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Pattern formation via symmetry breaking in nonlinear weakly correlated systems
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We study pattern formation initiated by modulation instability in nonlinear partially coherent wave fronts
and show that anisotropic noise and/or anisotropic correlation statistics can lead to ordered patterns.
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The decay of signals and the growth of disorder are ev{2+1)D systems has addressed a very different profi@m
eryday occurrences in physical systems. Naively speakingzurthermore, the experiments with {2)D incoherent Ml
this is just a manifestation of the law of increase of entropy[5,7,8 have left many open questions. For example, is there
or second law of thermodynamics. Interestingly, however, ira threshold for (2-1)D incoherent MI? And if such a
some circumstances order may appear spontaneously out tifreshold exists, how does it relate to the threshold in (1
noise. Starting from an initially featureless background, ran—+ 1)D systems? But beyond all other questions, the ability to
dom fluctuations may generate structures that naturally bakxplore (2+1)D incoherent MI adds another degree of free-
ance the various forces in the system and are stable. Thedem to the problem: anisotropy between the transverse di-
may grow, as further fluctuations lead the system towardsnensions that may lead to symmetry breaking and to the
even more stable states. Such processes of ordered structufesmation of asymmetric patterns. The anisotropy can arise
emerging from noise, or spontaneous pattern formation, ar.om the nonlinearity, from the two-dimensional coherence
typically associated with phase-transition phenomena. In opfunction (that is, the correlation statistics of the random wave
tics, spontaneous pattern formation has been demonstratedfiont), and interestingly enough, from the noise that serves as
many system§l], in some cases arising from feedback, anda “seed” for MI.
in other occurring in the absence of feedback, i.e., during Here we formulate the theory of two-transverse-
one-way propagation. Perhaps the best known example afimensional modulation instability in partially incoherent
pattern formation during unidirectional propagation is thenonlinear systems, and study specific intriguing cases of bro-
process of modulation instabilityMl), manifested as the ken symmetry between the two transverse dimensions. We
breakup of a uniform “plane wave[2] (or of a very long  show that quasiordered stripes, rolls, lattices, and gridlike
pulse in time[3]). Such an MI process can lead to the spon-patterns can form spontaneously from random noise in par-
taneous creation of stable localized wave packets with patially incoherent wave fronts in self-focusing noninstanta-
ticlelike features, namely, solitons, in nonlinear self-focusingneous media. We show that the cases of broken symmetries
media. Depending upon the nonlinear properties of the mete.g., stripes and gridlgan be generated by manipulating the
dium, perturbations of certain frequencies are naturally facorrelation statistics of the incident wave front and/or by
vored; these frequencies emerge out of white noise and gaimaving anisotropic noise. We emphasize that, in fully coher-
in strength. These sinusoidal oscillations grow, becomingnt systems, the existence of features associated with broken
more and more peaky, until eventually the wave fragmentsymmetries is not surprising and has been demonstrated be-
into localized solitonlike wave packets. Until recently, Ml fore [10]. But in partially incoherentthat is, random-phase
was considered to be strictly a coherent process. But duringnd weakly correlatedsystems, the very fact that anisotropy
the last two years, a series of theoretical and experimentah the correlation statistics or in the statistics of the noise
studies[4-8] has demonstrated that modulation instability causes symmetry breaking and determines the evolving pat-
can also occur in random-pha8® weakly correlatedwave  terns is a new, exciting, and unique feature in the area of
fronts, in both the spatial domai#—8] and the temporal nonlinear dynamics and solitons.
domain[9]. The main difference between MI in such par- We begin by considering a partially spatially incoherent
tially coherent systems and the “traditional” MI experienced optical beam propagating in thedirection that has a spatial
by coherent waves, is the existence of a threshold. In othetorrelation distance much smaller than its temporal coher-
words, in incoherent systems MI appears only if theence length; i.e., the beam is partially spatially incoherent
“strength” of the nonlinearity exceeds a well-defined thresh-and quasimonochromatic, and the wavelength of lighs
old that depends on the coherence propeftesrelation dis- much smaller than either of these coherence lengths. The
tance of the wave front. Thus far, incoherent Ml has beennonlinear material has a noninstantaneous response; the non-
demonstrated experimentally in both {1)D (one trans- linear index change is a function of the optical intensity, time
verse dimension[5,6,8 and (2+1)D (two transverse di- averaged over the response time of the mediuthat is
mension[5,7] systems. Yet theoretically, analytic studies of much longer than the coherence titge Assuming the light
incoherent MI were reported only for the €11)D case is linearly polarized and that its field is given I&(r,z,t)
[4,8,9 and so far, the only theoretical work carried out in [r=(x,y) being the transverse Cartesian coordinate véctor
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we can define the associated mutual coherence functio@ken to be real. From the structure of E2), we expect that
B(ry,r,,z)=(E*(r,,z,t)E(r1,2z,t)). The brackets denote perturbations will grow exponentially with propagation dis-

