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We predict that the effective nonlinear optical susceptibility can be tailored using the Purcell effect.
While this is a general physical principle that applies to a wide variety of nonlinearities, we specifically
investigate the Kerr nonlinearity. We show theoretically that using the Purcell effect for frequencies close
to an atomic resonance can substantially influence the resultant Kerr nonlinearity for light of all (even
highly detuned) frequencies. For example, in realistic physical systems, enhancement of the Kerr
coefficient by one to two orders of magnitude could be achieved.
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Optical nonlinearities have fascinated physicists for
many decades because of the variety of intriguing phe-
nomena that they display, such as frequency mixing, super-
continuum generation, and optical solitons [1,2]. More-
over, they enable numerous important applications such
as higher-harmonic generation and optical signal process-
ing [2–4]. On a different note, the Purcell effect has given
rise to an entire field based on studying how complex
dielectric environments can strongly enhance or suppress
spontaneous emission (SE) from a dipole source [5–9]. In
this Letter, we demonstrate that the Purcell effect can also
be used to tailor the effective nonlinear optical suscepti-
bility. While this is a general physical principle that applies
to a wide variety of nonlinearities, we specifically inves-
tigate the Kerr nonlinearity, in which the refractive index is
shifted by an amount proportional to intensity. This effect
occurs in most materials, modeled here as originating from
the presence of a collection of two-level systems. We show
theoretically that using the Purcell effect for frequencies
close to an atomic resonance can substantially influence
the resultant Kerr nonlinearity for light of all (even highly
detuned) frequencies.

In hindsight, the modification of nonlinearities through
the Purcell effect could be expected intuitively: optical
nonlinearities are caused by atomic resonances, hence
varying their strengths should influence the strengths of
nonlinearities as well. Nevertheless, to the best of our
knowledge, this interesting phenomenon has not thus far
been described in the literature. Moreover, as we show
below, it displays some unexpected properties. For ex-
ample, while increasing SE strengthens the resonance by
enhancing the interaction with the optical field, it actually
makes the optical nonlinearity weaker. Furthermore, phase
damping (e.g., elastic scattering of phonons), which is
detrimental to most optical processes, plays an essential
role in this scheme, because in its absence, these effects
disappear for large detunings (i.e., the regime where low-
loss switching occurs).

A simple, generic model displaying Kerr nonlinearity is
a two-level system. Its susceptibility has been calculated to
all orders in both perturbative and steady state limits [2].

However, this derivation is based on a phenomenological
model of decay observed in a homogeneous medium and
does not necessarily apply to systems in which the density
of states (DOS) is strongly modified, such as a cavity or a
photonic crystal (PhC) band gap. Following an approach
similar to Ref. [10], the validity of this expression can be
established from a more fundamental point of view. Start
by considering a collection of N two-level systems per unit
volume in a PhC cavity, whose levels are labeled a and b.
The corresponding Hamiltonian is given by the sum of the
self-energy and interaction terms. Using the electric dipole
approximation, one obtains:

 H � @�!a�aa �!b�bb ���t��ab ����t��ba�; (1)

where �ij � cyi cj is the operator that transforms the fer-
mionic state j to the fermionic state i, ��t� � � ~� 	 ~E�t�=@
is the Rabi amplitude of the applied field as a function of
time, and the scalar dipole moment� is defined in terms of
its projection along the applied field ~E�t�. In general, if this
system is weakly coupled to the environmental degrees of
freedom, then the time scale for the observable dynamics
of the system is less than the time scale of the ‘‘memory’’
of the environment. In this case, information sent into the
environment is irretrievably lost—this is known as the
Markovian approximation [11]. The dynamics of this sys-
tem can then be modeled by the Lindbladian L, which is a
superoperator defined by _� 
 L���. In general, one ob-
tains the following master equation from the Lindbladian:
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Using the only two quantum jump operators that are al-
lowed in this system on physical grounds—L1 
 �ab=

�����
T1

p

and L2 
 �bb
�������������phase
p [11]—one can obtain the following

dynamical equations:
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d��bb � �aa�
dt

� �
��bb � �aa� � 1

T1

� 2i���t��ab ����t��ba�; (4)

where !ba 
 !b �!a, T�1
1 is the rate of population loss

of the upper level, and T�1
2 � �1=2�T�1

1 � �phase is the rate
of polarization loss for the off-diagonal matrix elements.
The prediction of exponential decay via SE is known as the
Wigner-Weisskopf approximation [12]. Although it has
been shown that the atomic population can display unusual
oscillatory behavior in the immediate vicinity of the pho-
tonic band edge [13,14], theoretical [10] and experimental
considerations [15,16] show that this approximation is fine
for resonant frequencies well inside the photonic band gap.
In the rest of this Letter, this is assumed to be the case. Near
resonance, one makes the rotating wave approximation for
Eqs. (3) and (4), and then solves for the steady state. If the
polarization is defined by P � N���ba � �ab� � �E,
where � is the total susceptibility to all orders, one obtains
the following well-known expression for the susceptibility
[2,10]:

 � � �
N�2�!�!ba � i=T2�T

2
2=@

1� �!�!ba�
2T2

2 � �4=@
2��2jEj2T1T2

: (5)

In general, Eq. (5) may be expanded in powers of the
electric field squared. Of particular interest is the Kerr
susceptibility, also in Ref. [2]:
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2 ; (6)

where � 
 !�!ba is the detuning of the incoming wave
from the electronic resonance frequency. For large detun-
ings �T2 � 1, one obtains the approximation that:
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Of course, there are many types of materials to which a
simple model of noninteracting two-level systems does not
apply. However, it has been shown that some semiconduc-
tors such as InSb (a III-V direct band gap material) can be
treated as a collection of independent two-level systems
with energies given by the conduction and valence bands,
and they yield reasonable agreement with experiment [17].
If the parameter � is defined in terms of the band gap
energy such that � 
 !G �!, then one can look at the
regime �T2 � 1 studied above and obtain the following
equation:
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where P is a matrix element discussed in Ref. [17], !G is
the direct band gap energy of the system, and mr is the
reduced effective mass of the exciton. This equation dis-
plays the same scaling with lifetimes as Eq. (7), so the

considerations that follow should also apply for such
semiconductors.

Now, consider the effects of changing the SE properties
for systems modeled by Eqs. (7) and (8). When SE is
suppressed, as in the photonic band gap of a PhC, T1 will
become large while T2 remains finite, thus enhancing ��3�

by up to one or more orders of magnitude (for materials
with the correct properties). For large detunings (where
�T2;vac � 1), we expect that ��3� will scale as T1=T2. The
enhancement of the real part of ��3� is defined to be � 

Re��3�Purcell=Re��3�hom, where ��3�Purcell is the nonlinear suscep-
tibility in the presence of the Purcell effect, while ��3�hom is
the nonlinear susceptibility in a homogeneous medium.
Since T�1

1 � �rad � �nr, the maximum enhancement is
predicted to be roughly:

 � �
T1;PurcellT2;vac

T1;homT2;Purcell
�

1
2 �nr � �phase

1
2 ��nr � �rad� � �phase

�rad � �nr

�nr
;

(9)

where �rad is the radiative decay rate in vacuum. Since the
Purcell effect increases the amplitude of ��1�, one might
also expect it to increase the amplitude of ��3�; however,
according to Eq. (9), the opposite is true. This can be
understood by noting that Purcell enhancement decreases
the allowed virtual lifetime, and thus, the likelihood of
nonlinear processes to occur [18]. Moreover, since the
Purcell factor [5] is calculated by only considering the
photon modes [7], one would not necessarily expect phase
damping effects to play a role, in marked contrast with
Eq. (9). This result comes about because ��3� comes di-
rectly from the polarization of the medium, which exhibits
a significant T2 dependence. The presence of large phase
damping effects makes T2 effectively constant, which
means that suppression of SE (caused by the absence of
photonic states at appropriate energies [6] ) can enhance
Kerr nonlinearities by one or more orders of magnitude,
while enhancement of SE can suppress these nonlineari-
ties. For the case where Purcell enhancement takes place,
T1 decreases while T2 does not change as rapidly, when
T1 � ��1

phase. Otherwise, for sufficiently small T1, T2 will

scale in the same way and ��3� will remain approximately
constant for large detunings, where �T2 � 1. This opens
up the possibility of suppressing nonlinearities in photonic
crystals (to a certain degree). For processes such as four-
wave mixing or cross phase modulation, ��3� will generally
involve a detuning term and will differ from Eq. (6). It is
also interesting to note that this enhancement scheme will
generally not increase nonlinear losses, which are a
very important consideration in all-optical signal process-
ing. If the nonlinear switching figure of merit � is defined
by � � Re��3�=�	Im��3�� [19], then �Purcell=�vacuum�
T2;Purcell=T2;vacuum1, for all cases of suppressed SE.

The general principle described thus far should apply for
any medium where the local DOS is substantially modi-
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fied. In what follows, we show how this effect would
manifest itself in one such exemplary system: a PhC.
This example serves as an illustration as to how strong
nonlinearity suppression or enhancement effects could be
achieved in realistic physical systems. It consists of a 2D
triangular lattice of air holes in dielectric (
 � 13), with a
two-level system placed in the middle, as in Fig. 1.

Note that the vast majority of PhC literature is generally
focused on modification of dispersion relations at the
frequency of the light that is sent in as a probe. By contrast,
in the current work, it is only essential to modify the
dispersion relation for the frequencies close to the atomic
resonances; the dispersion at the frequency of the light sent
in as a probe can remain quite ordinary.

First, consider the magnitude of the enhancement or
suppression of SE in this system. Clearly, since there are
several periods of high contrast dielectric, two effects are
to be expected. First, there will be a substantial but incom-
plete suppression of emission inside the band gap. Second,
there will be an enhancement of SE outside the band gap
(since the DOS is shifted to the frequencies surrounding
the band gap). For an atom polarized in the direction out of
the 2D plane, only the TM polarization need be considered.

