffract. Our goal is
to construct a bearta “beam” in spacé whose shape does
Mot change in the direction as the beam propagates. In the
slowly varying envelope approximation, we take>\,
where\ is the wavelength of the carrier. Then one of the
simplestE fields that satisfies all of these requirements is
iven to the lowest order by

higher than the sources available today, or else require wave- A(X)
lengths that are unaccessible to the laser technology. There- E(X,y,z,t)= T{ﬁ cogk-r—owt)+Acogk:-r—wt)},
fore, in order to decrease the radiation intensity required to )

observe self-trapped beams supported by the QED nonlin-

earities in vacuum, we explore slowly varying envelopes suwheref is any unit vector, ané means the mirror inverted

perimposed on top of two crossed plane waves, so that thghage of a around the xy plane; for example, ifa

nonlinearities in Eq(3) do not vanish to lowest order. =(ay,ay,a,) is a vector, them=(a,,a,,—a,). A(X) is the
We proceed by forming the wave equations starting fromsjowly varying amplitude; the characteristic length scale of

Egs. (2). Although the original motivation for going to the A(x) is given bya. From the geometry shown in Fig. 1, it is

equations with higher-order derivativesamely, decoupling  clear thatk has no component in the direction; alsok - f

E andB), appears to be lacking, equations with higher-order—q for Jowest order fields in vacuum. Consequently, speci-

derivatives are easier to analyze, and fields actually do d?ying A, w, the dispersion relation, and the signkgf, speci-

couple for certain relative polarizations. The wave equation§iesk to the lowest order uniquely.

are We substitute Eq(5) into the second equation in E(R)

to find B to the lowest order, assumingakk 1/\:

VZ_l&ZD:_ v vxp - L7y
D= g = Am VX (VP = o G (VXM AX)
4) B(x,y,z,t)=T{kxﬁcos{kw—wt)
VZB——(92—8=477 VX(VXM)—Ei(VXP) . ©
c? at? c dt ' —kx i cogk-r—owt)}.

The beam we intend to study is a superposition of twoAlthough E-B=0, the other scalar combination BfandB
plane waves, modified by a slowly varying envelope inxhe appearing in Eq. (3), E?—B2=A%(x)[nj+nZ(k,/k)?]
direction. The twok vectors of the two carrier waves lie in xX{cos(X,2)+cog2(ky—wt)]}/2#0; as one might expect,
theyz plane, and they are mirror images of each other withthe dc term vanishes identically. More importantly, in our
respect to thexy plane, as illustrated in Fig. 1. Our “beam” configuration of two beams propagating under an angle with
is therefore infinite in thez direction, propagating in thg  respect to each other, there is a symmetry with respect to the
direction, and has a finite width in the x direction(see Fig.  xy plane. Because of this symmetry, there can be no terms
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like cog2(ky+k.z—wt)] appearing iNE2—B2. This will (by interaction between thqse small _terms and the carier
have profound consequences below. The second-harmorf@am, one expects the efficiency of this process to be very

terms that survived combine with andB in Eqgs.(3) for P significantly suppressed; therefore, it should be unobservable
andM, respectively, to produce the first-harmonic terms, andor fairly long propagation distances, compared to the self-

also third-harmonic terms. After a few lines of algebra, wetrapping length. Substituting, B, P, andM from Eqgs.(5),

obtain nonvanishing® andM to the lowest order: (6), and (7), into the wave equation§}), and keeping only
the lowest order terms, yields

§ 2 LA 1 5’E k,\?
pP= EA (X)| ng+ng " E+(TOH), VZE—?WI—%AZ(X) n§+n§ ?Z) }kiE,
7
f kz 2 ( ) ZB kz 2 (8)
M=, A%(x) n§+n§<r) B+(TOH), VZB— 5~ = — 26A%(X) nj+nj ?) }kig,

whereB=(—By,B,,B,) if B=(B,,By,B,).