the time average over time period By setting tancez and so we assum@; to be proportional to exglz),
where () is the growth rate of the MI at a particular set of
- (rytra) Cposargo o Taxg r1y+r2yy spatial wave vectorsdy ,ay). In fact, B, has to be exponen-
2 o 2 2 tial in zbecause of the translational invariance of By.in z.

Note thatB; has no time dependence: any rapid perturba-
tions will average out over the response time of the material
7. Thus, we can write the eigenmodes of E2). as

and

p:(rl_r2):pr("'pyy:(rlx_r2x)$(+(rly_r2y)y

as the midpoint and difference coordinatB¢r,p,z) be- )

comes the spatial correlation function in the new system. Bi=exp(Qz)exfi(a-r+ ¢)]L(p)+exp*2z)

Note thatB(r,p=0,2)=1(r,z) =(|E(r,z1)|?) wherel(r,z) . .

is the time-averaged intensity. We emphasize that in this xex —i(art gL (= p), )

model only time-independent perturbations can lead to Ml;

any rapid fluctuations will average out over the response . .

time of the materiak- and have no significant bearing on the WNere ¢ is an arbitrary real phase, ardp) are a set of

final result. From the paraxial wave equatiph11,13, we modes that contain all the dependenceporand can be ob-

derive in (2+1)D an equation governing the evolution of tained for each &,,a,) [4]. These eigenmodes satisfy
nition of B(r,p,z) given above. By introducingM (p)

B i &2 =L(p)/L(p=(0,0)) into Eq.(2) and integrating over, we
9z E[arxapx + arydpy B arrive at
H 2
:mTO(%) {An rx+%,ry+%,z) 1 d d
QM(p)+ E{a’xﬁ—px"raya—py]
—An(rx—&,r —&,z) B, (1)
2’y 2 aypyt aypy

2wk
XM(p)+— sin( 3 )Bo(P)
wherew is the carrier frequency of the light,is the carrier
wave vector,ng is the index of refraction of the material =0. (4)
without illumination, andAn is the intensity-dependent non-
linear addition to the index of refraction{n|<ny).

MI is manifested in the development of a small intensity  Since growth can only occur for this form of the ansatz
perturbation on top of an otherwise uniform beam. This carjor B, if () has a real component greater than zero, we look
be expressed mathematically by takifr,p,z2)=Bo(p)  for particular and homogeneous solutions to Ed) for
+B,y(r,p,2), whereB, is the uniform beanB, is the pertur-  \yhich this is the case. Physically, for growing modes, the
bation to be affected by MI, an@;|<B,. Substituting this homogeneous solution must be zero BKp) must be

latter form of B in Eq. (1) we obtain bounded for largép|. By taking the Fourier transform of Eq.

— + B,
gz k|drydpyx  drydpy
i 2 iwklC a a
MNg [ @ p p ~ _ A X y
-2 K(Bl e 2t 2 (=00, =002| k)= [Bo ot Syt
Q- K (axky+ ayky)
—By| [~ 2~ 2] (py=0p,=0),2| B
1 l’X 71ry E !(pX_ 1py_ ),Z O(p)y R ay ay
—Bo kx_7a y_? (5
2

where we have defined the marginal nonlinear index change

evaluated at intensitly, to bexzd[An(I)]/dlho. Equation  whereF (k)= (1/2m)%” . [“ . dpF(p)e’* P denotes the Fou-
(2) is linear inB, and has translational invariance with re- er transform off-(p). From the definition oM(p) above,
spect tor. ThusB; can be investigated in terms of its plane- it can be seen thatl (p=(0,0))=L(p=(0,0)/L(p=(0,0))
Wave(Fourier) Constituentsy i.e_Bl can be taken as propor- =1. US|ng the inverse Fourier transform and thIS |aSt COI’]dI—
tional to expi(ayy+ayry)], where ay=2m/A, and a, tion one quickly finds that/” . [” . .dk.d kyl\7|(kx,ky)=1.
=2m/A, are the wave vectors of the oscillations, and areHence we arrive at the constraint,
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1 WK Joc dk fw dk Now sinceéo(k) is identical with respect t&, andk, and
I I B normalized[i.e., [*../” .. dkBy(k) =Bo(p=(0,0))=1,], in-
tegration ovek, further reduces this constraint to

