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Pattern formation via symmetry breaking in nonlinear weakly correlated systems
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We study pattern formation initiated by modulation instability in nonlinear partially coherent wave fronts
and show that anisotropic noise and/or anisotropic correlation statistics can lead to ordered patterns.
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The decay of signals and the growth of disorder are
eryday occurrences in physical systems. Naively speak
this is just a manifestation of the law of increase of entro
or second law of thermodynamics. Interestingly, however
some circumstances order may appear spontaneously o
noise. Starting from an initially featureless background, r
dom fluctuations may generate structures that naturally
ance the various forces in the system and are stable. T
may grow, as further fluctuations lead the system towa
even more stable states. Such processes of ordered struc
emerging from noise, or spontaneous pattern formation,
typically associated with phase-transition phenomena. In
tics, spontaneous pattern formation has been demonstrat
many systems@1#, in some cases arising from feedback, a
in other occurring in the absence of feedback, i.e., dur
one-way propagation. Perhaps the best known exampl
pattern formation during unidirectional propagation is t
process of modulation instability~MI !, manifested as the
breakup of a uniform ‘‘plane wave’’@2# ~or of a very long
pulse in time@3#!. Such an MI process can lead to the spo
taneous creation of stable localized wave packets with
ticlelike features, namely, solitons, in nonlinear self-focus
media. Depending upon the nonlinear properties of the
dium, perturbations of certain frequencies are naturally
vored; these frequencies emerge out of white noise and
in strength. These sinusoidal oscillations grow, becom
more and more peaky, until eventually the wave fragme
into localized solitonlike wave packets. Until recently, M
was considered to be strictly a coherent process. But du
the last two years, a series of theoretical and experime
studies@4–8# has demonstrated that modulation instabil
can also occur in random-phase~or weakly correlated! wave
fronts, in both the spatial domain@4–8# and the tempora
domain @9#. The main difference between MI in such pa
tially coherent systems and the ‘‘traditional’’ MI experience
by coherent waves, is the existence of a threshold. In o
words, in incoherent systems MI appears only if t
‘‘strength’’ of the nonlinearity exceeds a well-defined thres
old that depends on the coherence properties~correlation dis-
tance! of the wave front. Thus far, incoherent MI has be
demonstrated experimentally in both (111)D ~one trans-
verse dimension! @5,6,8# and (211)D ~two transverse di-
mensions! @5,7# systems. Yet theoretically, analytic studies
incoherent MI were reported only for the (111)D case
@4,8,9# and so far, the only theoretical work carried out
1063-651X/2002/65~3!/036620~9!/$20.00 65 0366
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(211)D systems has addressed a very different problem@7#.
Furthermore, the experiments with (211)D incoherent MI
@5,7,8# have left many open questions. For example, is th
a threshold for (211)D incoherent MI? And if such a
threshold exists, how does it relate to the threshold in
11)D systems? But beyond all other questions, the ability
explore (211)D incoherent MI adds another degree of fre
dom to the problem: anisotropy between the transverse
mensions that may lead to symmetry breaking and to
formation of asymmetric patterns. The anisotropy can a
from the nonlinearity, from the two-dimensional coheren
function~that is, the correlation statistics of the random wa
front!, and interestingly enough, from the noise that serves
a ‘‘seed’’ for MI.

Here we formulate the theory of two-transvers
dimensional modulation instability in partially incohere
nonlinear systems, and study specific intriguing cases of b
ken symmetry between the two transverse dimensions.
show that quasiordered stripes, rolls, lattices, and grid
patterns can form spontaneously from random noise in p
tially incoherent wave fronts in self-focusing noninstan
neous media. We show that the cases of broken symme
~e.g., stripes and grids! can be generated by manipulating th
correlation statistics of the incident wave front and/or
having anisotropic noise. We emphasize that, in fully coh
ent systems, the existence of features associated with br
symmetries is not surprising and has been demonstrated
fore @10#. But in partially incoherent~that is, random-phase
and weakly correlated! systems, the very fact that anisotrop
in the correlation statistics or in the statistics of the no
causes symmetry breaking and determines the evolving
terns is a new, exciting, and unique feature in the area
nonlinear dynamics and solitons.

