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Pattern Formation in a Cavity Longer than the Coherence Length of the Light in It
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We study, theoretically and experimentally, the evolution of patterns in a passive nonlinear cavity that
is longer than the coherence length of the light circulating in it. The patterns exhibit spatial line
narrowing as the feedback is increased, resembling the line narrowing in lasers.
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FIG. 1. (a) The incoherent resonator. (b) Bandwidth of the
spatial frequency power spectrum (FWHM) as a function of
feedback intensity. The experimental results are represented by
crosses. The theoretical results below threshold (solid line) are
one another through a nonlinear index change,�n, that is
a function of the sum of their intensities but does not

based on Eq. (4) and the experimental parameters. The dashed
curve above threshold is a guide to the eye.
Pattern formation in optical cavities has been the sub-
ject of continuing interest since lasers were discovered
[1–4]. Patterns naturally start from noise, from which
some frequencies experience higher gain, and, through
the feedback in the cavity, they stabilize and form a
pattern. Such patterns appear not only in laser cavities,
but also in passive cavities employing optical nonlinear-
ities [2,4]. Pattern formation in cavities possesses several
common features that make it distinct from the patterns
arising [via modulation instability (MI)] during propa-
gation in the absence of feedback [2]. First, the instability
leading to pattern formation in a cavity is ‘‘global’’
(absolute), whereas MI without feedback arises due to a
‘‘convective’’ instability. Second, cavity pattern forma-
tion (including a passive cavity) has a definite threshold.
In all passive cavities studied thus far patterns form only
above the pattern-formation threshold. Third, a cavity
gives rise to a set of resonant frequencies, and the detun-
ing between the frequency of the light and the nearest
resonant frequency critically affects the pattern. These
features are universal and also appear in the temporal
domain [5]. However, all resonators studied previously in
the context of pattern formation are fully coherent; i.e.,
the beam is monochromatic, spatially coherent, and co-
herent with the feedback beams circulating in the reso-
nators for many cycles. That is, the cavity round-trip time
is much shorter than the coherence time of the light.

Here we explore pattern formation in a different kind of
cavity: a passive ring cavity for which the coherence
length of the light is much shorter than the cavity length;
that is, the coherence time is much shorter than the time it
takes the light to go once around the cavity. In this low-
finesse cavity, the feedback beams from different cycles
are mutually incoherent with one another (the relative
phase among them is random). The nonlinear medium in
our cavity responds much slower than the characteristic
phase fluctuation time between beams from different
cycles. Thus, the resonant frequencies of our cavity, as
well as the relative phase between beams from different
cycles, do not play any role in the pattern-formation
process. The beams from different cycles interact with
0031-9007=02=89(18)=183902(4)$20.00 
depend on interference cross terms. This interaction re-
sembles cross-phase modulation [6], yet it leads to differ-
ent phenomena. We find that the patterns emerging in our
cavity exhibit spatial line narrowing as the feedback
and/or the nonlinearity are increased, closely resembling
the narrowing of the frequency linewidth in lasers [7].

Consider the system in Fig. 1(a). A plane wave enters,
passes through a nonlinear medium, and circulates in the
cavity. The cavity length greatly exceeds the coherence
length of the laser, so interference terms between beams
from different cycles fluctuate at characteristic times
equal to the coherence time of the laser, tc. The non-
linearity has a response time �� tc; thus �n is a func-
tion of the intensity I averaged over �. The input and
output faces of the nonlinear crystal are z � 0 and z � L.
A fraction, �2, of I exiting the crystal is ‘‘recycled’’ in the
cavity.