Unlike any other case in nonlinear optics, where we have
equations for the electric field only, here we have two equa-
tions, one forE and one forB, which represent the same
; . . electromagnetic field. This is a manifestation of the full sym-
nifchnt energy crainage from the il carrier beam. Hou TEUY DELWeerE and B in QED: the nonineariy here is

j driven neither by electric dipoles of the medium nor by mag-

_T_\r/]er’ ?hs we t\r’]vi'r”d_seiz t;erl]om Iii of :jhensa;me tio rdetrhdsai rljetic dipoles of the medium, but by the interaction of elec-
us these 5 20 2 a2 onics do not sa sy ne dispe tromagnetic field with itself in vacuum, for which the sym-
sion relationc“(kj+k;) = w*. Thereby, in any equilibrium

: ) metry betweerkE and B is complete. Thus one must find a
self-trapped shape, the corrections to E5y.that they induce 5 1o make these two equations consistent with each other.
have to k()e) tiny in ordler t?] be well behaved (‘;Vhin Pluggelrhe only way to do this, and to keep Ed8) self-consistent
into Eqgs.(4); in particular, the corrections 1 andB have to after substituting Eas(5) and (6) into them. is to havek
be O(I'/ w?) smaller than the fields in Eq&) and(6). (Here g EqsiS) ©) ' Y

_ ) ) ! . . =k,, andA=X. Therefore, in the case of the ansatz of Egs.
I' is the nonlinear correction to the dispersion relation of(s) and (6), the two carrier waves have to intersect perpen-
vacuum[to be defined in Eq(9) below]; as one would ex- '

: T . dicular to one another, and the radiation has to be polarized
pect, and as we show below, this correction is indeed }tiny.

) , S e in the x direction After settingk,=k, and h=X, both of

In t_he language of _nonllnear optics, this is very similar toy,oqq equations reduce to
saying that terms like coskX)cosky—wt) are not phase
matched with our beam, and terms like dggCog3(ky d?A(x) &
—wt)] are asynchroneous with our beam. Therefore, both dx2 +FA(X):_§
types of third-harmonic terms can be neglected. The lack of
terms like cos(Bz)cog3(ky—wt)] in Eq. (7) differs mark- wherel'=(w/c)?— (K2+ kf,) is the correction to the disper-
edly from the usual nonlinear optics systems. Algebraicallysion relation due to the nonlinear effects. One can think of
it is a direct consequence of the fact that there are no termas an eigenvalue that has to be specified together with the
like cog2(k,y+kz—wt)] in E2—B2, which in turn is caused eigenfunction A(x) in order to solve Eq.(9) self-
by the fact that our “carrier wave” is not a plane wave but consistently. From E¢9) we see thall'| = O(1/a?)<k?, so
an intersection of two plane waves. Physically, one can thinlkthis correction is small.
of our configuration as being equivaldiapart for the bound- Equation (9) is the famous (*1)D cubic nonlinear
ary condition$ to a beam propagating between two infinite Schralinger equatiof{NLSE) [14,21]. This equation is inte-
conducting sheets parallel with tixg plane. In such a con- grable, so all of its solutions can be written in an analytical
figuration, there is an effective dispersion created by the geform. The equation supports bright solitons, and solitons of
ometry rather than the presence of some absorption resadll orders can be found. The lowest order soliton is given by
nance. This is the intuitive reason why our system displays\(x) =2 sechf/a)/(ak\/€), and its correspondingl’ =
no third-harmonic generatiadiTHG), although one might ex- — 1/a?.
pect THG to occur since one normally thinks of vacuum as Having found nondiffracting solutions, the question about
being essentially dispersionless. their stability arises naturally. Stability of (11)D solitons

The only thing we have to be careful about is that theof Eq. (9) has been studied extensivély4], and there is no
(TOH) terms from Eq(7) can in principle(through the non-  doubt that these solitons are very stable. Nevertheless, one
linearity) induce terms proportional to cos(g)cog3(ky  should also think about the stability of the solutions with
—wt)], which are phase matched with the starting beam, andespect to the underlyinggvo wave equations. For the ansatz
thus can drain the energy from the original beam. Howeverof Egs.(5) and(6), we have found a self-consistent solution
since this is only an indirect process, that requires drainagenly if the two carrier beams are propagating under a 90°
of energy from the first into the third harmonithrough the angle with respect to each other. Thus one should ask
non-phase-matched and/or asynchroneous terms neglectatiether our solution is also stable under small deviations of
aboveg, and then back from the third harmonic into the first this angle. Furthermore, one should also question the stabil-

wheren, andn, are components of the unit vectior In Egs.
7, (TOH) stands for “third-order harmonics,” such as those
proportional to cos(®z), etc. Specifically, these terms are
proportional to cos@z)cosk,y—wt), and cosk,z)cog3(ky

A3(x)/K?, 9
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ciple, these solitons, or at least the underlying self-focusing

effects, can therefore be observed in vacuum, in space, or
perhaps even in a laboratory environment, as creatures of
stationary, nonvarying, and nonpropagating shapes that are
made solely of photons. These creatures would be supported
by the mutual interaction between the photons that make up
the soliton.