We begin by considering a partially spatially incohere
optical beam propagating in thez direction that has a spatia
correlation distance much smaller than its temporal coh
ence length; i.e., the beam is partially spatially incoher
and quasimonochromatic, and the wavelength of lightl is
much smaller than either of these coherence lengths.
nonlinear material has a noninstantaneous response; the
linear index change is a function of the optical intensity, tim
averaged over the response time of the mediumt that is
much longer than the coherence timetc . Assuming the light
is linearly polarized and that its field is given byE(r ,z,t)
@r5(x,y) being the transverse Cartesian coordinate vect#,
©2002 The American Physical Society20-1
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we can define the associated mutual coherence func
B(r1 ,r2 ,z)5^E* (r2 ,z,t)E(r1 ,z,t)&. The brackets denote
the time average over time periodt. By setting

r5
~r11r2!

2
5r xx̂1r yŷ5

r 1x1r 2x

2
x̂1

r 1y1r 2y

2
ŷ

and

r5~r12r2!5rxx̂1ryŷ5~r 1x2r 2x!x̂1~r 1y2r 2y!ŷ

as the midpoint and difference coordinatesB(r ,r,z) be-
comes the spatial correlation function in the new syste
Note thatB(r ,r50,z)5I (r ,z)5^uE(r ,z,t)u2& where I (r ,z)
is the time-averaged intensity. We emphasize that in
model only time-independent perturbations can lead to
any rapid fluctuations will average out over the respo
time of the materialt and have no significant bearing on th
final result. From the paraxial wave equation@4,11,12#, we
derive in (211)D an equation governing the evolution
the correlation function,B(r ,r,z),

]B

]z
2

i

k H ]2

]r x]rx
1

]2

]r y]ry
J B

5
in0

k S v

c D 2H DnS r x1
rx

2
,r y1

ry

2
,zD

2DnS r x2
rx

2
,r y2

ry

2
,zD J B, ~1!

wherev is the carrier frequency of the light,k is the carrier
wave vector,n0 is the index of refraction of the materia
without illumination, andDn is the intensity-dependent non
linear addition to the index of refraction (uDnu!n0).

MI is manifested in the development of a small intens
perturbation on top of an otherwise uniform beam. This c
be expressed mathematically by takingB(r ,r,z)5B0(r)
1B1(r ,r,z), whereB0 is the uniform beamB1 is the pertur-
bation to be affected by MI, anduB1u!B0 . Substituting this
latter form ofB in Eq. ~1! we obtain

]B1

]z
2

i

k H ]2

]r x]rx
1

]2

]r y]ry
J B1

5
in0

k S v

c D 2

kH B1F S r x1
rx

2
,r y1

ry

2 D ,~rx50,ry50!,zG
2B1F S r x2

rx

2
,r y2

ry

2 D ,~rx50,ry50!,zG J B0~r!,

~2!

where we have defined the marginal nonlinear index cha
evaluated at intensityI 0 , to bek5d@Dn(I )#/dI uI 0

. Equation

~2! is linear in B1 and has translational invariance with r
spect tor. ThusB1 can be investigated in terms of its plan
wave ~Fourier! constituents, i.e.,B1 can be taken as propor
tional to exp@i(axrx1ayry)#, where ax52p/Lx and ay
52p/Ly are the wave vectors of the oscillations, and a
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taken to be real. From the structure of Eq.~2!, we expect that
perturbations will grow exponentially with propagation di
tancez and so we assumeB1 to be proportional to exp(Vz),
whereV is the growth rate of the MI at a particular set
spatial wave vectors (ax ,ay). In fact,B1 has to be exponen
tial in z because of the translational invariance of Eq.~2! in z.
Note thatB1 has no time dependence: any rapid pertur
tions will average out over the response time of the mate
t. Thus, we can write the eigenmodes of Eq.~2! as

B15exp~Vz!exp@ i ~a•r1f!#L~r!1exp~V* z!

3exp@2 i ~a•r1f!#L* ~2r!, ~3!

where f is an arbitrary real phase, andL(r) are a set of
modes that contain all the dependence onr, and can be ob-
tained for each (ax ,ay) @4#. These eigenmodes satisf
B1(r ,r,z)5B1* (r ,2r,z), which is required from the defi-
nition of B(r ,r,z) given above. By introducingM (r)
5L(r)/L„r5(0,0)… into Eq. ~2! and integrating overz, we
arrive at

VM ~r!1
1

k H ax

]

]rx
1ay

]

]ry
J

3M ~r!1
2vk

c
sinS axrx1ayry

2 DB0~r!

50. ~4!