We model our cavity when the feedback is small and
the pattern is of a low modulation depth (visibility), so the
entire dynamics (in temporal steady state) results from
the interaction between the input beam �, and the feed-
back beam � that went one cycle around the cavity. Our
�n is a function of I � hj���j2i � hj�j2i � hj�j2i,
where the time average h i is taken over �. Since in
MI studies, any saturable nonlinearity initially acts as a
Kerr nonlinearity for the perturbation (with the nonlin-
ear coefficient evaluated at the intensity of the input
beam) [8], we take �n / I (Kerr self-focusing). The
2002 The American Physical Society 183902-1
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dimensionless equations in one transverse dimension are
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We seek solutions of the form ��x; z; t	 �
 �x; z	 exp �i�z	;��x; z; t	 � ��x; z	 exp �i�z	 exp 
i��t	�,
where �; � are real. ��t	 is a stochastic phase that varies
much faster than �. Taking a fraction ��� 1	 of��x; z �
L	 from the crystal output and imaging it as feedback to
the input z � 0 implies �2j �x; z � L	j2 � j��x; z � 0	j2.
� starts as a plane wave  0 and develops a periodic
pattern due to MI. When the modulation depth of
this pattern is low,  and � each can be written
as a sum of a plane wave and perturbation:
��x; z	 � 
 0 � 1�x; z	� exp�i�z	 and ��x; z	 � 
�0 �
�1�x; z	� exp�i�z	, where j 1j � j 0j, j�1j � j�0j.
Substituting �;� in Eq. (1) yields � � � �  20. The
boundary condition gives �0 � � 0. The linearized
equations for  1, �1 are
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Here, j 0j � j�0j, thus � is propagating
mostly linearly. Without loss of generality, we seek
�1�x; z	 � ~��a exp
if� cos
qx� exp
�iq

2z=2�,  1�x; z	 �
~  a exp 
if� cos 
qx� exp 
�iq2z=2� �  b exp 
i�qx �
�z	� �  c exp
�i�qx��


z	�, where ~ denotes the (real)
modal amplitude and f is real [9]. Substitution of  1 in

Eq. (3) yields ~  a � �� ~��a and � � �q
�����������������������������
�q2=2	 � � 20	

q
.

For a proper� this pattern (with 2�=q periodicity) grows
exponentially. We impose ���x; z � L	 � ��x; z �
0	 exp
i��t	�. Because �n / hIi, ��t	 has no influence on
the evolution of  . Using the boundary condition, the
dependence of the spatial spectrum,  ̂ 1, on q, is

 ̂ 1�q; z � L	 /
exp�jqjL

����������������������
 20 � q2=4

q
	


1� �2 exp�jqjL
����������������������
 20 � q2=4

q
	�
: (4)

For � � 0 Eq. (4) converges to the known case of MI
without feedback [10]. As �2 is increased, Eq. (4) yields
band narrowing of the spatial spectrum, and there is a
particular q at which Eq. (4) diverges, and this q domi-
nates. This is apparent in Fig. 1(b) which shows the
calculated width of j ̂ 1j2 as a function of �2 (solid curve).
This bandwidth narrowing means that only a single,
well-defined, spatial frequency (the one with the highest
growth rate) is visible at the output. Increasing �2 further
causes  ̂ 1 to diverge. This behavior is characteristic
of feedback systems with gain, such as lasers [7]. The
divergence indicates the presence of an oscillation thresh-
old [11].
183902-2
The intuition behind our system is subtle. First, the
propagation of � is mostly linear. This is manifested by
Eqs. (1): � and  cannot exchange energy because they
are incoherent with one another (the temporal fluctua-
tions in their fields are uncorrelated). �1 could grow if it
could drain energy from �0. But the feedback is weak:
j�0j � j 0j, so the MI in � is much smaller than MI
in  . Thus, MI in � can be ignored. The only way �1
can evolve is due to �n produced by  1. But this happens
only for large z’s, where it does not have much influence
on  , since  dominates its own propagation there.
Nevertheless, the propagation of �, albeit mostly linear,
establishes a grating of period 2�=q at z � 0, providing a
preferential ‘‘noise’’ for  . Hence, the MI in  does not
evolve from random noise (as for � � 0), but instead is
channeled by a particular periodic �n induced by �1 at
z � 0. This is embedded in the last term in Eq. (2). The
contribution of �1, albeit small, is crucial. Another way
to think about this is to consider the periodic �n induced
by �1 as a grating, and  scatters from it, changing its
transverse momentum by q. Thus the q component in  is
much bigger than it would have been if the seed grating
was absent. Third, through the self-consistent process in
the cavity, the q that has the largest gain is the one that
grows the fastest. From this picture it is obvious that the
MI growth rate is the same as for � � 0, but the noise gets
a preferential periodicity 2�=q, and this q is the one that
grows fastest in MI. The larger the feedback, the stronger
the seed ‘‘grating’’ in the input, and the stronger the
amplification of that preferential grating with respect to
all other gratings arising from noise. Finally, when the
amount of feedback is identical to the noise amplitude in
the q of highest gain, this specific q oscillates, just as in
lasers. This oscillation occurs when the nonlinear gain is
equal to the loss in a single cycle, as the denominator of
Eq. (4) implies. When the expression in Eq. (4) diverges,
the system oscillates and exhibits bandwidth narrowing
[Fig. 1(b)].

