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Abstract: We present a theoretical analysis of lasing action in photonic
crystal surface-emitting lasers (PCSELs). The semiclassical laser equations
for such structures are simulated with three different theoretical techniques:
exact finite-difference time-domain calculations, an steady-state ab-initio
laser theory and a semi-analytical coupled-mode formalism. Our simula-
tions show that, for an exemplary four-level gain model, the excitation of
dark Fano resonances featuring arbitrarily large quality factors can lead to
a significant reduction of the lasing threshold of PCSELs with respect to
conventional vertical-cavity surface-emitting lasers. Our calculations also
suggest that at the onset of lasing action, most of the laser power generated
by finite-size PCSELs is emitted in the photonic crystal plane rather than the
vertical direction. In addition to their fundamental interest, these findings
may affect further engineering of active devices based on photonic crystal
slabs.
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linear optics in photonic-crystal microcavities,” Opt. Express15, 16161–16176 (2007).
53. R. E. Hamam, M. Ibanescu, E. J. Reed, P. Bermel, S. G. Johnson, E. Ippen, J. D. Joannopoulos, and M. Soljac̆ić,
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ation and devices in doubly-resonant Kerr cavities,” Phys. Rev. A79, 013812 (2009).

56. J. Bravo-Abad, A. W. Rodriguez, J. D. Joannopoulos, P. T. Rakich, S. G. Johnson, and M. Soljac̆ić, “Efficient
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1. Introduction

Ever since the demonstration of the first laser fifty years ago [1], controlling the spontaneous
and stimulated emission of atoms, molecules or electron-hole pairs, by placing them in the
proximity of complex dielectric or metallic structures has been seen as an attractive way to
tailor the lasing properties of active media [2–5]. With the rapid advance of micro- and nano-
fabrication techniques over the past decade, along with the development of novel theoretical
techniques, this approach has led to the emergence of a number of new coherent light sources,
with dimensions and emission properties much different from those found in conventional
lasers [6–32].

Among these systems, photonic crystals (PhCs) slabs [33, 37] have already demonstrated
their significant potential to enable efficient integrated laser sources [8, 10, 12, 16–19, 22, 23,
26, 31]. In this context, the unique properties of PhCs to achieve simultaneous spectral and
spatial electromagnetic (EM) mode engineering can be exploited in two different ways. On
one hand, one can take advantage of the extremely highQ/Vmode microphotonic cavities (Q
andVmodebeing the corresponding quality factor and the modal volume, respectively) that can
be introduced in PhCs simply by inducing local variations in the geometry or the dielectric
constant of an otherwise perfectly periodic structure [33, 35]. Alternatively, one can benefit
from the multidirectional distributed feedback effect occurring at frequencies close to the band-
edges in a defect-free PhC slab; this enables coherent lasing emission and polarization control
over large areas [10]. In this work, we focus on the latter class of structures, usually referred to
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as photonic-crystal surface-emitting lasers (PCSELs) [26].
Oneof the most intriguing aspects of periodic PhC slabs is the presence of guided resonan-

ces, the so-called Fano resonances [33, 36, 37]. The physical origin of these resonances lies in
the coupling between the guided modes supported by the slab and external plane waves, this
coupling being assisted by the Bragg diffraction occurring in the considered structures due to
the periodic modulation of their dielectric constant. Importantly, in the case of an infinitely
perfectly periodic PhC slab, and essentially due to symmetry reasons [38], some of these Fano
resonances are completely de-coupled from the external world (i.e. theirQ-factor diverges de-
spite lying above the light line). As we show below, in actual finite-size PhC slabs, thesedark
Fano resonances retain some of the properties of their infinite periodic counterparts and, thus,
in the limit of large size PhC slabs, can display arbitrarily largeQ values. Since these dark
modes typically have photon lifetimes much longer than those of other modes, we expect them
to dominate the lasing properties of PCSELs.

The purpose of this paper is to analyze theoretically how lasing action in PCSELs is
influenced by the presence of the dark Fano resonances, using three different theoretical
techniques suitable for analyzing microstructured lasers: a generalized finite-difference time-
domain method (FDTD) [9, 19, 40, 41], a steady-state ab-initio laser theory [21, 25, 42], and a
semi-analytical coupled-mode theory [33,43]. Each of these techniques offers different kinds of
insight into the systems. Our results suggest that the physical origin of the low lasing thresholds
observed in actual PCSELs, compared to conventional vertical-cavity-surface-emitting lasers
(VCSELs) [46], can be explained in terms of dark Fano states. Likewise, we find that, for the
exemplary PCSELs structures discussed in this paper, at input pump rates close to the thresh-
old, the presence of dark Fano modes leads to most of the laser power to be emitted in the plane
of periodicity rather than in the vertical direction. In comparison with previous work in this
area [10,12,22,26,31], the findings reported in this paper expand the current understanding of
lasing action in PCSELs, which, to our knowledge, has hitherto been explained only in terms
of the low-group velocity band-edge modes supported by this class of lasers.