A ay ay| ay ay
Bol ket 5 kvt 5 | 7 Bol ke 5ok m 5 ; k+a) o [ a)
8 T (ke ayk) ' ok [* 0| 2] TR KT 3
i 4 okt aky) 1:—-[ dk, ®
K c ) ~ (aky
iQ+
(6) K

: (©)

whereB,(k) is now the one-dimensional normalized angular
Here, Bo(k) stands for the Fourier transform &,(p) as  power spectrum. This is identical to that obtained in the (1
expected, but note that this function also physically repre-+1)D casg4]. Therefore, since this equation gives the gain
sents the angular power distribution of the beam. This can beurve Q(|al), the curve itself, and all quantities derived
seen by keeping in mind th#= (k,/k,k, /k) also represents from it, the wave vector of maximum growtayax must be
the angle of propagation, as long ks and k, are small the same in both the (£1)D and the (2-1)D cases. _
compared tok. Once a form is chosen fd8y(k), Eq. (6) To better understand the_ behavior _of two-dimensional in-
uniquely determines the growth rage as a function of the coherent MI, we now consider a pa_lrtlcu!ar 'forr'n of angular
wave vector &, ,«,) and contains all the information about POWer spectrum, the double-Gaussian distribution,
how quickly the MI will grow and which spatial frequencies 5 )
i i i I k k
of perturbations will dominate. Bo(k, k)= 0 o —| x4y
We show now that if the radial symmetry in the transverse ORI mrkyeokyo ki koo
(x-y) plane is not broken, either by the medium or by the
beam itself, many parallels can be drawn between the behawhich is realizable experimentally. By numerically solving
iors of the one- and two-transverse-dimensional systemsq. (6) for Q(ay,a,), we find that the results are exactly
More specifically, the relation between the one- and two4dentical to those obtained in the 411)D case using one-
dimensional growth ratest),p(ay,ay)=Q,p( Ja 2+ ayz) dimensional Gaussian statistics; i.e., the magnitude of the
=Q4p(«), can be shown to be true for any case in which thefrequency of maximum growth and the growth rate as a
intensity of the beam is uniform and its correlation functionfunction of frequency are the same in both one and two di-
is radially symmetric and separable:éo(kx ky) mensions. T_hese computations were per_formed using the co-
=By(k,)Bo(k,)=Bo([k|). This separation is not just for nerent density approadi,14 that describes the propaga-
mathematical convenience, but in fact separable correlatiofo" .Of m_coheren.t light in r_ne_d!a with a n:)nlnstantaneous
functions do exist in numerous physical settings. For ex/onlinearity. In this model, infinitely many “coherent com-
ample, transverse modulation instabilities of{1)D soli- ponents” propagate at aII_ possible _ang[ee., values of the
tons in a 3D bulk medium can be eliminated by making useVave vector K, ky) ] and interact with one another through
of a separable correlation functigalthough in that case the the nonlinearity that is a f!”.“?“o.” of th.e t|me-gveraged Inten-
correlation function is also not radially symmeirjd1]. This Sty The shapes of the initial intensity profile for each of
implies that both the magnitude of the spatial frequencies O}he.se coheren't components are the same, but the relative
maximum growth and their corresponding growth rates must/€ights are given by the angular power spectrum of the
be identical in one-and two-transverse-dimensional system§ource beam, which iBy(k), the Fourier transform of the
This important conclusion can be proven by the followingcorrelation function. The nonlinear change in the refractive
argument. Since both the beam and the medium possess igdex is taken to be saturable and of the form
dial symmetry, the gain curve can have no dependence off ANyax[In/(1+1y)], whereAnyax is the maximum non-
angular orientation and thus must be a function only of thdinear index change possible ahg=1/1gar, | sar is the satu-
magnitude ofe. Therefore, we may pick, =0, a,=a, and  ration intensity of the material.
solve for the caser=0 without loss of generality. Rewriting ~ Our numerical simulationsFig. 1) confirm the analytic
the constraint Eq(6) using this form foréo(k) and these conclusion: the spatial frequer_lcy of maximum growth and its
values for @y, ay), we see that rate of gro_wth are the same in 1%_]1)D and (2_+ 1)D sys-
tems, provided that the nonlinearity, seed noise and the spa-
tial correlation function are all fully isotropic. The (1
wKk [ R +1)D case[Fig. 1(a)] reveals strong peakshe spatial fre-
1=— e f dkyBo(k,) quency of maximum growthoccurring at|e|/k=0.035, in
’°° accordance with the analytic theory. The#2)D case con-
. a tains a ring of wave vectofs side slice of which is shown in
—Bo(kx— 5) Fig. 1(b)] at |a|/k=0.0350, exactly the same magnitude as

