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Modulation Instability and
Pattern Formation in Spatially

Incoherent Light Beams
Detlef Kip,1,2 Marin Soljacic,1,3 Mordechai Segev,1,4*
Eugenia Eugenieva,5 Demetrios N. Christodoulides5

We report on the experimental observation of modulation instability of par-
tially spatially incoherent light beams in noninstantaneous nonlinear media and
show that in such systems patterns can form spontaneously from noise. In-
coherent modulation instability occurs above a specific threshold that depends
on the coherence properties (correlation distance) of the wave packet and leads
to a periodic train of one-dimensional filaments. At a higher value of nonlin-
earity, the incoherent one-dimensional filaments display a two-dimensional
instability and break up into self-ordered arrays of light spots. This discovery
of incoherent pattern formation reflects on many other nonlinear systems
beyond optics. It implies that patterns can form spontaneously (from noise) in
diverse nonlinear many-body systems involving weakly correlated particles,
such as atomic gases at (or near) Bose-Einstein condensation temperatures and
electrons in semiconductors at the vicinity of the quantum Hall regime.

Modulation Instability (MI) is a process that
appears in most nonlinear wave systems. Be-
cause of MI, small amplitude and phase per-
turbations (from noise) grow rapidly under
the combined effects of nonlinearity and dif-
fraction (or dispersion, in the temporal do-
main). As a result, a broad optical beam [or a
quasi–continuous wave (quasi-CW) pulse]
tends to disintegrate during propagation (1–
4), leading to filamentation (5, 6) or to break
up into pulse trains (1–4). MI typically oc-
curs in the same parameter region where
another universal phenomenon, soliton oc-
currence, is observed. Solitons are stationary
localized wave packets (wave packets that
never broaden) that share many features with
real particles. For example, their total energy
and momentum is conserved even when they
interact with one another (7). Solitons can be

intuitively understood as a result of the bal-
ance between the broadening tendency of
diffraction (or dispersion) and nonlinear self-
focusing. A soliton forms when the localized
wave packet induces a potential (via the non-
linearity) and “captures” itself in it, thus be-
coming a bound state in its own induced
potential. In the spatial domain of optics, a
spatial soliton forms when a very narrow
optical beam induces (through self-focusing)
a waveguide structure and guides itself in its
own induced waveguide. The relation be-
tween MI and solitons is best manifested in
the fact that the filaments (or the pulse trains)
that emerge from the MI process are actually
trains of almost ideal solitons. Therefore, MI
can be considered to be a precursor to soliton
formation. To date, MI has been systemati-
cally investigated in connection with numer-
ous nonlinear processes. Yet traditionally, it
was always believed that MI is inherently a
coherent process and can only appear in non-
linear systems with a perfect degree of spatial
and temporal coherence. On the other hand,
recent theoretical work (8) has shown that MI
can also exist in relation with partially inco-
herent wave packets or beams. This in turn
leads to several important new features: in-
coherent MI appears only if the “strength” of

the nonlinearity exceeds a well-defined
threshold that depends on the degree of spa-
tial correlation (coherence). Moreover, by ap-
propriately suppressing MI, new families of
solitons are possible that have no counterpart
whatsoever in the coherent regime (9). Here,
we present the experimental observation of
modulation instability and pattern formation
in partially spatially incoherent light beams in
nonlinear media.