Since growth can only occur for this form of the ansa
for B1 if V has a real component greater than zero, we lo
for particular and homogeneous solutions to Eq.~4! for
which this is the case. Physically, for growing modes, t
homogeneous solution must be zero asM (r) must be
bounded for largeuru. By taking the Fourier transform of Eq
~4! we find that

M̂ ~kx ,ky!5F ivk/c

V2
i

k
~axkx1ayky!G F B̂0S kx1

ax

2
,ky1

ay

2 D

2B̂0S kx2
ax

2
,ky2

ay

2 D G . ~5!

whereF̂(k)5(1/2p)2*2`
` *2`

` drF(r)eik•r denotes the Fou-
rier transform ofF(r). From the definition ofM (r) above,
it can be seen thatM „r5(0,0)…5L„r5(0,0)…/L„r5(0,0)…
51. Using the inverse Fourier transform and this last con
tion one quickly finds that*2`

` *2`
` dkxdkyM̂ (kx ,ky)51.

Hence we arrive at the constraint,
0-2
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152
vk

c E
2`

`

dkxE
2`

`

dky

3F B̂0S kx1
ax

2
,ky1

ay

2 D2B̂0S kx2
ax

2
,ky2

ay

2 D
iV1

~axkx1ayky!

k

G .

~6!

Here, B̂0(k) stands for the Fourier transform ofB0(r) as
expected, but note that this function also physically rep
sents the angular power distribution of the beam. This can
seen by keeping in mind thatu5(kx /k,ky /k) also represents
the angle of propagation, as long askx and ky are small
compared tok. Once a form is chosen forB̂0(k), Eq. ~6!
uniquely determines the growth rateV as a function of the
wave vector (ax ,ay) and contains all the information abou
how quickly the MI will grow and which spatial frequencie
of perturbations will dominate.

We show now that if the radial symmetry in the transve
~x-y! plane is not broken, either by the medium or by t
beam itself, many parallels can be drawn between the be
iors of the one- and two-transverse-dimensional syste
More specifically, the relation between the one- and tw
dimensional growth rates,V2D(ax ,ay)5V2D(Aax

21ay
2)

[V1D(a), can be shown to be true for any case in which
intensity of the beam is uniform and its correlation functi
is radially symmetric and separable:B̂0(kx ,ky)
5B̂0(kx)B̂0(ky)5B̂0(uku). This separation is not just fo
mathematical convenience, but in fact separable correla
functions do exist in numerous physical settings. For
ample, transverse modulation instabilities of (111)D soli-
tons in a 3D bulk medium can be eliminated by making u
of a separable correlation function~although in that case th
correlation function is also not radially symmetric! @11#. This
implies that both the magnitude of the spatial frequencies
maximum growth and their corresponding growth rates m
be identical in one-and two-transverse-dimensional syste
This important conclusion can be proven by the followi
argument. Since both the beam and the medium posses
dial symmetry, the gain curve can have no dependence
angular orientation and thus must be a function only of
magnitude ofa. Therefore, we may pickay50, ax5a, and
solve for the casea>0 without loss of generality. Rewriting
the constraint Eq.~6! using this form forB̂0(k) and these
values for (ax ,ay), we see that

152
vk

c E
2`

`

dkyB̂0~ky!

3E
2`

`

dkxF B̂0S kx1
a

2 D2B̂0S kx2
a

2 D
iV1

~akx!

k

G . ~7!
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Now sinceB̂0(k) is identical with respect tokx andky and
normalized†i.e., *2`

` *2`
` dkB̂0(k)5B0„r5(0,0)…5I 0‡, in-

tegration overky further reduces this constraint to

152
vk

c E
2`

`

dkxF B̂0S kx1
a

2 D2B̂0S kx2
a

2 D
iV1

~akx!

k

G ~8!

whereB̂0(k) is now the one-dimensional normalized angu
power spectrum. This is identical to that obtained in the
11)D case@4#. Therefore, since this equation gives the ga
curve V(uau), the curve itself, and all quantities derive
from it, the wave vector of maximum growthaMAX must be
the same in both the (111)D and the (211)D cases.

To better understand the behavior of two-dimensional
coherent MI, we now consider a particular form of angu
power spectrum, the double-Gaussian distribution,

B̂0~kx ,ky!5
I 0

pkx0ky0
expF2S kx

2

kx0
2 1

ky
2

ky0
2 D G , ~9!

which is realizable experimentally. By numerically solvin
Eq. ~6! for V(ax ,ay), we find that the results are exact
identical to those obtained in the (111)D case using one
dimensional Gaussian statistics; i.e., the magnitude of
frequency of maximum growth and the growth rate as
function of frequency are the same in both one and two
mensions. These computations were performed using the
herent density approach@13,14# that describes the propaga
tion of incoherent light in media with a noninstantaneo
nonlinearity. In this model, infinitely many ‘‘coherent com
ponents’’ propagate at all possible angles@i.e., values of the
wave vector (kx ,ky)# and interact with one another throug
the nonlinearity that is a function of the time-averaged inte
sity. The shapes of the initial intensity profile for each
these coherent components are the same, but the rel
weights are given by the angular power spectrum of
source beam, which isB̂0(k), the Fourier transform of the
correlation function. The nonlinear change in the refract
index is taken to be saturable and of the formDn
5DnMAX @ I N /(11I N)#, whereDnMAX is the maximum non-
linear index change possible andI N5I /I SAT , I SAT is the satu-
ration intensity of the material.