The paper is organized as follows. Section 2 discusses the computational methods used in this
paper. In this section, we first introduce the general semiclassical approach we have employed
to simulate lasing action in PCSELs. Then, we provide a brief summary of each of the three
numerical methods used to solve the semiclassical laser equations. Section 3 presents a detailed
analysis of the physics of lasing action in different classes of PCSEL structures. Finally, in
Section 4 we provide a set of conclusions of this work.

2. Methods

2.1. General framework

Before proceeding with the description of the different electrodynamic techniques used in this
work, we first present the general theoretical framework from which these techniques are de-
veloped.

We model a dispersive Lorentz active medium using a generic four-level atomic system [9,
19, 34]. The population density in each level is given byNi (i =0,1,2,3). Maxwell’s equations
for isotropic media are given by∂B(r, t)/∂ t = −∇×E(r, t) and∂D(r, t)/∂ t = ∇×H(r, t),
whereB(r, t) = µµoH(r, t), D(r, t) = εεoE(r, t)+ P(r, t) andP(r, t) is the dispersive electric
polarization density that corresponds to the transitions between two atomic levels,N1 andN2.
The vectorP introduces gain in Maxwell’s equation and its time evolution can be shown [47] to
follow that of a homogeneously broadened Lorentzian oscillator driven by the coupling between
the population inversion and the external electric field. Thus,P obeys the equation of motion

∂ 2P(r, t)
∂ t2 +Γm

∂P(r, t)
∂ t

+ω2
mP(r, t) = −σm∆N(r, t)E(r, t) (1)
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whereΓm standsfor the linewidth of the atomic transitions atωm = (E2−E1)/h̄, and accounts
for both the nonradiative energy decay rate, as well as dephasing processes that arise from inco-
herently driven polarizations.E1 andE2 correspond to the energies ofN1 andN2, respectively.
σm is the coupling strength ofP to the external electric field and∆N(r, t) = N2(r, t)−N1(r, t)
is the population inversion drivingP. Positive inversion is attained when∆N(r, t) > 0, in which
case the medium is amplifying; when∆N(r, t) < 0, the medium is absorbing. In order to model
realistic gain media, only conditions favorable to the former are considered.

The atomic population densities obey the rate equations

∂N3(r, t)
∂ t

= RpN0(r, t)−
N3(r, t)

τ32
(2)

∂N2(r, t)
∂ t

=
1

h̄ωm
E(r, t) ·

∂P(r, t)
∂ t

+
N3(r, t)

τ32
−

N2(r, t)
τ21

(3)

∂N1(r, t)
∂ t

= −
1

h̄ωm
E(r, t) ·

∂P(r, t)
∂ t

+
N2(r, t)

τ21
−

N1(r, t)
τ10

(4)

∂N0(r, t)
∂ t

= −RpN0(r, t)+
N1(r, t)

τ10
, (5)

where± 1
h̄ωm

E · ∂P
∂ t are the stimulated emission rates. For∆N(r, t) > 0, the plus sign corresponds

to radiation while the minus sign represents excitation.Rp is the external pumping rate that
transfers electrons from the ground state to the third excited level, and is proportional to the
incident pump power.τi j is the nonradiative decay lifetimes from leveli to j (i > j) so that
the energy associated with the decay termNi

τi j
is considered to be lost. Since the total electron

densityNtot = Σ3
i=0Ni(r, t) is conserved in the rate equations, the active medium modeled this

way becomes saturable at high values ofRp.
Lasing action in this class of active media is obtained as follows. Electrons are pumped from

the ground-state levelN0 toN3 at a rateRp. These electrons then decay nonradiately intoN2 after
a short lifetimeτ32. By enforcingτ21 ≫ (τ32,τ10), a metastable state is formed atN2 favoring a
positive population inversion betweenN2 andN1 (i.e. ∆N > 0), which are separated by energy
h̄ωm. In this regime, a net decay of electrons toN1 occurs through stimulated emission and
nonradiative relaxation. Lastly, electrons decay nonradiatively and quickly toN0. Lasing occurs
for pumping rates beyond a given thresholdRth

p , once sufficient inversion (gain) is attained to
overcome the total losses in the structure.

In reality, some of theseNi levels may stand for clusters of closely spaced but distinct levels,
where the relaxation processes among them are much faster than that with all other levels. More
generally, although we will focus on the particular case of four-level gain media, we expect
the lasing properties of the PCSELs to be influenced primarily by the EM properties of the
passive dielectric structure, rather than the microscopic details of the gain mechanism. Hence,
our results should be broadly applicable to any active device describable by semiclassical laser
theory. The specific effects of optimizing lasing action will depend on the gain medium. Thus,
as we show below, for a four-level gain medium, it leads to an arbitrary reduction of the lasing
threshold; whereas in a semiconductor laser, it may lead to lasing thresholds close to the limit
set by the transparency condition.