Bo

o
ket 5

X f ) dk, . (7 n the (+1)D case. The parameters
—o0 04 (aky) chosen wereny=2.3, A\=0.5 um, k=28.903 um %,
k AI’IMAX=5X 1073, and aoxz(kxo/k)=00y=13.85 mrad,
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FIG. 1. (a) Comparison between the angular power spectra of the features resulting from incoherent modulation instability in the (1
+1)D (@ and in the (2+1)D (b) cases, for a beam with the input power spectrum of @y.with 6,,=13.85 mrad. The beam was
propagated for 1.2 mm in a material with a saturable nonlinednity: Anyax[1/(1+1)], whereAnyay =5.0x 10" 3. The parameters used
in both cases were identical, and only the number of spatial dimensions was varied. The figure shows the power(spadbitrary unit$
as a function of the transverse wave veetartormalized to the wave vector of the lightThe uniform incoherent background intensity has
been subtracted out so that the statistics of the perturbations alone is shogh,. the results are radially symmetric, and we show a
representative slice through the plamg=0.

which are representative of typical values in biased photorefor incoherent Ml, some patterns are more likely to emerge
fractives. The input wave front was taken to be a very broadhan others. The reason for that is statistical: the likelihood
(~500 um), flat beam of height 1 in normalized unijtwith ~ for the emergence of filaments of a random distribution in
radial symmetry in the (2 1)D casé, seeded with random space(for which the distribution in Fourier space is isotro-
Gaussian white noisgl5] at a level of 10°. In both cases, pic) is much greater than the likelihood of stripésr which

the beams were allowed to propagate for 1.2 mm, and théhe peaks in Fourier space are lined up in some direction
intensity of the background beam was 1 in normalized unitsEqually important, we note that our analytic calculation re-
As predicted by the theory, numerics confirm that the oneties on a linearized stability analyis. After a long enough
and two-dimensional cases grow at the same rates and at tb?opagation distance, when the perturbations gain suffi-
same spatial frequencies. If the system is fully isotropic, thaEienﬂy high amplitudes, we expect that they will compete
is, if the nonlinearity, input beartboth in its input intensity  ith one another, and some patterns will prevail over others,
distribution and in its correlation functiorand the noise, are o\ an if both have initially the same gain. In fact, our simu-
all ully isotropic, then the (¥1)D case is fully equivalent |4ijons reveal just that: some 2D structures emerge and oth-
to the (2+1)D case. ers do not, even though they initially have the same gain.

To conclude the section dealing with incoherent MI of i i by
input beams with isotropic propertigsorrelation function Next we consider a case where the correlation fundgign

and seed noigein fully isotropic nonlinear media, we em- 1S anigotrgpic, that is, the rad.ial symmetry in the correlation
ence whatsoever with respect to any directionality in theisotropic. We will show that the extra spatial dimension al-
transverse planfas manifested by Eq$5)—(8)], the result-  lows for complex behaviors with no counterpart whatsoever
ant patterns such as 1D stripes, 2D square lattices, and 2D a one-dimensional system. In one dimension, it has been
triangular lattices, etc., all have the same growth rate and Migstablished that for sufficiently incoherent wave fronts, Ml is
threshold. In other words, the system as it is doesdiffer-  totally suppressed4]. In a 2D system withfy,# 6,5, one
entiate between such patterns. This could lead to “®enal may ask, what kind of features will emerge if the gain of the
conclusion that all possible states of this system are equallgpatial frequencies in one direction is above the MI thresh-
likely to occur. But this conclusion is wrong: our simulations old, while the gain for those spatial frequencies in the other
clearly indicate that, in spite of the fact that all possible 2Dtransverse direction are below threshold. To answer such
patterns in a fully isotropic system have the same thresholduestions, we must first derive constraints governing the on-
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set of MI. Although the difference in behaviors above and
below the threshold is very markdill either occurs or it
does nok the transition between the two regimes is continu-
ous, and so it must be that at this threshold both the §ain
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and its derivatived(Q)/d|a| are zero whemha|=0 [4]. Let us
first consider the threshold for Ml to occur in tRelirection,
and seta,=0. For small values of,, Eq.(6) becomegto
first order ina,)

wKk (@ o
1=—Tf_wdkxf_wdky

9B,
(o Sy a—
akx ki =Ky
X > > ,
, a0 ay 90 ayky
I Q+ax 7 ? 12 + Kk
aax al=0 &ax a)'(=0
(10)
which reduces to
1= wkr dkfx L (11)
e ) ) YKy K, o
X X