Finally, it is instructive to discuss possible experimental
realizations. The solitons we propose are not observable with
the laser technology available today. Nevertheless, given the
rate at which the laser technology has been advancing in the
_ ) recent decades, the solitons proposed here should probably
FIG. 2. The geometry of the proposed configuration. The energy)s gpservable within a decade or two. The peak intensity

is tran§p0rFed along thpdirec;tiqn, and the beam is sglf-trapped in needed to support the soliton is given by approximately
the x direction; the characteristic length of the beam in xidirec- £oC(M @)2E Y 2~ 1087 W/m?. Although 167W/m? is an

tion is . The two carrier waves interfere, forming interference
fringes.

enormous intensity, we have a great flexibility in decreasing
the intensity requirements for an experimental observation
by making the size of the soliton large compared to the car-
ity regarding the particular polarization of tiiefield neces-  rier wavelength. The largest laser intensities available today
sary for the solution in EqY5) and (6) to be valid. These areO(10?*W/m?), and they are in the near-infrarfti7]. On
kinds of stability are much more complicated to study thanthe other hand, the shortest wavelength lasers demonstrated
the “conventional” stability analyses of solitons of the cubic thus far are x-ray lasers, with a carrier wavelength of
NLSE, because of the complicated underlying interplay ofO(10nm)[18]. When designing an experiment, the first con-
the vectorialE andB fields. Thus far, even after an intensive sideration is the available propagation length required to
effort, we were not able to prove or disprove their stability. confirm that a beam forms a solitdor at least to see con-
Further study of the stability of these QED solitons will have siderable self-focusing effegtsthe diffraction length. We
to address these questions. envision that such experiments will be done with ultrashort
Our initial reason for investigating QED solitons in the lasers pulses, so this will enormously reduce the requirement
(1+1)D topology proposed above were the facts that theon the total pulse energy required, to be within reach of
calculation is fully analytic, and more importantly, that the near-future technology. A possible realization is under labo-
solutions are known to be stable, at least in the context of aatory conditions: the idea is to superimpose two sheets of
single nonlinear equatidri4] as given by Eq(9). Of course, light propagating at a 90° angle with respect to each other. If
it would be much nicer to have solitons of a{2)D topol-  the length of the sheets in tlzedirection is of a size similar
ogy. If nothing else, this might relax the power requirementgo that of the propagation length in the direction, one
for experimental observation. Therefore, as an avenue tcshould be able to observe solitonic effects before the sheets
ward further research we propose forming necklace solitonSwalk off” each other. So, for example, ih=10nm and
[15,16 out of the QED solitons we just created, and studyinga/\ =10*, and the peak intensity is 3wW/m? (which cor-
their properties, and also stability. Intuitively, a necklaceresponds to the fieldE=6.15x 10*°V/m), such soliton ef-
soliton is the soliton solution of Eq9), wrapped around its fects should be observed after a propagation distddife
own tail, to form a ring. It is best if the radius of the rihg  fraction length of 1 m. Since the beams propagate at 90°
is much larger than the thickness of the rimgin the limit of  with respect to each other, the cross section of the configu-
L—oo, keeping everything else fixed, the necklace solitonration has to be at leag m tall if we do not want the beams
reduces to the soliton solution of E(). Thus, if the QED to stop overlapping before we observe the effect. Thus the
solitons of Eq.(9) are stable, the necklace solitons should bepeak power required is #W. Finally, we have to check
stable as well. Such necklace solitons offer a major advanwhether this experimental configuration satisfies our assump-
tage over the (¥ 1)D geometry offered above: the two su- tion that we can ignore the corrections to the Lagrangian in
perimposed beams propagating at 90° with respect to eadbq. (1) that include the spatial and temporal derivatives of
other will experimentally “walk off” each other, because in F#”: i.e., is (w/w.)?<(4/7%)(EIE,)? satisfied, as explained
any such experiment the extent of each beam in its “uniin the Appendix. This condition translates inte<#66 for
form” direction will be finite. Therefore, in a (+1)D ge-  the parameters proposed, so neglecting the corrections to the
ometry the beams will intersect only over a finite distanceLagrangian, due to the derivatives, is safe.
which will limit the observation length, and also the possi- Observations and studying of QED solitofas of the un-
bilities of many applications, like shooting these solitons be-derlying effects of self-focusing and modulation instabjlity
tween planets in outer space. In contrast, the necklace solcould offer several fundamentally new aspects to physics in
tons could experimentally exist in principle forever in a general. First, they would be the first experiments of photon-
vacuum. photon scattering in vacuum, which involve the creation of
We point out that the group velocity of all the solitons we virtual electron-positron pairs. Thus far, “nonlinear optics”
described ix/v2. This means that we can Lorentz boost towith QED nonlinearities in vacuum was demonstrated only
the frame in which they are not propagating at all. In prin-for the creation of real electron-positron pajid®], and the
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demonstration could not provide a direct quantitative mea- APPENDIX
surement of nonlinear QED effects in a vacuum. Further-