Until a few years ago, solitons were con-
sidered to be solely coherent entities. How-
ever, experimental observations of solitons
made of partially spatially incoherent light
(10) and of temporally and spatially incoher-
ent (“white”) light (11) have proven that in-
coherent solitons do exist, and such observa-
tions have opened entirely new directions in
the field of solitons. Numerous theoretical
and experimental works followed soon there-
after, describing bright (12–15) and dark (16,
17) incoherent solitons, their interactions
(18), and stability properties (19). The exis-
tence of incoherent solitons proves that self-
focusing is possible not only for coherent
wave packets but also for wave packets upon
which the phase is random. The key to their
existence is the noninstantaneous nature of
the nonlinearity, which responds only to the
beam’s time-averaged intensity structure and
not to the instantaneous highly speckled and
fragmented wavefront. In other words, the
response time of the nonlinear medium must
be much longer than the average time of
phase fluctuations across the beam. Thus, the
time-averaged intensity induces, through the
nonlinearity, a multimode waveguide struc-
ture (a potential well that can bind many
states), whose guided modes are populated by
the optical field with its instantaneous speck-
led structure. With this noninstantaneous na-
ture of the nonlinearity in mind, we were
motivated to find out whether patterns can
form spontaneously on a partially coherent
uniform beam through the interplay between
nonlinearity and diffraction. As a first step,
we have shown theoretically (8) that a uni-
form partially incoherent wave front is unsta-
ble in such media, provided that the nonlin-
earity exceeds a well-defined threshold set by
the coherence properties. Above that thresh-
old, MI should occur, and patterns should
form.
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The main predictions of the incoherent MI
theory (8) are as follows. (i) The existence of
a sharp threshold for the nonlinear index
change, below which perturbations (noise) on
top of a uniform input beam decay and above
which a quasi-periodic pattern forms. (ii) The
threshold depends on the coherence proper-
ties of the input beam: the threshold increases
with decreasing correlation distance (decreas-
ing spatial coherence). (iii) Saturation alone,
although it keeps the maximum index change
and correlation distance fixed, arrests the
growth rate of the MI and can decrease it to
below the MI threshold. In what follows, we
describe our experimental results that con-
firm all of these predictions and also reveal
other unexpected features.

In our incoherent MI experiments, we use
a strontium-barium niobate crystal and use its
photorefractive screening nonlinearity (20–
22). The dimensions of the sample are a by b
by c 5 7.0 mm by 6.5 mm by 8.0 mm, where
light propagation is along the crystalline a-
axis and the external electric bias field is
applied along the c-axis. At moderate inten-
sities (1 W/cm2), the response time of our
crystal is t ' 0.1 s; thus, for any light beam
across which the phase varies much faster
than t, the nonlinear crystal responds only to
the time-averaged (over times much larger
than t) intensity structure. In our experimen-
tal setup, we split a CW argon ion laser beam

(of l 5 514.5-nm wavelength) into two
beams using a polarizing beam splitter. Each
beam is sent through a rotating diffuser,
which introduces a random phase varying
much faster than t, acting as a source of
partially spatially incoherent light. Following
the rotating diffusers the beams are expand-
ed, collimated and made uniform, and recom-
bined using another polarizing beam splitter.
Lastly, both beams are launched into the crys-
tal, in which they co-propagate. When an
external (bias) direct current field is applied
to the crystal, the extraordinarily polarized
beam experiences a large index change and,
thus, serves as the “signal beam,” whereas the
ordinarily polarized beam experiences only a
tiny index change and, therefore, serves as a
background beam [its only role is to tune the
degree of saturation of the nonlinearity (22)].
A lens and a polarizer are used to capture the
image of the signal beam intensity at the
output face of the sample in a charge-coupled
device (CCD) camera. We control the degree
of coherence of the signal beam by adjusting
the diameter of the laser beam incident on the
rotating diffuser: the larger the beam diame-
ter, the higher the incoherence and the shorter
the correlation distance lc. The background
beam is made highly incoherent, which guar-
antees that it never forms any patterns. We
estimate the correlation distance lc at the
input face of the crystal (when the system is

linear, that is, when the applied field is
zero) as the average value of the full width
at half maximum (FWHM) of the speckle
size on the CCD camera when the diffuser
is momentarily stopped.

Upon application of a sufficiently large
bias field to the crystal, the signal beam
experiences MI and forms patterns (Fig. 1).
When the input signal beam is uniform, the
underlying nonlinearity is of the form

dn 5 Dn0 [1 1 (I0/Isat)] [I(r)/(I(r) 1 Isat)]

(1)

where I(r) is the local intensity as a function
of coordinate r, Isat is the intensity of the
incident background beam, and I0 is the in-
tensity of the signal beam at the input face.
The term [1 1 (I0/Isat)] comes from the fact
that the total current flowing through the
crystal is almost the same as the photocurrent
generated by both beams [in contradistinction
with the case of bright screening solitons,
where the soliton beam is very narrow com-
pared to the crystal width and therefore does
not affect the photocurrent and this factor is
equal to unity (20)]. In Eq. 1, Dn0 5 0.5ne

3r33

(V/L) is the electro-optic refractive index
change, ne is the extraordinary refractive in-
dex, r33 is the electrooptic tensor element,
and (V/L) is the externally applied electric
field.