Equation(11) can be solved exactly fdk,,, the threshold

A B
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—— e -
.-
20 Yo e
e o
10 - : S
™ e ©
— -A - » ’
g 0 - - - é;
= - s 3
A' - " |
10' ~ g ‘
8 — i
-— - -0.03 'Q\
20
e
-30 - ——— -0.05
20 0 20 -0.05 0 0.05
[um] o /k

FIG. 2. Features resulting from incoherent modulation instabil-
ity for an input beam of an elliptical double-Gaussian angular
power spectruniEq. (9)] with 6,=9.6 mrad anddo,=2.2 mrad.
The beam was propagated for 1 mm in material with a refractive
index of the formn=ny+Any_ I, where ng=2.3 and Any_
=5x10"4. (a) shows the intensity of the perturbationB,(r)|?,
in the spatial domain, with high intensity represented by white
shading, low by dark(b) shows the corresponding angular power
spectrum||§1(af)|2, where the uniform background intensity has
been subtracted out.

beam is propagated for 1 mm in a material with a Kerr-type

width of the angular power spectrum, for any form of the nonlinearity of the4 formn=ny+Any. Iy, Where ng=2.3
angular power spectruy(k). Choosing the same double- andAny, =5x10"". We find that the extra incoherence in

Gaussian form as aboyEq. (9)], we find that Ml will occur
in the x direction if

nokio
ANy threshold® K10= 52 (12

2k
thus, if the nonlinearly induced index chaniya exceeds the
threshold value on the right-hand side of Ef2), then MI
will form stripes with periodicities(spatial frequencigs
along thex direction. Since the initial constraint Ep) is
unchanged by interchanging, and k,, it follows that

y-direction Ml must also be subject to a similar inequality,

Nokgo
2k? -

AnyfthresholdE Klo= (13

Although Eqgs.(13) and(14) are identical functions with re-

the x direction inhibits the MI, as expected, and that the
formation of stripes occurs preferentially in the more coher-
enty-direction. These results are presented in Fig. 2, where
the emergence of Ml ity and not inx is manifested in both
the development of the spatial intensity fluctuatidig.
2(a) and in the corresponding Fourier specffédg. 2(b)].
Figure Zb) shows that a narrow band of wave vectors domi-
nates the pattern formation process with significant Ml oc-
curring only for a very limited range of values far, /k
(~0.03).

While the example of elliptical double-Gaussian correla-
tion statistics begins to illustrate some of the variety that an

extra spatial dimension can introduce, other formsf:‘@(rk)

can lead to even more complex and completely different pat-
terns. One interesting case that happens to be exactly solv-
able analytically is that of a partially incoherent optical beam
with an angular power spectrum in the form of a double

spect tokyo andk,q , there is no reason that the actual thresh-Lorentzian distribution
old values must be the same. It is, therefore, possible that if,

for example, the beam is more coherent alongytd@ection
than along the direction, only MI withy directionality will

Ikaokyo
72K+ k) (Koo +k3)

Bo(Ky k) = (14)

occur. To test this analytic prediction, we use the coherent o ) o
density approachi13,14 to simulate the propagation of a Whl_ch, while |dent|cal_ along thex andy d|rect|or_1$, Igcks
beam with “elliptical” double-Gaussian statistics, as in Eq. radial symmetry and is narrower along thet5° directions

(9). The initial beam is more coherent in th@irection, with

than along the 0° and 90° directions in the transverse plane.

foy=K,0/k=2.2 mrad, but much more widely distributed in From this insight, one may naively expect that MI will ap-

the x direction (Box=k,o/k=9.6 mrad). In the simulation,
the input beam is a very wide-500 um), flat, and radially

pear first along the:45° directions. But, in this case intu-
ition is misleading. Using this particular form fcﬁo(k) in

symmetric wave front of intensity 1 in normalized units, with Eq. (6), one can then obtain exactly the gain curve

random Gaussian white noise added at a level 6°10he

Q(ay,ay) that is,
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Equation (15 predicts that the strongest gain will occur
along the 0° and 90° directions, and not along the 45° axis
(as might be naively expectgdSolving for the thresholds
along the 0° &,=0) and 45° directions and provided that
(ax=ay=Ko), we find,

(19

[um]

2nok3
An45°7threshoIdEK|0>_k2_ and

nokg
AIﬁ'O°,90"—'[hreshoIdEKI02 KZ ° (16)

[pm]