2.2. Finite-difference time-domain simulations of active media

The finite-difference time-domain method [40] is used to numerically solve for the optical re-
sponse of the active material. Similar to the derivation of Yee [48], Maxwell’s equations are
approximated by the second order center differencing scheme so that both three dimensional
(3D) space and time are discretized, leading to spatial and temporal interleaving of the elec-
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tromagnetic fields. Pixels of the Yee lattice are chosen to be smaller than the characteristic
wavelength of the fields. Moreover, this uniform space grid (i.e.∆x = ∆y = ∆z, where∆x, ∆y
and∆zare the space increments in thex, y andzdirections) should also be made fine enough so
that the PCSEL structures in consideration are well-represented. For numerical stability, Von
Neumann analysis places an upper bound on the size of the time step,∆t ≤ S∆x/c, wherec
is the speed of light. The Courant factorS is typically chosen to be12 to accommodate 3D
simulations.

Following Yee, we evolve theE and H fields at alternate time steps. For simplicity, we
show explicitly the set of discretized equations implemented for a one dimensional (1D) setup
assuming a non-magnetic and isotropic medium, and denote any functions of space and time as
Fn(i) = F(i∆z,n∆t). H is first updated as

Bn+1/2
y (i + 1

2) = Bn−1/2
y (i + 1

2)−
∆t
∆z

[En
x (i +1)−En

x (i)] (6)

Hn+1/2
y (i + 1

2) =
1
µo

Bn+1/2
y (i + 1

2) (7)

Next, we update the polarization densityP atn+1 from the two previous instances ofP, and the
previousNi andE according to Eq. (1). Note that components ofP reside at the same locations
as those ofE.

Pn+1
x (i) = (1+Γm∆t/2)−1{(

2−ω2
m∆t2)Pn

x (i)+(Γm∆t/2−1)Pn−1
x (i)

−∆t2σm[Nn
2(i)−Nn

1(i)] En
x (i)

}
(8)

We can then use these updatedH andP values to retrieveE atn+1:

Dn+1
x (i) = Dn

x(i)−
∆t
∆z

[
Hn+1/2

y (i + 1
2)−Hn+1/2

y (i − 1
2)

]
(9)

En+1
x (i) =

1
ε(i)εo

[
Dn+1

x (i)−Pn+1
x (i)

]
(10)

Lastly, Ni at n+1 requiresNi at n and both the previous and updatedE andP values atn and
n+1. Since the population densities of the four levels are interdependent in Eq. (2) to (5), they
must be solved simultaneously by setting up the following system of equations:

ÃNn+1(i) = B̃Nn(i)+ C (11)

where

Nn+1(i) =




Nn+1
0 (i)

Nn+1
1 (i)

Nn+1
2 (i)

Nn+1
3 (i)


 , Nn(i) =




Nn
0(i)

Nn
1(i)

Nn
2(i)

Nn
3(i)


 , C =




0
−EP
EP
0


 ,

EP= (2h̄ωm)−1{[
En+1

x (i)+ En
x (i)

]
×

[
Pn+1

x (i)−Pn
x (i)

]}
,

Ã =




1+e1 −e2 0 0
0 1+e2 −e3 0
0 0 1+e3 −e4

−e1 0 0 1+e4


 , B̃ =




1−e1 e2 0 0
0 1−e2 e3 0
0 0 1−e3 e4

e1 0 0 1−e4


 ,

e1 =
∆tRp

2
, e2 =

∆t
2τ10

, e3 =
∆t

2τ21
, e4 =

∆t
2τ32

.
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Ã andB̃ aretensors that couple the population in the four atomic levels and updatedNi values
at n+ 1 in Eq. (11) can be computed by inverting̃A. Note that the atomic population density
Ni is a scalar and depends generally on all three components ofE andP. The above cycle is
repeated at each time step until steady state is reached, allowing the full temporal development
of the laser mode to be tracked.

In this FDTD scheme with auxiliary differential equations forP andNi , all physical quantities
of the active material are tracked at all points in the computational domain and at all times. The
numerical results computed in thisab initio way are exact apart from discretization of space-
time, and allow for nonlinear interactions between the media and the fields. In our simulations,
the electric, magnetic and polarization fields are initialized to zero except for background noise
while the total electron density is initialized to the ground state level. The computational do-
main is truncated with Bloch periodic boundary conditions or perfectly matched layers (PML),
which are artificial absorbing material designed so that the computational grid’s boundaries are
reflectionless in the limit∆z→ 0 [49]. The resolution is consistently set to 20 for every lattice
constant,a, where we checked that the relative differences in frequency andQ values between
the 20 pixels pera case and the 40 pixels pera case is less than 5%.

