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Modulation Instability of Incoherent Beams in Noninstantaneous Nonlinear Media
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We show that modulation instability can exist with partially spatially incoherent light beams in a
noninstantaneous nonlinear environment. For such incoherent modulation instability to occur, the value
of the nonlinearity has to exceed a threshold imposed by the degree of spatial coherence.

PACS numbers: 42.65.Tg
Localized wave packets in linear media have a natural
tendency to change their shape and broaden as they propa-
gate, since the modes they are composed of propagate at
different phase velocities. In nonlinear media, this broad-
ening can be counteracted, resulting in a pulse/beam that
does not change its shape during propagation: a soliton
[1]. In optics, solitons can be understood as a balance be-
tween diffraction (in the spatial domain) or dispersion (in
the time domain) and nonlinear self-focusing. In the spa-
tial domain, the light beam elevates through nonlinearity
the local index of refraction, thereby creating a waveguide,
which in turn guides the beam, thus forming a spatial soli-
ton. Thus far, stable soliton solutions of this sort have been
observed in numerous nonlinear systems [2]. Another
process, closely related to soliton formation, is modula-
tion instability (MI). During MI, small amplitude and
phase perturbations tend to grow exponentially as a result
of the combined effects of nonlinearity and diffraction/
dispersion. Because of this, a broad optical beam or a
quasi-cw pulse tends to disintegrate during propagation
[3,4]. Since MI typically occurs in the same parameter re-
gion where bright solitons are observed, it can be loosely
considered as a precursor to soliton formation.

Until recently, optical spatial solitons were solely coher-
ent entities. However, a recent series of experimental [5]
and theoretical [6–10] works has demonstrated solitons
made of partially incoherent light: incoherent solitons.
Incoherent solitons are multicomponent (multimode)
solitons that are made up from modal constituents that are
incoherent with one another. They exist in noninstanta-
neous nonlinear media, when the average phase fluctuation
time across the beam (or between modal constituents) is
much shorter than the response time of the medium. In this
case, the nonlinear change in the refractive index depends
only on the time average of the light intensity [5,7]. The
existence of incoherent solitons proves that self-focusing
is possible not only for coherent wave packets but also for
partially spatially/temporally incoherent light [5]. Since
MI appears in all systems that support bright solitons, it
is natural to wonder whether it also exists for incoherent
light beams. In this Letter, we demonstrate, analytically
and numerically, the existence of incoherent MI, that
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is, modulation instability of incoherent wave packets.
Incoherent MI occurs when the value of the nonlinearity
exceeds a threshold imposed by the degree of spatial
coherence. We use analytical and numerical methods to
study the properties of incoherent MI in a general self-
focusing noninstantaneous medium. We solve for inco-
herent MI in closed form for input beams with Lorentzian
angular power spectra, and illustrate it with Kerr and satu-
rable nonlinearities. We confirm our results with numeri-
cal simulations, and further study general cases of input
beams along with propagation-evolution effects.

The incoherent light we analyze propagates in the z
direction, with its spatial coherence length being much
smaller than its temporal coherence length, i.e., the beam is
partially spatially incoherent and quasimonochromatic (the
wavelength of light l is much smaller than each of these
coherence lengths). The nonlinear material is noninstanta-
neous, that is, the nonlinear index change is a function of
the optical intensity, time averaged over the response time
of the medium, t, which is much longer than the coherence
time of the light, tc. Assuming that the light is linearly
polarized and E�r , z, t� is its slowly varying amplitude,
we define B�r1, r2, z� � �E��r2, z, t�E�r1, z, t�� where the
brackets denote the time average (taken over t). The
equation for B, as derived from paraxial wave equation,
is [9]
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where v is the carrier frequency, k is the carrier wave
vector, n0 is the index of refraction without light present,
dn is the tiny nonlinear modification to the refractive in-
dex, r � �r1 1 r2��2 is the middle point coordinate, and
r � r1 2 r2 is the difference coordinate. B�r , r, z� is the
spatial correlation function, and I�r , z� � B�r , r � 0, z�
is the time-averaged light intensity. The definition of B
yields B�r , r, z� � B��r , 2r, z�.

To study MI, we assume the incident light to have a
uniform intensity, except for small intensity perturba-
tions that depend on r and z. Thus, B can be written
as B�r , r, z� � B0�r� 1 B1�r , r, z�, where B1 ø B0,
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B0�r� representing the background of a uniform intensity
I0 � B0�r � 0�. The dependence of dn on r comes from
B1, so to the lowest order in B1, �dn�r1, z� 2 dn�r2, z�� �
k�B1�r1, r � 0, z� 2 B1�r2, r � 0, z��, where k �
d�dn�I�	�dI evaluated at I0 is the marginal nonlinear
index. In the Kerr case �dn � gI�, so k � g. Therefore,
linearizing Eq. (1) in B1 produces
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Up to this point, the discussion applies for any corre-
lation function B0�r�. In what follows, we assume that
B0�r� has a Lorentzian-shaped k spectrum and obtain
closed-form results. Thus, B̂0�kx� � A��k2

x 1 k2
x0	,

where F̂�kx� �
1

2p

R`
2` drF�r�eikxr is the Fourier

transform of F�r� for any F�r�. In this case the nor-
malized angular power spectrum [6] is also Lorentzian
�GN �u� � �u0�p� �u2 1 u