more, the solitons we described would provide a direct quan'arlgrrﬁzltserngreemtjr?é ngsi?\tt?é?“r]éullgr Vc\;lglr(r:gctrii %';nethzf SZ?ni-
titative test of QED vacuum nonlinearities in the regime of P 9 '

much higher photon wavelengths, and much smaller peaQant Iowest-order QED corr_ectlons to the c_IaSS|caI Lagrang-
1an, while the terms involving the derivatives can be ne-

intensities than were tested so far. Moreover, in contrast tolected and vice versa. To simplify the algebra we work in
previously performed QED experiments, a macroscopi units wherec=#=1. In these units, the Heisenberg-Euler

number of photons would participate in the effect. Secondb tion[1] is gi b
exploration of the QED radiation soliton ideas might provide orrection{ L1 1s given by
a means of communicating in space by line-of-sight: one
might be able to launch a very narrow beam from a satellite € 2 >
orbiting the Earth to a nearby plangir to an asteroidand Le= 36072m? {4F=+7G7,
back, in order to investigate the reflection at a pin-point pre-
cision. Furthermore, these ideas could be used to deliver ver%

4
(A1)

hereF=(B2—E?)/2, andG=E-B. Similarly, the correc-
ions involving derivative$20] are given by

(92
W‘VZ) F“ﬁ]’

large powers to small, far-away objects, such as asteroids
a trajectory too close to earth and deflect them. Finally,
soliton-related mechanisms of self-focusing and catastrophic
collapse could offer ideas for explaining astronomical obser-
vations of bursts of EM radiatiofigamma ray Bursjsthat LD:W
are localized in space in a narrow divergence arigksf-

focused “jets”?). It is possible that QED-related self-
focusing might naturally occur near active stars, where th%vh ereF
EM fields are huge. All this, together with the possibility of sor.

perhaps exciting applications, make the QED radiation soli- We would like to compard e andLp for an arbitrary

tonli acn:nglfgiorﬁla\fg ﬁgﬁgtssr\:v;lellr:/v?r:;ﬁ Sr;uodd%:‘?egd Maxwell typical field configuration. Thus the best we can do is dimen-
. . ' L : . ; sional analysis. Unless we are dealing with a particularly
equations in vacuum can give rise to spatial solitgrendif- . . . . 44 2.4
. . . . .. pathological field configuration,Lg~e"E"/(907“m™),
fracting solutiong which are supported by the nonlinearity © . 22 2 2 . e
4 . . while Ly~e“E“w</(3607m), whereE is the electric field
that arises from QED photon-photon interactions at Very anitude ands is the carrier frequency. Thube <L . is
high radiation intensities. These solitons present an exciting -2 9 Y. D = ~HE

iofiad i £ 2 2 AnlE2 2 ;
physical system to be studied experimentally but there ar%agrseﬂiislifl a?gnos?g;;‘é <b:t(\a/v§ez1 (?hn; )diﬁz?emalsfesttgrlﬁs of
many questions left open. Some questions about the stabili y y

of such (1+1)D and (2+1)D solutions are yet to be stud- nits, we note that the Compton frequenay=m, while the

ied theoretically. From an experimental standpoint, we bechtcal field Ec=m?/(me) in this system of units. Thus our

lieve that these solitons should be observable in the neacronstramt can be written as:

future.

e2

( - (aan)(é)vFVﬁ) + Faﬁ
(A2)

«p IS just the usualrea) electromagnetic field ten-

w? 4 E?
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