2.3. Coupled-mode theory formalism applied to lasing media

Coupled-mode theory (CMT) [33, 43] has been extensively used to study a broad range of
different problems in photonics, both in the linear and nonlinear regimes [50–56]. Here, for
the first time to our knowledge, we extend that class of analysis to the case of micro-photonic
structures that include active media.

Consider first an arbitrary gain medium embedded in an EM cavity with a single lasing mode.
The power input to this system,Pin, can be seen as the result of the rate of work performed by the
current induced in the system by the active media,J(r, t), against the electric field of the cavity,
E(r, t). Noticing thatJ(r, t) actually comes from the temporal variation of the polarization
density, i.e.J(r, t) = ∂P(r, t)/∂ t [see definition ofP in Eq. (1)] ,Pin can be written as [57]

Pin = −
1
2

Re

{∫
d3r

[
∂P(r, t)

∂ t

]
E∗(r, t)

}
(12)

Now, we assume that the spatial and temporal dependence in both the electric field
and the polarization density can be separated asE(r, t) = E0(r)a(t)exp(−iωct) and
P(r, t) = E0(r)P(t)exp(−iωmt), respectively.E0(r) is the normalized cavity mode profile
(
∫

d3r ε0 n2(r) |E0(r) |2 = 1) anda(t) is the corresponding slowly-varying wave amplitude, nor-
malized so that|a(t)|2 is the energy stored in the resonant mode [43].ωc andωm stand for the
resonant frequency of the cavity and the considered atomic transition [see Eq. (1)], respectively.

If we further assume that all the power emitted by that system is collected by a waveguide
evanescently coupled to the cavity, and thatωc = ωm, using first order perturbation theory in
Maxwell’s equations, one can show from energy conservation arguments [43] that the temporal
evolution of the electric field amplitudea(t) is governed by the equation

da(t)
dt

= −

(
1

τIO
+

1
τex

)
a(t)+ξ1

[
i ωmP(t)−

dP(t)
dt

]
, (13)

whereτex andτIO are, respectively, the decay rates due toexternallosses (mainly absorption
and radiation losses) and due to the decay into the waveguide. The confinement factorξ1 =
(1/2)

∫
Ad3r|E0(r) |2, whereA denotes the active part of the structure, accounts for the fact that

only the active region drives the temporal evolution of the cavity mode amplitude [as seen in
Eq. (13)].
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We now turn to the analysis of the polarization amplitudeP(t). Within the first-order pertur-
bation theory approach we are describing here, from Eq. (1) one can obtain a simple first-order
differential equation for the temporal evolution ofP(t) by making three main assumptions:
(i) we assume that the linewidth of the atomic transition is much smaller than its frequency,
i.e. Γm ≪ ωm; (ii) we apply the rotating-wave approximation (RWA), i.e. we consider just the
terms that oscillate as exp(±iωmt); and,(iii) we apply the slowly-varying envelope approxima-
tion (SVEA) [47], i.e. we assumed2P(t)/d2t ≪ ωmdP(t)/dt. For the structures that we will
consider below, these approximations give good agreement between CMT and FDTD.

Thus, the equation of motion forP(t) is given by

dP(t)
dt

+
Γm

2
P(t) = −

iσm

2ωm
a(t)〈∆N(t)〉 (14)

Here〈∆N(t)〉 is defined as the population inversion∆N(r, t) averaged over the mode profile in
the gain region of the system

〈∆N(t)〉 =

∫
Ad3r |E0(r) |2 ∆N(r, t)∫

Ad3r |E0(r)|2
(15)

Notice also that in Eq. (14), the definitions ofσm andωm are the same as those give in Eq. (1) .
Finally, by projecting Eqs. (2)–(5) onto the cavity mode profile intensity|E0(r) |2 over the

active regionA, following a derivation similar to that given above and after some straightfor-
ward algebra, one can obtain the following set of equations governing the time evolution of the
average population densities〈Ni(t)〉 (using the same definition of average as in Eq. (15) , and
with i=0,...,3)

d〈N3(t)〉
dt

= Rp〈N0(t)〉−
〈N3(t)〉

τ32
(16)

d〈N2(t)〉
dt

=
1
4h̄

ξ2

{
a(t)

[
iP∗(t)+

1
ωm

dP∗(t)
dt

]
+c.c.

}
+

〈N3(t)〉
τ32

−
〈N2(t)〉

τ21
(17)

d〈N1(t)〉
dt

= −
1
4h̄

ξ2

{
a(t)

[
iP∗(t)+

1
ωm

dP∗(t)
dt

]
+c.c.