2
0�21	 where the angle u �

kx�k is in radians. The background intensity is then I0 �
pA�kx0. The physically acceptable eigenmodes of Eq. (2)
can be written as B1�r , r, z� � exp�gz� exp�i�ar 1

f�	L�r� 1 exp�g�z� exp�2i�ar 1 f�	L��2r�, where
f is an arbitrary real phase that carries no physi-
cal significance, a is real, and g is associated with
the MI gain. These modes automatically satisfy
B1�r , r, z� � B1

��r, 2r, z�. For each a one can obtain a
set of modes L�r� needed to describe any perturbation B1.
Defining M�r� � L�r��L�r � 0�, with the boundary
condition M�r � 0� � 1, we get
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We are interested in the modes that grow: those with g
that are not purely imaginary. We look for the particular
and for the homogeneous solutions to Eq. (3). Since we
have a physical constraint that M�r� has to be bounded for
large jrj, the homogeneous solution has to be zero for the
modes that have a real part in g. Therefore, by seeking a
particular solution of Eq. (3), we find
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M�r� obtained from Eq. (4) is clearly bounded for large
jrj. Impose M�r � 0� � 1, or
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which gives us a constraint that determines the disper-
sion relation g�a� for the modes whose g has a real part,
for arbitrary B0�r�. Note that B̂0�kx� is purely real since
B0�r� � B0

��2r�.
By assuming a Lorentzian k spectrum B̂0�kx� �

A��k2
x 1 k2

x0	 in Eq. (5), a contour integration yields the
following result for the mode that grows, if g is bigger
than zero:
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where k represents the marginal nonlinear index change
because of the constant background intensity, and kx0�k �
u0. The result of Eq. (6) clearly demonstrates that the MI
growth rate is substantially affected by the coherence of
the source. Moreover, in the limit kx0 ! 0, it correctly
reduces to the well-known result of coherent MI [3,4].
Even more importantly, Eq. (6) indicates that for a given
degree of coherence, MI occurs only when the quantity kI0
exceeds a specific threshold; incoherent MI exists only if
kI0�n0 . u

2
0 , whereas when kI0�n0 , u

2
0 MI is entirely

eliminated. Thus, the more incoherent a source is, the
larger kI0 (marginal index change) required to induce MI.
Computer simulations suggest that this trend is universal
and is independent of the angular power spectrum. Having
found g�a�, one can then easily determine the intensity of
the perturbation I1�r , z� � B1�r , r � 0, z�.

To apply the result of Eq. (6) for Kerr nonlinearity
dn�r� � gI, we set k � g and present it graphically in
Fig. 1. In this case, kI0 � dn, so the larger the non-
linear index change, the stronger the MI growth. How-
ever, the MI growth rate can be analytically determined
for any type of nonlinearity. Of particular significance
is the saturable nonlinearity which occurs, for example,
in photorefractives [11], and in homogeneously broad-
ened 2-level systems (atomic rubidium vapor) [12], in
which the nonlinear index change is of the form dn�r� �
gI�r���1 1 I�r��Isat	. For the saturable case, we find that
the growth rate is given by Eq. (6) with k � g��1 1 I0�
Isat	2. As with the Kerr nonlinearity, incoherent MI exists,
once again, only above a specific threshold for kI0. From
the result, it is apparent that saturation suppresses MI by
a factor of 1��1 1 I0�Isat	. Figure 2 displays graphically
typical results with the saturable nonlinearity.

To verify our analytical findings and to further explore
incoherent MI, we use computer simulations. In particular,
the intensity/correlation MI dynamics of Eq. (1) are in-
vestigated by means of the coherent density approach [6].
The power Fourier spectrum of the intensity fluctuations
growing on top of the constant incoherent background
is used to identify the spatial frequencies that exhibit
maximum gain. Figure 3(a) shows the evolution of the
power spectra of the intensity fluctuation when the angu-
lar power spectrum of the source is Lorentzian, and the
nonlinearity is Kerr type. In this example, u0 � 9.6 mrad,
gI0 � 5 3 1024, n0 � 2.3, l � 0.5 mm in vacuum.
These results indicate that maximum MI gain is attained
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FIG. 1. Incoherent MI for Kerr nonlinearity: growth rate of
perturbations vs the perturbation wavelengths. The light wave-
length in vacuum is 500 nm, and the refractive index n0 � 2.3.
The background uniform intensity has a Lorentzian shaped an-
gular power spectrum of width u0. The nonlinear index change
due to the background is given by dn. In the upper plot, we
show gain curves for a few dn’s, with a fixed u0 � 0.0096 rad;
the dashed line in the plot has dn marginally small enough so
that MI just disappears. In the lower plot, we show gain curves
for a few u0’s, with a fixed dn � 0.0005; the dashed line in the
plot has u0 marginally large enough so that MI just disappears.