Thus, the threshold value for the nonlinear index change
ANyreshoig IS indeed lower along the 0° and 90° directions
than along those tilted by 45°, even though the angular -A00: - bz o0t 0
power spectrum is wider along the 0° and 90° directions than [uml o /k
along the 45¢ tilted directions. In other words, in this intrigu-
ing example theMI grows fastest along the directions with FIG. 3._ Features resulting from incohe!rent modulation instabil-
the widest angular distribution of powesince it has the ity for an input beam of a double-Lorentzian angular_power spec-
lowest threshold, and the winner takes it all. Such a phenonfrm [EQ. (14)]. The beam was propagated for 6 mm in a material
enon has no analog in §11)D, where widening the angular With @ saturable ”Onl'g‘ear'ty of the fordin=Anyx[I/(1+1)],
power spectrum always decreases MI groydh Just why Wit ASMijiBX 107 @ 152h°WS dthTehmtensuty 0; thef pt:ert_urba-
MI grows first along the directions with a wider distribution tl_ons_,| ()|* for fo= o, = mrad. The magnitude of the inten-
in k space(despite the intuition drawn from the 1D casan sity is repres_ented by the sha_dl_ng of the figure, with white repre-
S . senting maxima and black minim#&b) shows the corresponding
be understood by considering the Fourier transform of the - ) 2
angular power spectrum, that is, the correlation function,"’Ingulalr power spectrufBy(as)|”. () Sljowsfl(r)' for the fox
Bo(f,p,2). In general, in a 1D transform, a wider distribution — 12 Mrad andd, =6 mrad. (d) shows|By(a)|*
in k space has a narrower distributionrirspace, but in 2D
this is not always the case and the actual geometry must bEhe perturbations that experience highest gain occur near
considered. In fact, the Fourier transform of a 2D double| a|/k~0.0125, which compares well with 0.01, the value
Lorentzian spectrum is broadestrispace(real spacgalong  predicted by Eq(15). We attribute this slightly lower value
the same directions it is broadestkrspace. So in fact, the of the wave vector to neglecting higher-order terms in Eq.
beam is most strongly correlated along the 0° and 90° direct2), where the intensity-dependent changeAin, was ap-
tions, even though these are the directions along which thproximated asclo=d[An(l)]/dl;; X1,. This result is exact
angular power spectrum is the widest. From this example, ify the Kerr case 4n=Any, 1), but for saturable nonlineari-
is apparent that MI grows preferentially in the most stronglyties, which is what we use in our simulatiéand which is
correlated direction, and that this may or may not correspongdiso encountered in experiments, otherwise the patterns
to the direction with the most angularly concentrated distri-emerging from the MI are unstablethe approximation in-
bution of the power. troduces a small error in finding the spatial frequency that
We confirm these results using numerical simulations ingrows fastest. Going back to the spatial domain, the emerg-
the same material and beam parametegs X,k) described jng M| pattern is manifested as a grid of localized wave
above but with a saturable nonlinearityn=Anyuax[1/(1  packets; overlapping the stripes in thelirection with those
+1)], with Anyax=1.8x10"°. The input is a very broad in they direction results in increased intensity at the inter-
(800 um), flat wave front in the spatial domain, seeded withsections of the grid.
random Gaussian white noise at a level of 10with the To further explore the emergence of incoherent MI when
degree of incoherence set By, = 6p,=12 mrad. The results the correlation statistics are anisotropic, we again use the
after 6 mm of propagation are shown in Figsa)3and 3b);  form of the angular power spectrum used in Fig. 3, but dis-
the axis has been tilted by 20° to isolate any boundary artitort it so that the correlation function of the beam is stretched
facts of using a square grid to store data points. The result i one direction with respect to the other. In this particular
just as predicted: Ml occurs only on the 0° and 90° degreexample, the angular widths aré,, =12 mrad and Boy
directions, as is evident in Fig.(l3 that shows the power =g mrad, while all other parameters are kept the same as in
Fourier spectrum of the intensity perturbationB,(a)|2. the previous exampléof Fig. 3(@ and (b), where fo,= 0o,

0.01 0.02
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=12 mrad. In this case, Eq(15) predicts the formation of A B
strong peaks in the Fourier domain on $hexis at the 90° 0 it P SR N i

and 270° marks ate|/k=0.016. As Figs. &) and 3d) 06s 7 3 ese et 00
show, the numerical simulations confirm the analytic predic- 75_"5 ": ';".'0:‘,.::',;‘ 0.01
tion: significant MI forms only in they direction neafa|/k — J:.-:;’T '...'::-_-‘..‘- <
~0.017(again, as above, the axes have been tilted by 20° tcs. 0 '=.';.°;-',f':;-'° %= 3
isolate artifacts of using a square grid to store data ppints pSTe e e 0.1
Note, that in the spatial domain the patterns appear similar tc :‘”‘.’:’.-"c,%i.:.-‘:’:‘ 00