}
+

〈N2(t)〉
τ21

−
〈N1(t)〉

τ10
(18)

d〈N0(t)〉
dt

= −Rp〈N0(t)〉+
〈N1(t)〉

τ10
(19)

where the parameterξ2 is given byξ2 = (2
∫

Ad3r |E0(r) |4)/(
∫

Ad3r |E0(r) |2). Thus, starting
from the knowledge of the electric field profile of the resonant cavityE0(r) , and their corre-
sponding decay rates, one can compute all the relevant physical quantities characterizing lasing
action in such structure just by solving the linear system of first-order differential equations
given by Eqs. (13), (14), (15)–(19). In particular, once such system of equations have been
solved, the total emitted power can be easily computed fromPe(t) = 2|a(t)|2/τIO. Although
the generalization of the approach described here to the case where more than a single mode is
lasing is straightforward, for simplicity, we only consider the single-mode case in this paper.

The formalism presented here also allows us to explicitly retrieve analytic expressions for the
lasing threshold and the slope in the region near threshold, with the spatial contents of the setup
entirely embedded inξ1 andξ2. For the four-level system considered, assumingτ10,τ32 ≪ τ21

and that 1/τ21 ≫ Rp at steady state, the threshold population inversion is

〈∆N〉th =
Γm

σmτtotξ1
(20)
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whereτtot is defined so that 1/τtot = 1/τIO + 1/τex and that all time dependences have been
dropped since we are considering the steady state. Correspondingly, the pumping threshold is
found to be

Rth
p =

Γm

σmτtotξ1τ21〈Ntot〉
(21)

where〈Ntot〉 = Σ3
i=0〈Ni〉. Equation Eq. (21) may be related to the threshold power byPth =

Rth
p h̄ω

∫
Ad3r〈Ntot〉. Finally, we define the slope in this paper as the differential ratio of the

emitted power over the pumping rate. Our model predicts that

dPe

dRp
=

4h̄ωm〈Ntot〉ξ1

ξ2
= 〈Ntot〉h̄ωm

(∫
Ad3r|E0(r) |2

)2

∫
Ad3r|E0(r)|4

(22)

Steady state predictions provided by Eqs. Eq. (20), (21), (22) match with results commonly
derived in textbooks [39] for a similar four-level system, in the case where the following are
assumed in our present model:(i) spatially uniform field(ii) only the loss channel related to the
cavity’s Q is present, i.e.τtot = τIO (iii) the gain medium fills the whole space considered(iv)
σm = εmεoλ 3ωm/4π2τspontas derived in [47], whereτspont is the radiative spontaneous lifetime
of the lasing transition (i.e. betweenN1 andN2 in our four-level system).

2.4. Steady-state ab-initio laser theory

Aside from FDTD and CMT, we also employ a newer method, Steady-state Ab-initio Laser
Theory (SALT) [21, 25, 42]. In this frequency-domain approach, the laser equations are con-
verted into a set of coupled non-linear wave equations, which are then solved self-consistently
to obtain the various multi-mode, steady-state laser properties, including lasing frequencies,
thresholds, power output, and the fields inside and outside the cavity. In contrast to CMT, the
openness of the cavity is treated exactly instead of using phenomenological loss factors, and
the slowly-varying envelope approximation is not employed. SALT was originally formulated
to find the stationary solutions of the Maxwell-Bloch equations, which assume a gain medium
of two-level atoms, but it can be straightforwardly generalized to treat four-level lasing by ap-
propriate redefinitions of pump and relaxation parameters [44]. In the current work we adapt the
four-level formulation of SALT to the classical four-level polarization model of Eqs. (1)–(5);
this is the first application of the theory to a novel four-level laser system.

The SALT solves the non-linear lasing equations exactly (except for the use of the rotat-
ing wave approximation) in steady-state for single-mode lasing up to and including the sec-
ond lasing threshold; for multimode lasing, it uses the stationary population approximation
(dNi/dt = 0) [21], and even in this regime it has been found to agree very accurately with time-
domain simulations [45]. A major advantage of the theory is that it achieves higher precision
than FDTD with less computational effort as it requires no time-stepping. We will limit our
use of the SALT to two dimensional PCSELs, for which the electric and polarization fields are
scalars, and will assume single-mode lasing (although we also examine the possibility of a sec-
ond lasing threshold for completeness). The single-mode SALT begins by re-writing the fields
using the periodic ansatz

E(r, t) = Ψ(r) e−iωLt +c.c., P(r, t) = p(r) e−iωLt +c.c.. (23)

The discrete lasing frequencyωL is to be determined self-consistently [21, 25, 42], and can
include “line-pulling” effects if the gain centerωm differs from the resonance frequency of the
passive cavity. In the present work, the gain center will be tuned exactly to the cavity frequency,
so we will find thatωL = ωm, but the SALT can also handle the more general detuned case.
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We further assume that the populations are stationary, so the rate Eqs. (2)–(4) reduce to

2
h̄ωm

EṖ+α(Rp)
[
δ0(Rp)Ntot(r) −∆N

]
= 0, (24)

where

α(Rp) =
2

τ21τ10

τ21+ τ10β (Rp)