Our numerical simulations~Fig. 1! confirm the analytic
conclusion: the spatial frequency of maximum growth and
rate of growth are the same in (111)D and (211)D sys-
tems, provided that the nonlinearity, seed noise and the
tial correlation function are all fully isotropic. The (1
11)D case,@Fig. 1~a!# reveals strong peaks~the spatial fre-
quency of maximum growth! occurring atuau/k50.035, in
accordance with the analytic theory. The (211)D case con-
tains a ring of wave vectors@a side slice of which is shown in
Fig. 1~b!# at uau/k50.0350, exactly the same magnitude
in the (111)D case. The parameter
chosen were n052.3, l50.5 mm, k528.903 mm21,
DnMAX 5531023, and u0x[(kx0 /k)5u0y513.85 mrad,
0-3
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FIG. 1. ~a! Comparison between the angular power spectra of the features resulting from incoherent modulation instability in
11)D ~a! and in the (211)D ~b! cases, for a beam with the input power spectrum of Eq.~9! with u0x513.85 mrad. The beam wa
propagated for 1.2 mm in a material with a saturable nonlinearityDn5DnMAX @ I /(11I )#, whereDnMAX 55.031023. The parameters use
in both cases were identical, and only the number of spatial dimensions was varied. The figure shows the power spectrum~in arbitrary units!
as a function of the transverse wave vectora normalized to the wave vector of the lightk. The uniform incoherent background intensity h
been subtracted out so that the statistics of the perturbations alone is shown. In~b!, the results are radially symmetric, and we show
representative slice through the planeay50.
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which are representative of typical values in biased photo
fractives. The input wave front was taken to be a very bro
~;500 mm!, flat beam of height 1 in normalized units@with
radial symmetry in the (211)D case#, seeded with random
Gaussian white noise@15# at a level of 1025. In both cases,
the beams were allowed to propagate for 1.2 mm, and
intensity of the background beam was 1 in normalized un
As predicted by the theory, numerics confirm that the o
and two-dimensional cases grow at the same rates and a
same spatial frequencies. If the system is fully isotropic, t
is, if the nonlinearity, input beam~both in its input intensity
distribution and in its correlation function!, and the noise, are
all fully isotropic, then the (111)D case is fully equivalen
to the (211)D case.

To conclude the section dealing with incoherent MI
input beams with isotropic properties~correlation function
and seed noise!, in fully isotropic nonlinear media, we em
phasize that, because (211)D incoherent MI has no prefer
ence whatsoever with respect to any directionality in
transverse plane@as manifested by Eqs.~5!–~8!#, the result-
ant patterns such as 1D stripes, 2D square lattices, and
triangular lattices, etc., all have the same growth rate and
threshold. In other words, the system as it is doesnot differ-
entiate between such patterns. This could lead to a n¨ve
conclusion that all possible states of this system are equ
likely to occur. But this conclusion is wrong: our simulation
clearly indicate that, in spite of the fact that all possible 2
patterns in a fully isotropic system have the same thresh
03662
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for incoherent MI, some patterns are more likely to eme
than others. The reason for that is statistical: the likeliho
for the emergence of filaments of a random distribution
space~for which the distribution in Fourier space is isotro
pic! is much greater than the likelihood of stripes~for which
the peaks in Fourier space are lined up in some directio!.
Equally important, we note that our analytic calculation r
lies on a linearized stability analyis. After a long enou
propagation distance, when the perturbations gain su
ciently high amplitudes, we expect that they will compe
with one another, and some patterns will prevail over othe
even if both have initially the same gain. In fact, our sim
lations reveal just that: some 2D structures emerge and
ers do not, even though they initially have the same gain

Next we consider a case where the correlation functionB̂0

is anisotropic, that is, the radial symmetry in the correlat
statistics is broken:u0xÞu0y with the noise remaining fully
isotropic. We will show that the extra spatial dimension
lows for complex behaviors with no counterpart whatsoe
in a one-dimensional system. In one dimension, it has b
established that for sufficiently incoherent wave fronts, MI
totally suppressed@4#. In a 2D system withu0xÞu0y one
may ask, what kind of features will emerge if the gain of t
spatial frequencies in one direction is above the MI thre
old, while the gain for those spatial frequencies in the ot
transverse direction are below threshold. To answer s
questions, we must first derive constraints governing the
0-4
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set of MI. Although the difference in behaviors above a
below the threshold is very marked~MI either occurs or it
does not! the transition between the two regimes is contin
ous, and so it must be that at this threshold both the gaiV
and its derivativedV/duau are zero whenuau50 @4#. Let us
first consider the threshold for MI to occur in thex direction,
and setay50. For small values ofax , Eq. ~6! becomes~to
first order inax!