In our experiment [Fig. 1(a)], we use a 488 nm Ar�

laser beam with a 10 cm coherence length and circulate it
in a 80 cm long ring cavity. The transmission spectrum of
our cavity never drops more than 55% (at threshold)
allowing all the bandwidth of our laser to circulate in it
[12]. The nonlinear medium is an Sr0:6Ba0:4Nb2O6 crys-
tal, employing the screening nonlinearity [13]. We split
the laser beam into an extraordinarily polarized ‘‘signal’’
beam and an ordinarily polarized ‘‘background’’ beam
[not shown in Fig. 1(a)].(The background beam is neces-
sary for the photorefractive screening nonlinearity [13].)
The ratio between the intensities of the signal and
background beams is 2.1, and the applied field is
340 V=cm. The background beam is made to be highly
spatially incoherent (to eliminate possible MI on it [8]),
by passing it through a diffuser rotating much faster
than �. The signal and background beams are combined
by a second beam splitter, expanded to a width greater
than the crystal width, launched into the 5.5 mm long
183902-2
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crystal and propagate along its a axis.We reflect a fraction
of both signal and background beams exiting the crystal,
and ‘‘recycle’’ them in the cavity (keeping the ratio
between their intensities fixed when the feedback is var-
ied). In the feedback loop we use four lenses forming two
sequential 4f systems, so that the intensity at the crystal
output face is imaged 1:1 onto the input face (without
mirror inversion). The feedback is controlled by a variable
attenuator. All apertures are large enough to pass all the
spatial frequencies in the system.

Starting with zero feedback, we observe emergence of
low-visibility stripes (from MI), which do not have a
well-defined periodicity [14]. Typical results are shown
in the upper row of Fig. 2 (left) along with the spatial
(Fourier) power spectrum (right). When we unblock the
feedback and increase its intensity, �2, we observe ob-
vious linewidth narrowing. We take data with �2 ranging
from 0% to 33%, while keeping all other experimental
parameters constant, especially the value of the nonli-
    
 

FIG. 2. Experimental results, bandwidth narrowing while
increasing feedback. Shown are photographs of the intensity
distribution in a specific region at the crystal output (left),
along with the calculated spatial power spectrum (right). All
measurements are taken without moving the crystal and with-
out changing the nonlinearity. Bandwidth narrowing is ob-
vious: the stripes become sharper and regular with increasing
feedback, and the spatial power spectrum goes from multiple
peaks (at no feedback) to two narrow peaks at high feedback.

183902-3
nearity (determined by the applied field, and the ratio
between signal and background beams [13]). The line-
width narrowing is obvious (Fig. 2), as the stripes become
sharper and regular with increasing feedback. The spatial
power spectrum goes from multiple low-intensity peaks
(at � � 0) to two isolated narrow peaks at high feedback.
We compare theory and experiments by plotting the
measured spatial bandwidth of the spectrum as a function
of �2 [Fig. 1(b)]. The measured power spectrum is taken
from the right column of Fig. 2. We took many more data
points of different �2 values and from other regions of the
crystal output, confirming that the behavior is always
consistent with Figs. 1 and 2. The threshold behavior is
clear in Fig. 2: the visibility of the stripes and the energy
in the first spatial harmonic exhibit a clear jump at the
threshold value. Comparing theory and experiments
[Fig. 1(b)] shows much similarity [15]. At 6% feedback,
a specific spatial frequency starts to dominate, and one
can determine its bandwidth and plot it [Fig. 1(b)].
Increasing �2 further makes the bandwidth narrower
with an increasing slope. The increasing negative slope
in Fig. 1(b) between 0% and 15% feedback is a direct
quantitative measure of the line narrowing of the stripes.
When we increase �2 beyond 15%, we observe a clear
inflection point in the graph, at which the second deriva-
tive of the bandwidth changes sign. This is the oscillation
threshold. Increasing the feedback further results in more
narrowing, but with a decreasing slope. The theoretical
curve in Fig. 1(b) is calculated from Eq. (4) with the
actual experimental parameters, adjusting only one pa-
rameter,�0, which cannot be measured independently.We
measure the total intensity I and from it evaluate  0 to be
53% of

���
I

p
via the best fit to our experiments.