1+β (Rp)
≈

2
τ21

(25)

β (Rp) = 1+
τ32

τ10
+

1
τ10Rp

≈
1

τ10Rp
(26)

δ0(Rp) =
τ21− τ10

τ21+ τ10β (Rp)
≈(τ21− τ10)Rp. (27)

The approximate equalities in the above equations hold forRp ≪ τ−1
21 (≪ τ−1

10 ). Inserting the
ansatz Eq. (23) into Maxwell’s equations, the polarization equation (1), and the reduced rate
equation (24), and making use of the RWA, we obtain

[
∇2 +

(
ε(r)+

µ0c2σm/2ωm

ωL −ωm+ iΓm/2
δ0(Rp)Ntot(r)
1+h(r, Rp)

)(ωL

c

)2
]

Ψ(r) = 0 (28)

h(r, Rp) =
2σm

h̄ω2
mα(Rp)

ωLΓm/2
(ωL −ωm)2 +(Γm/2)2

|Ψ(r) |2. (29)

Thus, the lasing mode obeys a nonlinear wave equation (28), with a dielectric function consist-
ing of a passive part,ε, and an active part that describes the effect of the inverted gain medium.
The nonlinearity arises from the spatial hole-burning termh(~r); in the single-mode regime this
describes the saturation effect of the mode pattern on the gain medium, reducing the inver-
sion and thus changing its own spatial profile. In the multimode regime, this term would also
describe mode coupling, which increases the thresholds of the higher-order modes.

Since Eq. (28) describes laser emission, it must be solved with the outgoing boundary con-
dition, which states thatΨ(r) reduces at infinity to a superposition of purely outgoing waves
with frequencyωL. This non-Hermitian boundary condition is required for a rigorously correct
description of an open, steady-state system containing an amplifying medium [21,42,44].

The nonlinear problem is solved with the aid of a basis set of “constant flux” (CF) states. For
any givenω, the CF states{un(~r;ω)|n = 1,2,· · ·} are the discrete solutions to

[
∇2 +

(
ε(r)+ ηn(ω)Ntot(r)

)(ω
c

)2
]

un(r ;ω) = 0, (30)

with outgoing boundary conditions. Theηn’s are complex eigenvalues that can be roughly
interpreted as various values of the complex dielectric constant which can produce a resonance
pole (purely outgoing solution) at the given realω [42]. Equation (30) can be solved by variants
of existing numerical techniques; in the present paper, we use the finite-element method (FEM).
It can be shown that the CF states are self-orthogonal:

∫
d2r Ntot(r) un(r, ω)un′(r, ω) ∝ δnn′ . (31)

Comparing Eq. (30) to Eq. (28), we see that the threshold lasing mode corresponds to a CF
state withω = ωL. Hence, the lasing threshold is found by sweeping over a range of frequencies
near the gain centerωm, and finding CF eigenvalues obeying

ηn(ω) =
µ0c2σm/2ωm

ω −ωm+ iΓm/2
δ0, δ0 ∈ R

+. (32)
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Of these, the solution with smallestδ0 yields the threshold mode, and the matchingω is the
lasing frequencyωL at threshold. Fromδ0 = δ0(Rth

p ), we can obtainRth
p using Eq. (27).

Above threshold, the full SALT expands the lasing mode in the CF basis, accounting for
non-linear variations in the mode profile and the lasing frequency. Here, we will instead use a
simplification known as the “single-pole approximation (SPA)”, which is valid for high-Q cav-
ities [42]. This theory (SPA-SALT) identifies the lasing mode and frequency with the threshold
lasing state, neglecting theRp-dependence ofωL and the mode profile:

Ψ(r) ≈
√

I(Rp) uL(r ;ωL), (33)

whereI(Rp) is the mode intensity anduL is the CF state corresponding to the mode at threshold.
SPA-SALT still includes the non-linear saturation effect on the lasing mode, but by eliminating
the need to recomputeωL and the lasing mode profile for eachRp, the above-threshold SALT
calculations is greatly speeded up. It gives excellent results for high-Q laser cavities such as
PCSELs, although for low-Q cavities (e.g. random lasers) it is much less accurate [42]. Inserting
Eq. (33) into Eq. (28), and using Eq. (31), now yields the simple approximate expression

I ≈ A−1

[
δ0(Rp)

δ0(Rth
p )

−1

]
(34)

A =
σm

h̄ω2
mα(Rp)

ωLΓm

(ωL −ωm)2 +(Γm/2)2

∫
d2r Ntot(r) u2

L(r) |uL(r) |2∫
d2r Ntot(r) u2

L(r)
. (35)

We can obtain the total power output by inserting the above equations back into the physi-
cal electric field Eq. (23), and computing the flux of the Poynting vector at infinity. A brief
calculation gives, in the physical limitRp ≪ τ−1

21 , the result

P = Ntoth̄ωmLz

(
1−

τ10

τ21

) ∣∣∣∣∣

(∫
Ad2r |uL|

2
)(∫

Ad2r u2
L

)
(∫

Ad2r u2
L |uL|2

)
∣∣∣∣∣
(

Rp−Rth
p

)
. (36)

Here,Lz is the out-of-plane height, and we have assumed that the gain medium is distributed
uniformly over the regionA. Aside from small differences in the integrands, this expression
agrees with the CMT result derived in Eq. (22). In particular, it states that the mode intensities
are approximately linear inRp for Rp > Rth

p .