152
vk

c E
2`

`

dkxE
2`

`

dky

3F ax

]B̂0

]kx k
x85kx

8

i S V1ax

]V

]ax a
x850

8
1

ax
2

2

]2V

]ax a
x850

82 D 1
axkx

k
G ,

~10!

which reduces to

152
vk

c E
2`

`

dkxE
2`

`

dky

1

kx

]B̂0

]kx8
U

k
x85kx

. ~11!

Equation~11! can be solved exactly forkx0 , the threshold
width of the angular power spectrum, for any form of t
angular power spectrumB̂0(k). Choosing the same double
Gaussian form as above@Eq. ~9!#, we find that MI will occur
in the x direction if

Dnx2threshold[kI 0>
n0kx0

2

2k2 ; ~12!

thus, if the nonlinearly induced index changeDn exceeds the
threshold value on the right-hand side of Eq.~12!, then MI
will form stripes with periodicities~spatial frequencies!
along thex direction. Since the initial constraint Eq.~6! is
unchanged by interchangingkx and ky , it follows that
y-direction MI must also be subject to a similar inequality

Dny2threshold[kI 0>
n0ky0

2

2k2 . ~13!

Although Eqs.~13! and ~14! are identical functions with re
spect tokx0 andky0 , there is no reason that the actual thres
old values must be the same. It is, therefore, possible tha
for example, the beam is more coherent along they direction
than along thex direction, only MI withy directionality will
occur. To test this analytic prediction, we use the coher
density approach@13,14# to simulate the propagation of
beam with ‘‘elliptical’’ double-Gaussian statistics, as in E
~9!. The initial beam is more coherent in they direction, with
u0y5ky0 /k52.2 mrad, but much more widely distributed
the x direction (u0x5kx0 /k59.6 mrad). In the simulation
the input beam is a very wide~;500 mm!, flat, and radially
symmetric wave front of intensity 1 in normalized units, wi
random Gaussian white noise added at a level of 1025. The
03662
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beam is propagated for 1 mm in a material with a Kerr-ty
nonlinearity of the formn5n01DnNLI N , where n052.3
and DnNL5531024. We find that the extra incoherence
the x direction inhibits the MI, as expected, and that t
formation of stripes occurs preferentially in the more coh
ent y-direction. These results are presented in Fig. 2, wh
the emergence of MI iny and not inx is manifested in both
the development of the spatial intensity fluctuations@Fig.
2~a! and in the corresponding Fourier spectra@Fig. 2~b!#.
Figure 2~b! shows that a narrow band of wave vectors dom
nates the pattern formation process with significant MI o
curring only for a very limited range of values foray /k
(;0.03).

While the example of elliptical double-Gaussian corre
tion statistics begins to illustrate some of the variety that
extra spatial dimension can introduce, other forms forB̂0(k)
can lead to even more complex and completely different p
terns. One interesting case that happens to be exactly s
able analytically is that of a partially incoherent optical bea
with an angular power spectrum in the form of a doub
Lorentzian distribution

B̂0~kx ,ky!5
I 0kx0ky0

p2~kx0
2 1kx

2!~ky0
2 1ky

2!
, ~14!

which, while identical along thex and y directions, lacks
radial symmetry and is narrower along the645° directions
than along the 0° and 90° directions in the transverse pla
From this insight, one may naively expect that MI will ap
pear first along the645° directions. But, in this case intu
ition is misleading. Using this particular form forB̂0(k) in
Eq. ~6!, one can then obtain exactly the gain cur
V(ax ,ay) that is,

FIG. 2. Features resulting from incoherent modulation insta
ity for an input beam of an elliptical double-Gaussian angu
power spectrum@Eq. ~9!# with u0x59.6 mrad andu0y52.2 mrad.
The beam was propagated for 1 mm in material with a refrac
index of the form n5n01DnNL I, where n052.3 and DnNL

5531024. ~a! shows the intensity of the perturbations,uB1(r )u2,
in the spatial domain, with high intensity represented by wh
shading, low by dark.~b! shows the corresponding angular pow

spectrumuB̂1(a)u2, where the uniform background intensity ha
been subtracted out.
0-5
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V~ax ,ay!52Ukx0

ax

k U2Uky0

ay

k U
1Aax

21ay
2S kI 0

n0
2

ax
21ay

2

4k2 D 1/2

. ~15!