We numerically obtain the enhancement of SE by per-
forming two time-domain simulations in Meep [20], a
finite difference time-domain code which solves
Maxwell’s equations exactly with no approximations, apart
from discretization (which can be systematically reduced)
[21]. First, we calculate the SE of a dipole placed in the
middle of the PhC structure illustrated in Fig. 1, then divide
by the SE rate observed in vacuum. The resulting values of
T1 and T2 are calculated numerically, and Eq. (6), in
conjunction with the definition of the enhancement factor
�, is used to plot Fig. 3. The results are plotted in Fig. 2.

A GaAs-AlGaAs single quantum well can lie in the
interesting regime discussed above, where the radiative
loss rate �rad dominates the nonradiative loss rate �nr as
well as the overall loss rate of the quantum well, for certain

temperatures [22]. Equation (8) implies that substantial
enhancement of the Kerr coefficient occurs in that regime.

At a temperature of about 200 K, �nr � 0:1�rad [22].
Although experimental measurements for �phase are un-
available to the authors, the presence of a substantial
phonon bath at that temperature leads one to expect a fairly
large value, which may be conservatively estimated by
10�rad. These results are displayed in Fig. 3(a). Note that
enhancement is primarily observed inside the photonic
band gap (cf. Fig. 2). We observe an enhancement in the
real part of the Kerr coefficient up to a factor of 12, close to
the predicted maximum enhancement factor of 10.48 in the
regime of large detunings (�T2 � 1).

Also, at a temperature of about 225 K, �nr � �rad [22],
and again we take �phase � 10�rad. These results are dis-
played in Fig. 3(b). In this case, we observe an enhance-
ment up to a factor of 2.5, close to the predicted maximum
enhancement factor of 1.91 in the regime of large detun-
ings (�T2 � 1).

Finally, we note that close to room temperature (285 K),
the system in Ref. [22] displays �nr � 10�rad, which is
predicted to yield a maximum enhancement factor of 1.06.
Since this number is fairly negligible, it illustrates that this
approach has little impact when nonradiative losses domi-
nate the decay of the electronic system.

On the other hand, some recent work has demonstrated
that a single quantum dot can demonstrate predominantly
radiative decay in vacuum even at room temperature, e.g.,
single CdSe=ZnS core-shell nanocrystals with a peak emis-
sion wavelength of 560 nm, with �rad � 39�nr [23]. Even
bulk samples of similar nanocrystals have been shown to
yield a significant radiative decay component, correspond-
ing to �rad � �nr [24]. Thus, we predict that with strong
suppression of radiative decay, nonlinear enhancement of a
factor of 2 or more could be observed at room temperature.

We now discuss the implications of this effect on pre-
vious work describing nonlinearities in photonic crystals,
such as Ref. [25], and the references therein. Most past

ωω

FIG. 1 (color). A 2D triangular lattice of air holes in dielectric
(
 � 13). On top of the dielectric structure in gray, the Ez field is
plotted, with positive (negative) values in red (blue). A small
region of nonlinear material is placed exactly in the center of the
structure. This material may be, for example, either two-level
atoms, quantum wells, or some semiconductors such as InSb.
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FIG. 2 (color). Relative enhancement of the TM local DOS for
Fig. 1, as measured in the time-domain simulation rate of
emission, �, normalized by the emission rate in vacuum, �o
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experiments should not have observed this effect, because
they were designed with photonic band gaps at optical
frequencies significantly smaller than the frequencies of
the electronic resonances generating the nonlinearities, in
order to operate in a low-loss regime. Furthermore, in most
materials, nonradiative decays will dominate radiative de-
cays at room temperature. Finally, all the previous analyses
are still valid as long as one considers the input parameters
to be effective nonlinear susceptibilities, which come from
natural nonlinear susceptibilities modified in the way de-
scribed by this Letter.

In conclusion, we have shown that the Purcell effect can
be used to tailor optical nonlinearities. This principle
manifests itself in an exemplary two-level system em-
bedded in a PhC; for realistic physical parameters, en-
hancement of Kerr nonlinearities by more than an order
of magnitude is predicted. The described phenomenon is
caused by modifications of the local DOS near the resonant
frequency. Thus, this treatment can easily be applied to
analyze the Kerr nonlinearities of two-level systems in
almost any geometrical structure in which the Purcell
effect is substantial (e.g., PhC fibers [26], optical cavities).
It also presents a reliable model for a variety of materials,
such as quantum dots, atoms, and certain semiconductors.
Future investigations will involve extending the formalism
in this manuscript to other material systems.
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FIG. 3 (color). Contour plot of Kerr
enhancement � 
 Re��3�Purcell=Re��3�hom

as a function of probe (!ph) and elec-
tronic transition (!elec) frequencies, for a
system like a single quantum well of
GaAs-AlGaAs, assuming �phase �

0:025�2�c=a� (a) at T � 200 K, with
0:1�phase � 10�nr � �rad, and (b) at T �
225 K, with 0:1�phase � �nr � �rad.
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