3. Results and discussion

3.1. Passive properties—bandstructures

We begin by studying the dispersion relations of the three PhC lasing structures shown in the
three insets of Fig. 1: a 1D cavity structure with 1D periodicity, a 2D slab structure with 1D
periodicity, and a 3D slab structure with 2D periodicity (see insets of Figs. 1(a), 1(b), and 1(c),
respectively). In all three cases, the corresponding dispersion relations were computed through
FDTD calculations by setting up a unit cell of the PhC and imposing PML absorbing bound-
ary conditions on the top and bottom surfaces of the computational domain. Bloch periodic
boundary conditions on the electric fields were imposed on the remaining surfaces perpendicu-
lar to the slabs. Figure 1(a) illustrates the band diagram of a structure resembling a conventional
VCSEL [46], which extends uniformly to infinity in thex andzdirections. In this system, a one-
wavelength thick cavity withn= 3.55 (e.g. as in InGaAsP) is enclosed by 25 and 30 bilayers of
quarter-wave distributed Bragg reflectors (DBRs) on the top and bottom sides of the structure,
respectively. The dielectric mirrors consist of alternate layers of dielectric withn = 3.17 and
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Fig. 1. Band diagrams of 1D, 2D, 3D systems, illustrating zero group velocity atk‖ =
0(2π/a). The light linesω = ck‖ (red) separate the modes that are oscillatory (ω > ck‖)
in the air regions from those that are evanescent (ω < ck‖) in air. (a) TM band diagram
of a 1D system: Cavity enclosed by 25 and 30 bilayers (on top and below, respectively)
of quarter-wave distributed Bragg reflectors. Pink shaded region represents a continuum of
bands corresponding to the guided modes in the DBRs. Green line is the fundamental mode
guided via total internal refraction while blue line is the mode guided within the band gap
of the DBRs. Only modes with electric field oriented alongzdirection are considered. Inset
shows the VCSEL structure extending uniformly to infinity in thex andz directions, with
a 1-λ thick n = 3.55 cavity layer (green). Alternate red and blue layers of the reflectors
correspond ton = 3.17 andn = 3.51 respectively. (b) Band diagram of a 2D system:n =
3.17 slab of height 0.3awith 1D periodic grooves that are 0.15adeep alongy and 0.1awide
along x. Blue lines are the photonic bands. Only modes with electric field oriented alongz
direction are considered. Inset shows the structure, which is periodic in thex direction and
extends uniformly in thez direction. (c) Band diagram of a 3D system:n = 3.17 slab of
eight 0.3awith square lattices of circular air cylinders whose depth and radius are 0.25a.
Blue lines are the photonic bands. Only TE-like modes are considered. Inset shows the slab
structure, which is periodic inx andy directions.

n = 3.51 (e.g. as in the InP-based lattice matched InP and InGaAlAs, which offers a relatively
larger refractive index contrast of∆n = 0.34 at 1.55 µmwavelength; allowing broadband, high
reflectivity and low penetration depth DBRs to be attained with fewer layers). Pink shaded re-
gions in Fig. 1(a) represent the continuum of bands guided in the DBRs, while the red line
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represents the air light line that separates the modes that are propagating in air from those that
areevanescent in air. Only transverse magnetic (TM) modes with electric field oriented along
thezdirection are considered.

The lowest guided mode [shown as a green line in Fig. 1(a)] is bounded by the light line of
then = 3.55 center layer (not shown) and that of the multilayer cladding (bottom edge of the
lower continuum region). Thus, this mode is guided within the cavity layer via total internal
refraction, just as in regular dielectric waveguide slab, with no means of coupling to air. It is the
portion of the second mode which lies above the air light line [plotted as a blue line in Fig. 1(a)]
that is useful for laser operation. In fact, it is most often desirable to operate at the frequency that
corresponds tokx = 0 (the so-calledΓ point) so that the power is vertically emitted through the
surface in the longitudinal (y) direction. This mode resides in the lowest photonic bandgap of
the periodic claddings and, therefore, is trapped within the cavity layer by the high reflectivities
(> 96%) of the DBRs. From our calculations, we find thatQ, which measures the loss of the
VCSEL in they direction, is 7500 atkx = 0 and may generally be increased further by adding
more bilayers of the claddings. Thus, VCSEL structures similar to the one described here,
resemble a conventional laser cavity in which the eigenmodes are formed in the longitudinal
direction due to feedback from the dielectric mirrors and in which the number of the modes
increases with the cavity thickness. Notice that the group velocity (vg = dω/dkx) is near zero
for small values ofkx, which maximizes the wave-matter interaction inside the cavity and, at
the same time, enhances the lateral modal confinement.