Equation ~15! predicts that the strongest gain will occ
along the 0° and 90° directions, and not along the 45° a
~as might be naively expected!. Solving for the thresholds
along the 0° (ay50) and 45° directions and provided th
(ax5ay5k0), we find,

Dn45°2threshold[kI 0>
2n0k0

2

k2 and

Dn0°,90°2threshold[kI 0>
n0k0

2

k2 . ~16!

Thus, the threshold value for the nonlinear index chan
Dnthreshold is indeed lower along the 0° and 90° directio
than along those tilted by 45°, even though the angu
power spectrum is wider along the 0° and 90° directions t
along the 45° tilted directions. In other words, in this intrig
ing example theMI grows fastest along the directions wit
the widest angular distribution of power, since it has the
lowest threshold, and the winner takes it all. Such a phen
enon has no analog in (111)D, where widening the angula
power spectrum always decreases MI growth@4#. Just why
MI grows first along the directions with a wider distributio
in k space~despite the intuition drawn from the 1D case! can
be understood by considering the Fourier transform of
angular power spectrum, that is, the correlation functi
B0(r,r,z). In general, in a 1D transform, a wider distributio
in k space has a narrower distribution inr space, but in 2D
this is not always the case and the actual geometry mus
considered. In fact, the Fourier transform of a 2D dou
Lorentzian spectrum is broadest inr space~real space! along
the same directions it is broadest ink space. So in fact, the
beam is most strongly correlated along the 0° and 90° di
tions, even though these are the directions along which
angular power spectrum is the widest. From this example
is apparent that MI grows preferentially in the most stron
correlated direction, and that this may or may not corresp
to the direction with the most angularly concentrated dis
bution of the power.

We confirm these results using numerical simulations
the same material and beam parameters (n0 ,l,k) described
above but with a saturable nonlinearity,Dn5DnMAX @ I /(1
1I )#, with DnMAX 51.831023. The input is a very broad
~800mm!, flat wave front in the spatial domain, seeded w
random Gaussian white noise at a level of 1025, with the
degree of incoherence set byu0x5u0y512 mrad. The results
after 6 mm of propagation are shown in Figs. 3~a! and 3~b!;
the axis has been tilted by 20° to isolate any boundary a
facts of using a square grid to store data points. The resu
just as predicted: MI occurs only on the 0° and 90° deg
directions, as is evident in Fig. 3~b! that shows the powe
Fourier spectrum of the intensity perturbations,uB̂1(a)u2.
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The perturbations that experience highest gain occur n
uau/k;0.0125, which compares well with 0.01, the valu
predicted by Eq.~15!. We attribute this slightly lower value
of the wave vector to neglecting higher-order terms in E
~2!, where the intensity-dependent change inDn, was ap-
proximated askI 05d@Dn(I )#/dI uI 0

3I 0 . This result is exact

in the Kerr case (Dn5DnNLI ), but for saturable nonlineari
ties, which is what we use in our simulation~and which is
also encountered in experiments, otherwise the patte
emerging from the MI are unstable!, the approximation in-
troduces a small error in finding the spatial frequency t
grows fastest. Going back to the spatial domain, the em
ing MI pattern is manifested as a grid of localized wa
packets; overlapping the stripes in thex direction with those
in the y direction results in increased intensity at the inte
sections of the grid.

To further explore the emergence of incoherent MI wh
the correlation statistics are anisotropic, we again use
form of the angular power spectrum used in Fig. 3, but d
tort it so that the correlation function of the beam is stretch
in one direction with respect to the other. In this particu
example, the angular widths areu0x512 mrad andu0y
56 mrad, while all other parameters are kept the same a
the previous example~of Fig. 3~a! and ~b!, whereu0x5u0y