Incoherent MI is observed for a nonlinear-
ity dn exceeding a certain threshold. When an
external voltage is applied to the nonlinear
crystal with a magnitude large enough to
allow for MI, the homogeneous light distri-
bution at the output face of the sample be-
comes periodically modulated and starts to
form one-dimensional (1D) filaments of in-
coherent light. In our experiments, the pre-
ferred direction of the stripes is perpendicular
to the c-axis of the crystal. We believe that
this is due to the existence of striations in our
sample, which act as “initial noise” that is
eventually amplified by MI. These are index
inhomogeneities in planes perpendicular to
the c-axis that originate from melt composi-
tion changes during growth of the crystal.
Another possible reason for the preferential
1D directionality might have to do with the
anisotropy of the photorefractive nonlinear-
ity. However, the final orientation of the
stripes is rather random, with the largest ob-
served angle of inclination of the stripes rel-
ative to the c-axis being roughly 45°. Typical
examples of MI of partially spatially incoher-
ent light are shown in Fig. 1, which displays
the intensity of the signal beam at the output
plane of the crystal. The correlation distance
of the incoherent light is lc517.5 mm and the
intensity ratio I0/Isat 5 1. Figure 1A shows
the output intensity without nonlinearity (V/
L 5 0). The cases of Fig. 1, B through D,
correspond to a value of the nonlinearity just

Fig. 1. The intensity struc-
ture of a partially spatially
incoherent beam at the
output plane of the nonlin-
ear crystal. The sample is
illuminated homogeneous-
ly with partially spatially
incoherent light with lc 5
17.5 mm. The displayed
area is 1.0 mm by 1.0 mm
(A through D) and 0.8
mm by 0.8 mm (E and F),
respectively. The size of
the nonlinear refractive
index change of the crys-
tal is successively in-
creased from (A) Dn0 5 0
(the linear case), to (B)
3.5 3 1024, (C) 4.0 3
1024, (D) 4.5 3 1024, (E)
9 3 1024, and (F) 1 3
1023. The plots (B
through D) show the cas-
es just below threshold
(no features), at threshold
(partial features), and just
above threshold (features
throughout) for 1D inco-
herent MI that leads to
1D filaments. Far above
this threshold, at a much
higher value of the non-
linearity, the 1D filaments
become unstable (E) and
become ordered in a reg-
ular 2D pattern (F).

R E P O R T S

20 OCTOBER 2000 VOL 290 SCIENCE www.sciencemag.org496



below the threshold for 1D incoherent MI, at
threshold, and just above the threshold. This
shows (i) the existence of incoherent MI, and
(ii) that incoherent MI occurs only when the
nonlinear index change exceeds a well-de-
fined threshold. In particular, Fig. 1C shows a
mixed state exactly at threshold, in which
order and disorder coexist. This is an indica-
tion that the nonlinear interaction undergoes
an order-disorder phase transition, in agree-
ment with the theoretical predictions (8). But
the experiment, as often happens, revealed
surprises. When the nonlinearity is further
increased, a second threshold is reached: the
filaments become unstable (Fig. 1E) and start
to break into an ordered array of spots [two-
dimensional (2D) filaments] as shown in Fig.
1F. In all the images in Fig. 1, the correlation
distance is much shorter than the distance
between two adjacent stripes or filaments.
This is a clear demonstration that pattern can
form in weakly correlated nonlinear multipar-
ticle systems.

Next, we studied the dependence of the
MI threshold on the coherence properties of
the beam. For a constant intensity ratio I0/Isat,
the threshold where MI occurs depends on
the incoherence of the light and on Dn0

(which we control through the applied volt-
age V). To identify the MI threshold exper-
imentally, one needs to examine the growth
dynamics of perturbations and observe
whether they grow or decay. This is difficult
to measure, especially because the initial per-
turbations originate from random noise. In-
stead, we investigated the visibility (modula-
tion depth) of the pattern observed at the
output face of the crystal: random fluctua-
tions that do not increase have a tiny (less
than 5%) visibility, whereas the perturbations
that grow emerge at high visibility (.50%)
stripes. We have conducted numerous exper-
iments with various degrees of coherence of
the input beam, and measured the modulation
depth of the output stripes as a function of the
applied field (translated to Dn0). The results
are displayed in Fig. 2A, showing the modu-
lation depth m 5 (Imax – Imin)/(Imax 1 Imin)
of the light at the output plane, as a function
of Dn0 for different correlation distances lc
and I0/Isat 5 1. For a fully coherent input
beam, m becomes large even at a vanishingly
small nonlinearity because coherent MI has
no threshold. When the correlation distance is
reduced, however, a well-defined threshold is
observed. The jump from very low visibility
to a large visibility is always abrupt, because
for every beam with a finite lc there is always
a threshold for MI. Clearly, the MI threshold
shifts towards higher value of Dn0 with de-
creasing correlation distance lc.