/’
Sy
[ A

.

those produced using elliptical statistics, but the Fourier 0. & 7=« =
analysis, depicted in Fig.(8), reveals that the range of fre- 0 50
guencies present is actually much narrower, with little spread
in either thex or y directions, and thus stronger striping is  FIG. 4. Features resulting from incoherent modulation instabil-
seen overall. The strong intensity stripes seen here are vefy for an input beam with a radially symmetric Gaussian angular
similar to patterns observed experimentally in photorefracpower spectrumwith 6o,= 6o,=2.2 mrad, but with preferential
tive crystalg[5,8]. (white) noise in they direction that is 18 times stronger than the

Until this point, we have only used input beams that arenoise in thex direction. (a) shows the spatiz_il d?stribution_of the
inherently asymmetric in their correlation statisticoher- ~ Perturbation|By(r)|?, after 2 mm of propagation in a material with
ence propertigsto produce symmetry breaking. But, it is a saturable nonllr;eanty of the formn=AnMAX[I/(1+l)], where
legitimate to ask: Can a beam that is radially symmetric and Mwax=3.3<10°%, ang (b) shows the corresponding angular
of perfectly isotropic coherence properties give rise to anisoP?Wer spectrum|B,(a)|*.
tropic M, that is, to spontaneous formation of patterns that Before closing, we wish to note two generic results that
lack radial symmetry? For example, can such a fully radiallylinks 2D to 1D systems(l) Whenever the input beam has
symmetric beam transform into stripes or another geometrieorrelation statistics that are separable and radially symmet-
cally ordered grid-type state? The answer lies in the proparic as By(k, k) =Bo(k,) Bo(k,)=Bo(|k|), and the nonlin-
gation dynamics. Obviously, asymmetry or anisotropy in theearity and the noise are fully isotropic, the features of 2D
nonlinear medium can give rise to such phenomena, as is thecoherent Ml exactly reproduce those of 1D incoherent MI.
case for the photorefractive nonlinearity and for nonlineari-The 2D system relates to the 1D system in a straightforward
ties in liquid crystals. But there exists another alternative thamanner: the Ml threshold and the growth rates are identical.
is actually much more interesting: asymmetry can exist in théll) Whenever the input beam has correlation statistics that
noise that seeds the MI process. For example, inorganic phé'e separable but areot radially symmetric, such as
torefractive crystals have striations that appear in the form oB(k, ,k,) = Bo,(ky) Boy(k,) # Bo(|k|), and the nonlinearity
planes of index inhomogeneities. As as result, random variaand the noise are fully isotropic, the features of 2D incoher-
tions in the index of refractiofnoise are much greater along ent MI can be mapped onto two independent 1D systems,
the direction normal to these planes. We investigate this phezorresponding to the two transverse dimensions, each of
nomenon of pattern formation from incoherent Ml in the which having its own properties, such as Ml threshold,
presence of anisotropic noise by propagating a perfectly isagrowth rates, the spatial frequency off maximum growth, etc.
tropic wave front with a radially symmetric angular power We note, however, that these types of beams account for only
spectrum in a medium with broken symmetry. To modela subset of all possible physical cases and the set of experi-
these kind of irregularities, we seed our initial input to thements that can be performed with two-dimensional partially
numerical simulations with predominantly one-dimensionalincoherent beams. In fact, in many cases, either the correla-
noise that fluctuates strongly in tigelirection, while remain-  tion statistics are not separable, or anisotropic noise intro-
ing almost constant across tkelirection[16]. The medium  duces directional preferences.
had a saturable nonlinearity of the form=Anyax[1/(1 We have provided in this paper an analytical framework
+1)], whereAnyax =3.3X 10" 3; other parameters were the for studying (2+1)D incoherent MI, and using numerical
same as in the simulation shown in Fig. 1. The angulasimulations, we have shown that the predictions of this
power spectrum of the beam was a double Gaussian, as theory are accurate. However, we may ask what will happen
Eq. (9), with 6o,= 6py=2.2 mrad. The results are shown in as the MI continues to grow. Are the patterns that evolve
Figs. 4a) and 4b), after 2 mm of propagation and we see from incoherent Ml stable or will they develop into some-
that indeed the random yet anisotropic noise breaks the synthing different? Or will they break apart? Initially the pertur-
metry and gives rise to stripes in the preferential directionbations are only a very small sinusoidal wave on top of an
The angular power spectrum of the perturbat|@n(a)|? otherwise uniform background. But perturbations that grow
shown in Fig. 4b), reveals that the mechanism behind theexponentially as the beam propagates must eventually reach
symmetry breaking process that leads to striping is differenthe same order of magnitude as the background intensity
from both the methods to produce striping studied above. I1By(p) and the linearization assumptidB,|<|By| can no
is apparent that there is an overall background of fluctuationtonger hold. Earlier work§5,7,8 have shown that as the Ml
as in the radially symmetric case, but the Ml is dominated bygrows large, the character of the dynamics changes, resulting
a very strong preferential growth of stripesyat0, with  in a transition from sinusoids on top of a constant back-
spreading in the direction. ground to individual, localized wave packets of increasing
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height. The onset of this behavior can be seen in Fig. 4ttractive or repelling, depending upon the phase between
above; the long thin ripples gradually become punctuated byhem. Coherent MI, however, always produces feat(gaea-
small round peaks arranged in a gridlike structure; such gridsisolitons that arew out of phase with one another, thus, the
have been observed experimental,8]. The subsequent dominating force between adjacent solitons is always repul-
evolution of the system now depends on the nature of théive. This leads to a grid of evenly spaced localized wave
nonlinearity and on the correlation statistics of the beam. IrPacketd5]. However, if the initial beam is sufficiently inco-
nonlinear Kerr media, the localized isolated peaks continué€rent leading to incoherent M, the phase-dependent inter-
to grow in height and become narrower until a “collapse” actions between and among the “MI product#fie localized
occurs[17]. The system’s long-range evolution is completely'SOIated wave packetghat result _from interference terms _
different in saturable nonlinearities, where the isolated inten?V€'a9€ out and only a net attractive force among these soli-