FIG. 3. Features resulting from incoherent modulation insta
ity for an input beam of a double-Lorentzian angular power sp
trum @Eq. ~14!#. The beam was propagated for 6 mm in a mater
with a saturable nonlinearity of the formDn5DnMAX @ I /(11I )#,
with DnMAX 51.831023. ~a! shows the intensity of the perturba
tions, uB1(r )u2 for u0x5u0y512 mrad. The magnitude of the inten
sity is represented by the shading of the figure, with white rep
senting maxima and black minima.~b! shows the corresponding

angular power spectrumuB̂1(a1)u2. ~c! showsuB1(r )u2 for the u0x

512 mrad andu0y56 mrad. ~d! showsuB̂1(a)u2.
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512 mrad!. In this case, Eq.~15! predicts the formation of
strong peaks in the Fourier domain on they axis at the 90°
and 270° marks atuau/k50.016. As Figs. 3~c! and 3~d!
show, the numerical simulations confirm the analytic pred
tion: significant MI forms only in they direction nearuau/k
;0.017~again, as above, the axes have been tilted by 20
isolate artifacts of using a square grid to store data poin!.
Note, that in the spatial domain the patterns appear simila
those produced using elliptical statistics, but the Fou
analysis, depicted in Fig. 3~d!, reveals that the range of fre
quencies present is actually much narrower, with little spr
in either thex or y directions, and thus stronger striping
seen overall. The strong intensity stripes seen here are
similar to patterns observed experimentally in photorefr
tive crystals@5,8#.

Until this point, we have only used input beams that a
inherently asymmetric in their correlation statistics~coher-
ence properties! to produce symmetry breaking. But, it
legitimate to ask: Can a beam that is radially symmetric a
of perfectly isotropic coherence properties give rise to an
tropic MI, that is, to spontaneous formation of patterns t
lack radial symmetry? For example, can such a fully radia
symmetric beam transform into stripes or another geome
cally ordered grid-type state? The answer lies in the pro
gation dynamics. Obviously, asymmetry or anisotropy in
nonlinear medium can give rise to such phenomena, as is
case for the photorefractive nonlinearity and for nonlinea
ties in liquid crystals. But there exists another alternative t
is actually much more interesting: asymmetry can exist in
noise that seeds the MI process. For example, inorganic
torefractive crystals have striations that appear in the form
planes of index inhomogeneities. As as result, random va
tions in the index of refraction~noise! are much greater alon
the direction normal to these planes. We investigate this p
nomenon of pattern formation from incoherent MI in th
presence of anisotropic noise by propagating a perfectly
tropic wave front with a radially symmetric angular pow
spectrum in a medium with broken symmetry. To mod
these kind of irregularities, we seed our initial input to t
numerical simulations with predominantly one-dimensio
noise that fluctuates strongly in they direction, while remain-
ing almost constant across thex direction@16#. The medium
had a saturable nonlinearity of the formDn5DnMAX @ I /(1
1I )#, whereDnMAX 53.331023; other parameters were th
same as in the simulation shown in Fig. 1. The angu
power spectrum of the beam was a double Gaussian, a
Eq. ~9!, with u0x5u0y52.2 mrad. The results are shown
Figs. 4~a! and 4~b!, after 2 mm of propagation and we se
that indeed the random yet anisotropic noise breaks the s
metry and gives rise to stripes in the preferential directi
The angular power spectrum of the perturbationuB1(a)u2
shown in Fig. 4~b!, reveals that the mechanism behind t
symmetry breaking process that leads to striping is differ
from both the methods to produce striping studied above
is apparent that there is an overall background of fluctuati
as in the radially symmetric case, but the MI is dominated
a very strong preferential growth of stripes atx50, with
spreading in they direction.
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Before closing, we wish to note two generic results th
links 2D to 1D systems.~I! Whenever the input beam ha
correlation statistics that are separable and radially symm
ric as B̂0(kx ,ky)5B̂0(kx)B̂0(ky)5B̂0(uku), and the nonlin-
earity and the noise are fully isotropic, the features of
incoherent MI exactly reproduce those of 1D incoherent M
The 2D system relates to the 1D system in a straightforw
manner: the MI threshold and the growth rates are identi
~II ! Whenever the input beam has correlation statistics
are separable but arenot radially symmetric, such as
B̂0(kx ,ky)5B̂0x(kx)B̂0y(ky)ÞB̂0(uku), and the nonlinearity
and the noise are fully isotropic, the features of 2D incoh
ent MI can be mapped onto two independent 1D syste
corresponding to the two transverse dimensions, each
which having its own properties, such as MI thresho
growth rates, the spatial frequency off maximum growth, e
We note, however, that these types of beams account for
a subset of all possible physical cases and the set of ex
ments that can be performed with two-dimensional partia
incoherent beams. In fact, in many cases, either the corr
tion statistics are not separable, or anisotropic noise in
duces directional preferences.