Once the nonlinearity exceeds the MI
threshold, the transverse frequencies that ex-
hibit gain grow exponentially and form peri-
odic patterns (Fig. 1). This growth leads to a
large modulation depth (high visibility) in the
output patterns and, equally important, to a
considerable deviation of these stripes from a
pure sinusoidal shape. That is, the propaga-
tion dynamics become highly nonlinear. Part

of this dynamics was captured in the last
figure in (8), by the appearance of the second
spatial harmonic. Yet the experiment pro-
vides considerably more insight into the non-
linear dynamic evolution of the patterns, as
displayed by the intensity cross sections of
the stripes at the output plane in Fig. 2B. In
this particular set of data, lc 5 17.5 mm and
Dn0 values 2.75 3 1024 (i), 4.0 3 1024 (ii),
5.0 3 1024 (iii), and 8.0 3 1024 (iv). At the
lowest Dn0 value, MI is barely above thresh-
old (i). For the higher value at (ii), the mod-
ulation depth is higher yet the stripes have a
sinusoidal shape. At the high value of (iii),
the shape of the stripes is no longer sinusoi-
dal, and several higher harmonics participate.
For an even higher nonlinearity, the spectrum
becomes irregular (iv), and 2D break up into
filaments starts to occur.

The periodicity (or the spatial frequency)
of the 1D filaments that emerge in the MI
process depends on the coherence properties
of the beam and on the magnitude of the
nonlinearity (8). In all of our experiments, for
any given intensity ratio, indeed the spatial
frequency monotonically increases with in-
creasing correlation distance and with in-
creasing Dn0.

Up to this point, the nonlinearity in our
experiments had the form given in Eq. 1,
which is not saturable. On the basis of the 1D
incoherent MI theory (8), we expect that sat-
uration of the optical nonlinearity should ar-
rest the MI growth rate. To investigate satu-
ration effects, we modified the nature of our
photorefractive screening nonlinearity by
launching a “flat top” beam that is narrower
than the distance between the electrodes in
our crystal, yet is wide enough to serve as a
“quasi-uniform beam” at its flat top. Because
the beam is finite, it does not contribute to the
total current flowing through the crystal at
steady state. Hence, the nonlinearity is now
dn 5 Dn0 [I(r)/(I(r) 1 Isat)], which is the
more commonly used form of the photore-
fractive screening nonlinearity (20, 21), and it
has a saturable nature. When we launch such

Fig. 2. Threshold dependence of incoherent MI.
Modulation [m 5 (Imax – Imin)/(Imax 1 Imin)] of
the light pattern versus size of the nonlinearity
Dn0 for different correlation distances lc and an
intensity ratio I0/Isat 5 1. (A) Measured values
of m for lc 5 8, 10, and 17.5 mm and for
coherent light (lc 3 `). The dotted curves are
guides for the eye. (B) Intensity cross sections
of the stripes for lc 5 17.5 mm and a nonlinear
refractive index change of Dn0 5 2.75 3 1024

(i), 4.0 3 1024 (ii), 5.0 3 1024 (iii), and 8.0 3
1024 (iv). The dotted lines indicate the base
line of the respective profile. The stripes
emerge as sinusoidal stripes (for nonlinearity
just above threshold), become square-wave
stripes at a higher nonlinearity, and eventually
break up into filaments at a large enough non-
linearity. a.u., arbitrary units.