at a spatial frequency a�k 
 0.0135, with a peak value of
g � 1.37 mm21, both in an excellent agreement with that
predicted from Eq. (6) as also depicted in Fig. 1 for the
same set of parameters. Note that in this case the spatial
frequency where maximum MI gain occurs remains
invariant during propagation. After a certain distance (in
this example, after 9 mm) additional subbands emerge

FIG. 2. Incoherent MI for a saturable nonlinearity: perturba-
tions growth rate vs perturbation wavelengths. l � 500 nm in
vacuum, and the refractive index n0 � 2.3. The background
uniform intensity has a Lorentzian angular power spectrum of
width u0 � 0.0096 rad. The nonlinear index change due to the
background is dn � 0.001. In the saturable case, there is ad-
ditional suppression due to the saturation. The gain curves are
plotted for various degrees of saturation; the dashed curve is the
case when the saturation is marginally large enough so that MI
just disappears.
as in the case of coherent MI [13]. This is “secondary”
MI: modulation instability for which the first amplified
instability peak acts as a “pump” and plays the role of B0.
Numerical simulations confirm another prediction of the
analytic result: the existence of a threshold for incoherent
MI. The numerical study also provides information
about the evolution of incoherent MI from input beam
of angular power spectra different than the Lorentzian
shape. For example, Fig. 3(b) depicts information similar
to Fig. 3(a) when the source angular power spectrum
is Gaussian �GN �u� � �1�p1�2u0� exp�2u2�u

2
0�	. In

this case u0 � 9.6 mrad, gI0 � 2.5 3 1024, n0 � 2.3,
and l � 0.5 mm. The MI spectra initially evolve in a
fashion similar to the Lorentzian case, but, after some
propagation distance the perturbation grew substantially
(and our analytic approximation B1 ø B0 no longer
holds), and the MI spectrum does not exhibit a clear peak
but broadens with propagation. As observed from Eq. (5),
the MI growth highly depends on the shape of the angular
power spectrum of the source.

We emphasize that one can use our logic up to Eq. (6) in
order to obtain analytical understanding of MI with an ar-
bitrarily shaped angular power spectrum, where one needs
to solve the integral in Eq. (5) numerically (except for the
Lorentzian case, where one can obtain closed-form solu-
tions as we did). When we apply this idea for an input
beam of a Gaussian power spectrum [Fig. 3(b)], we obtain
an excellent agreement between our analytic and numeric
results. The analytic expansion also captures the fact that
there always exists a threshold kI0 for incoherent MI to
occur.

Before closing, we wish to emphasize that this MI result
cannot be obtained using a ray optics (transport) approach
[8], which assumes that the source is fully incoherent (or
the period of the perturbation is much larger than the trans-
verse coherence length). In this picture, each ray behaves
like a particle that follows a trajectory determined by the
local index of refraction, which has a role of potential. The
local index of refraction is in turn determined by the local
density of the rays. Therefore, this picture is very similar
to a gravitational system of many particles. Unfortunately,
for partially spatially incoherent optical beams, the spatial
frequency that grows fastest is beyond this regime. Nev-
ertheless, studying this approach is instructive because it
connects the incoherent MI system with systems as dif-
ferent as galaxy formation, and one can use it to predict
driven MI (induced MI).

To conclude, we have shown that modulation instabil-
ity exists in partially incoherent systems, and that its exis-
tence requires the marginal nonlinear index change times
the background intensity, kI0, to be above a well-defined
threshold. This is in a marked difference with coherent
MI, since there does not exist a similar threshold for co-
herent MI. The kI0 is determined by the spatial degree
of coherence (angular power spectrum). To emphasize the
fundamental importance of this result, recall that partially
incoherent light is a system in which the “quasiparticles”
469
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FIG. 3. Power spectrum of an incoherent beam during propagation in Kerr nonlinearity when (a) the source power spectrum
is Lorentzian with u0 � 0.0096 rad and dn � 0.0005; (b) the source power spectrum is Gaussian with u0 � 0.0096 rad and
dn � 0.000 25.
are only weakly phase correlated (with the extreme case be-
ing a fully incoherent system in which the “quasiparticles”
are fully noncorrelated). Yet this weakly correlated system
exhibits features characteristic of phase transition: above
a well-defined threshold, it collapses and forms “clusters”
(filaments). We also emphasize that, since modulation in-
stability is a precursor of solitons, it is to some extent an
even more universal phenomenon than solitons. In fact, MI
appears in all systems supporting solitons [14] and also in
systems in which solitons have not been identified as of
yet. We have identified here MI in an incoherent system,
which is fundamentally a system in which repulsion forces
are much weaker than the attraction forces [2]. Since na-
ture is full of nonlinear systems in which incoherent wave
packets exist (e.g., optics [15], plasma physics [16]), we
expect that these systems will exhibit MI as well. We be-
lieve that this work lays the foundations for instabilities
and pattern formation in any nonlinear incoherent system
in nature. Furthermore, incoherent MI links to other re-
lated but qualitatively different phenomena, such as galaxy
formation. From all of these arguments, one thing is ob-
vious: there are many more new exciting features that are
intimately related to incoherent modulation instability and
are yet unraveled, calling for future research.
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