Figure 1(b) proves that our theory truly describes the
behavior of our system from zero feedback to the thresh-
old. The threshold value, 14%, is beyond the �� 1 limit.
In spite of that, our experiments agree well with the
theory up to the threshold. Above threshold, we have no
theory, but experimentally, we observe line narrowing
down to the narrowest linewidth possible in our system.
The characteristic behavior almost one-to-one resembles
linewidth narrowing in lasers [7]. This is characteristic of
systems undergoing a phase transition. We believe that
other phase transition features occur in our system,
with different characteristics than those of coherent cav-
ities. For example, critical slowing down near the thresh-
old should have different features from those in coherent
cavities [16] and self-oscillators [17]. We emphasize that
in our system the visibility of the pattern is always
enhanced in the cavity as compared to MI without feed-
back under the same parameters. This is true even below
threshold, in contrast to passive coherent cavities [2,4],
where below threshold patterns are suppressed. Clearly,
pattern formation in our cavity has different features than
in a coherent cavity.

Let us discuss the differences between pattern forma-
tion in our cavity and in a single-mirror nonlinear
183902-3
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feedback system [4,18,19]. Most single-mirror systems
rely on a fully coherent feedback, for which pattern
formation is dominated by reflection gratings forming
via interference between the input and feedback beams
[19]. The difference between these cases and ours is
obvious, as our cavity interference of beams from differ-
ent cycles does not lead to an index grating. Some single-
mirror systems do show patterns driven by incoherent
feedback [18], which is seemingly similar to our cavity.
Nevertheless, there are several major differences. For the
single mirror, the spatial frequency of the pattern is fully
determined by Talbot self-imaging (upon reflection from
the mirror), which critically depends on the (small) spac-
ing between the nonlinear sample and the mirror. This
small spacing limits the range of spatial frequencies that
can evolve. In our cavity, the cavity length is unimportant
(as long as it is � ctc), and there are no hard restrictions
on the spatial frequencies, as we have a double 4f imaging
system in the feedback. The spatial frequency of the
pattern in our cavity depends only on �n, the length of
the nonlinear medium, and the Q factor of the cavity.
Therefore, our cavity reveals fully the natural frequencies
of the pattern arising from the MI, unaffected by bounday
conditions. This is why we can study line narrowing of
the natural spatial frequencies of the pattern. The single-
mirror system is restricted by external boundary condi-
tions, limiting the spatial frequencies that can evolve,
whereas our cavity lets the spatial frequency of the high-
est nonlinear gain win.

In conclusion, we studied the evolution of patterns in a
nonlinear cavity which is longer than the coherence
length of the light circulating in it. The patterns exhibit
spatial line narrowing as feedback is increased, resem-
bling linewidth narrowing in lasers. This effect is char-
acteristic of phase transitions, yet unlike other previously
studied optical cavities, our cavity is incoherent. Our
cavity relates to classical phase transitions, because its
behavior does not depend on the phase, whereas pattern
formation in coherent cavities is inherently phase depen-
dent, thus related to nonclassical phase transitions. The
distinctions between coherent and incoherent cavities and
the parallels with lasers and phase transitions offer many
exciting ideas. The ability to study pattern formation in
systems of varying correlation has implications beyond
optics; e.g., we envision partially incoherent cavities con-
taining cooled atoms. We note the relation to patterns in
granular materials (sand) [20], which displays the forma-
tion of stripes in a phase-independent system. In optics,
however, the next idea is to study pattern formation in
a fully incoherent cavity, that is, a cavity in which the
circulating beam is spatially and temporally incoherent.
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