sity peaks stabilize and remain mostly unchanged in Shap%gns survives. As a result, the solitons begin to draw nearer to

, . : eir neighbors and cluster in aggregates of fine-scale struc-
by further propagation. The fact that incoherent Ml in 2Dtures: clusters of solitong].

saturable systems leads to a grid of isolated intensity peaks In summary, we have studied theoretically modulation in-

.migdh't ::)y (rj\aivcfaly r;:istakenhto .be thou%Tt as T}g”dl of (Ijocal'stability in (2+1)D partially spatially incoherent systems.
Ized islands of coherent, that is, possibly each isolated wavgy,, sdy reveals different and interesting dynamics that do
packet is an individual fully coherer{or fully correlated

not exist in (1+1)D incoherent systems. In particular, we

entity. However, this is not the case: each of these isolated,serye the ordering of the MI perturbations into stripes and
wave packets is still partlally_mcoherent, albe|t_b_e_|ng S“ghtlygrid-like features, which occurs if the symmetry of the sys-
more coherent than the uniform beam that initiated themyo, is broken is some manner. Some of these interesting

Furthermore, the separation between two adjacent isolatg§,namics of pattern formation from incoherent modulation
wave packets is several times larger than the correlation digpgiapility have already been demonstrated experimentally in
tance. In the limit where this distance is not too large, long-Refs. [5], [7], [8], but many other features are yet to be
range attraction forces between these localized wave pack€fgserved. Furthermore, such behavior should be observable
lead to clustering of solitons, as was recently demonstrategl qther natural systems, since solitons, MI, and incoherence
experimentally and theoretically]. This means that the cor- .o phenomena universal to many nonlinear systems. The
relation statistics play a crucial role not only in determining giscovery of incoherent MI has implications for many other
the Ml threshold and the dominating spatial frequencies, bufsnlinear systems beyond optics. It implies that patterns can
also in deterr_nlnmg.the I_ong—range evolution of the emerging spontaneouslyfrom nois@ in nonlinear many-body
patterns. This subject is described elsewhfk but for gy gtems involving weakly correlated particles, such as,

completeness, we briefly discuss the main ideas. When thg,mic gases ator slightly abové the Bose-Einstein-
initial beam is fully coherent and the nonlinearity is satu- condensation temperatures.

rable, a stable grid of localized wave packets emerges. These

wave packets propagate without further change in their This work was supported by the U.S. Army Research Of-
width, i.e., they behave like gquasisolitons. The interactiondice, and is part of the MURI program on optical spatial

among these solitons are coherent, therefore, the interactigolitons. It was also supported by the NSF and the U.S. Air
forces between adjacent localized wave packets can be eithEorce Office of Scientific Research.
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