We have provided in this paper an analytical framewo
for studying (211)D incoherent MI, and using numerica
simulations, we have shown that the predictions of t
theory are accurate. However, we may ask what will hap
as the MI continues to grow. Are the patterns that evo
from incoherent MI stable or will they develop into som
thing different? Or will they break apart? Initially the pertu
bations are only a very small sinusoidal wave on top of
otherwise uniform background. But perturbations that gr
exponentially as the beam propagates must eventually re
the same order of magnitude as the background inten
B0(r) and the linearization assumptionuB1u!uB0u can no
longer hold. Earlier works@5,7,8# have shown that as the M
grows large, the character of the dynamics changes, resu
in a transition from sinusoids on top of a constant ba
ground to individual, localized wave packets of increasi

FIG. 4. Features resulting from incoherent modulation insta
ity for an input beam with a radially symmetric Gaussian angu
power spectrum~with u0x5u0y52.2 mrad!, but with preferential
~white! noise in they direction that is 102 times stronger than the
noise in thex direction. ~a! shows the spatial distribution of th
perturbation,uB1(r )u2, after 2 mm of propagation in a material wit
a saturable nonlinearity of the formDn5DnMAX @ I /(11I )#, where
DnMAX 53.331023, and ~b! shows the corresponding angula

power spectrum,uB̂1(a)u2.
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height. The onset of this behavior can be seen in Fig
above; the long thin ripples gradually become punctuated
small round peaks arranged in a gridlike structure; such g
have been observed experimentally@5,8#. The subsequen
evolution of the system now depends on the nature of
nonlinearity and on the correlation statistics of the beam
nonlinear Kerr media, the localized isolated peaks conti
to grow in height and become narrower until a ‘‘collaps
occurs@17#. The system’s long-range evolution is complete
different in saturable nonlinearities, where the isolated int
sity peaks stabilize and remain mostly unchanged in sh
by further propagation. The fact that incoherent MI in 2
saturable systems leads to a grid of isolated intensity pe
might by naively mistaken to be thought as a grid of loc
ized islands of coherent, that is, possibly each isolated w
packet is an individual fully coherent~or fully correlated!
entity. However, this is not the case: each of these isola
wave packets is still partially incoherent, albeit being sligh
more coherent than the uniform beam that initiated the
Furthermore, the separation between two adjacent isol
wave packets is several times larger than the correlation
tance. In the limit where this distance is not too large, lon
range attraction forces between these localized wave pac
lead to clustering of solitons, as was recently demonstra
experimentally and theoretically@7#. This means that the cor
relation statistics play a crucial role not only in determini
the MI threshold and the dominating spatial frequencies,
also in determining the long-range evolution of the emerg
patterns. This subject is described elsewhere@7#, but for
completeness, we briefly discuss the main ideas. When
initial beam is fully coherent and the nonlinearity is sa
rable, a stable grid of localized wave packets emerges. T
wave packets propagate without further change in th
width, i.e., they behave like quasisolitons. The interactio
among these solitons are coherent, therefore, the intera
forces between adjacent localized wave packets can be e
.

m
,

nd

.
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attractive or repelling, depending upon the phase betw
them. Coherent MI, however, always produces features~qua-
sisolitons! that arep out of phase with one another, thus, th
dominating force between adjacent solitons is always rep
sive. This leads to a grid of evenly spaced localized wa
packets@5#. However, if the initial beam is sufficiently inco
herent leading to incoherent MI, the phase-dependent in
actions between and among the ‘‘MI products’’~the localized
isolated wave packets! that result from interference term
average out and only a net attractive force among these
tons survives. As a result, the solitons begin to draw neare
their neighbors and cluster in aggregates of fine-scale st
tures: clusters of solitons@7#.

In summary, we have studied theoretically modulation
stability in (211)D partially spatially incoherent system
Our study reveals different and interesting dynamics that
not exist in (111)D incoherent systems. In particular, w
observe the ordering of the MI perturbations into stripes a
grid-like features, which occurs if the symmetry of the sy
tem is broken is some manner. Some of these interes
dynamics of pattern formation from incoherent modulati
instability have already been demonstrated experimentall
Refs. @5#, @7#, @8#, but many other features are yet to b
observed. Furthermore, such behavior should be observ
in other natural systems, since solitons, MI, and incohere
are phenomena universal to many nonlinear systems.
discovery of incoherent MI has implications for many oth
nonlinear systems beyond optics. It implies that patterns
form spontaneously~from noise! in nonlinear many-body
systems involving weakly correlated particles, such
atomic gases at~or slightly above! the Bose-Einstein-
Condensation temperatures.

This work was supported by the U.S. Army Research O
fice, and is part of the MURI program on optical spat
solitons. It was also supported by the NSF and the U.S.
Force Office of Scientific Research.
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