Fig. 3. Suppression of incoherent MI due to saturation of the nonlinearity. The intensity structure
of a finite signal beam [Gaussian beam with a width (FWHM) of 1 mm] at the output plane of the
crystal. The intensity ratio (peak of beam to background/saturation intensity) is I0/Isat 5 3. Without
nonlinearity (Dn0 5 0), the output beam shows no features. The photograph is taken at Dn0 5 6 3
1024. The saturable nature of the nonlinearity clearly suppresses MI in the center of the beam,
whereas strong modulation and filaments of random orientation occur in the margins of the beam.
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a beam in a biased crystal with Dn0 5 6 3
1024 and with a ratio between the peak in-
tensity and the saturation intensity, I(0)/Isat 5
3, patterns form in several regions on the
beam (Fig. 3). At the flat top of the beam, low
visibility stripes appear. In this region, the
nonlinearity is above threshold but in rather
deep saturation, so the MI growth rate is
suppressed. Then, at the margins of the beam,
where the local ratio I(r) 1 Isat is around and
slightly below unity, high-visibility stripes
appear. In this region, the nonlinearity is
above threshold and is not saturated, so the
MI growth rate is large. Lastly, at the far
margins of the beam, the local nonlinearity is
below threshold, because I(r) ,, Isat. A by-
product of this particular experiment is the
clear evidence (Fig. 3) that the 1D stripes
emerge at different orientations and are not
affected much by the local noise (striations).

We would also like to relate our nonlinear
optical system to other nonlinear systems of
weakly correlated particles. Our prediction and
experimental observation implies that in such
systems patterns will form spontaneously, pro-
vided the nonlinearity is larger than a threshold
value, which in turn is set by the correlation
distance. For example, we expect that 1D and
2D patterns will form in an atomic gas at tem-
peratures slightly above the Bose-Einstein con-
densation temperature (at which the atoms pos-
sess independent degrees of freedom, yet are
still weakly correlated). At least for atoms with
attractive collision forces, whether natural [e.g.,
7Li (23)] or through magnetic tuning of the
condensate self-interaction (24), such patterns
should form. The equation governing the evo-
lution of the “mean field” of an atomic gas is
the Gross-Pitaevski equation (25), which al-
most fully coincides with the nonlinear wave
equation that gives rise to (111)D Kerr soli-
tons. The relevance of this work to cooled
atomic gases is therefore obvious. In other areas
of physics there are, in fact, at least some hints
that such patterns do exist in disordered many-
body nonlinear systems. To be specific, several
experimental papers have reported a large an-
isotropy in the resistivity of a 2D electron sys-
tem with weak disorder (26). The observed
anisotropy is now attributed to the combination
of nonlinear transport and weak disorder (27,
28), which is the transport equivalent of non-
linearity and incoherence in optical systems
such as ours. The theoretical works predict the
existence of 1D stripes (electron stripes) of
charge density wave. Spontaneous formation of
stripes was also predicted and observed in high-
Tc (superconducting transition temperature ) su-
perconductors (29), which is again a nonlinear
weakly correlated many-body system. Lastly,
as discussed in (8), spontaneously forming pat-
terns are known in at least one system of clas-
sical particles: a gravitational system. The spon-
taneous emergence of patterns in all of these
diverse fields of science indicates that pattern

formation in nonlinear weakly correlated sys-
tems is a universal property. It is a gift of nature
that in optics we can study directly, visualizing
every little detail of the physics involved and
isolating the underlying effects.
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Experimental Verification of
Decoherence-Free Subspaces

Paul G. Kwiat,1* Andrew J. Berglund,1† Joseph B. Altepeter,1

Andrew G. White1,2

Using spontaneous parametric down-conversion, we produce polarization-en-
tangled states of two photons and characterize them using two-photon to-
mography to measure the density matrix. A controllable decoherence is im-
posed on the states by passing the photons through thick, adjustable birefrin-
gent elements. When the system is subject to collective decoherence, one
particular entangled state is seen to be decoherence-free, as predicted by
theory. Such decoherence-free systems may have an important role for the
future of quantum computation and information processing.

Quantum computation holds the promise of
greatly enhanced speeds for solving certain
problems, including factoring (1), simulation
of quantum systems (2, 3), and database
searching (4, 5). One main obstacle to quan-
tum computation is the problem of decoher-
ence—fragile quantum superpositions are de-
stroyed by unwanted coupling to the environ-

ment. In particular, it is the entangling of the
quantum system to unobserved degrees of
freedom that leads to a loss of coherence. (A
related problem is that of dissipation, where-
by energy is lost from the system.) Three
basic strategies to cope with decoherence in
quantum computation have emerged. The
first, quantum error correcting codes, relies
on trying to detect errors using ancillary
quantum bits (qubits) and actively manipulat-
ing the interactions to correct these errors (6,
7). The second strategy employs dynamical
decoupling, in which rapid switching is used
to average out the effects of a relatively slow-
ly decohering environment (8). The final ap-
proach attempts to embed the logical qubits
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