Figure 1(b) and 1(c) render the dispersion relations ofair-bridge type PhC slabs with 1D
corrugation and punctured 2D square lattice of air cylinders respectively. These PhC slabs can
support Fano resonances. As mentioned in the introduction, these guided resonances appear in
the system when periodic air perturbations, introduced in an otherwise uniform slab, enable the
coupling between the guided modes supported by the slab and the external radiation continuum,
with the strength of this coupling measured byQ of the slab structures. One major difference
between these PhC slabs and VCSEL-like structures is that in the former light confinement
occurs in the in-plane periodic directions due to Bragg diffractions, and in the out-of-plane
direction due to index guiding. It is this presence of index guiding in the third dimension that
limits the photon lifetime at frequencies above the air light line, leading to far-field radiation.
Since discrete translational symmetries exists due to in-plane periodicity, the projected band
diagrams are plotted with respected to the lateral wave vectors along the irreducible Brillouin
zone. We shall briefly examine the geometries of the two slab structures separately, before
drawing the similarities between them when operated as band-edge mode lasers.

The 2D PhC slab sketched in the inset of Fig. 1(b) consists of a 0.3a-thickn= 3.17 (e.g. as in
InP) slab with a set of 1D periodic grooves along thex-direction. These grooves are 0.15adeep
and 0.1awide, and extend uniformly in thezdirection. Only modes with electric field oriented
alongz are considered. On the other hand, the PhC slab shown in inset of Fig. 1(c) consist of
a 0.3a-thick n = 3.17 (e.g. as in InP) slab punctured with a 2D square lattice of circular air
cylinders in the lateral directions, with both depth and radius being equal to 0.25a. In this case,
only transverse-electric-like (TE-like) modes, with the electric fields primarily horizontal near
the center of the slab, are excited. As in the case of the VCSEL, the modes above the light line at
Γ are the most desirable for lasing, since they allow the power to be coupled vertically out of the
slab surface. Moreover, in this structure, the zero in-plane group velocity facilitates formation
of standing waves, as in any conventional cavity, leading to lateral feedback of the eigenmodes.
In fact, in the finite size devices that we will be considering next,∆k‖ 6= 0 so that the dispersion
curves nearΓ may be well approximated by the second order Taylor expansion, in which case,
vg becomes directly proportional to the curvature of the bands. Hence, flat dispersion curves
having high density of photonic states and lowvg are favorable for enhancing light-matter
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interaction, which is essential for lasing to take place. Note that a VCSEL, on the other hand,
hasthe same direction of periodicity, feedback, and power emission.

As pointed out in [12], the first set of modes atΓ are ideal for orthogonal out-of-plane sur-
face emission lasers. These are the two band-edge modes shown in Fig. 1(b) and the four
band-edge modes shown in Fig. 1(c). The former corresponds to the phase matching condi-
tion kd

x = ki
x + qK, wherekd

x andki
x are the diffracted and incident wave vectors respectively,

K = 2π/a is the Bragg grating vector, and we only considerq= 1 to ensure vertical outcoupling.
All other higher lying frequency modes result in additional out-of-plane emission directions at
oblique angles from the slab surfaces. For the corrugated slab, the phase matching conditions
in the reciprocal space also implies that the waves traveling in the+x direction are coupled to
those in the−x direction within each unit cell, forming an in-plane feedback mechanism, sim-
ilar to a 1D cavity. These lateral standing waves are in turn coupled intoy because the Bragg
condition is also satisfied along the slab normal, enabling perpendicular surface emission. For
the slab shown in Fig. 1(c), phase matching atΓ again couples waves in the four equivalent
Γ−X directions of a unit cell to the waves emitting inz. Here, the main feedback mechanism is
provided separately by waves traveling in the±x and±y directions. Further coupling of waves
between these orthogonal directions is facilitated by higher order waves traveling in theΓ−M
directions (see inset of Fig. 1(c) for the definitions of directions in the reciprocal space of a
square lattice). Due to the ease of fabrication resulting from the connected nature of the defect-
free lattice, as well as other advantages mentioned at the beginning of this section, PhC slab
structures hold great potential as laser devices. The key is its ability to excite a single lateral
and longitudinal mode over a large 2D lasing area, as a result of multidimensional distributed
feedback mechanism described above. Intuitively, we may treat each unit cell as an individual
cavity in-sync with its neighbors, to produce coherent laser oscillations, and desired proper-
ties of the lasing mode may be affected simply by tuning the design of each lattice cell. This
approach has been experimentally realized to control the polarization of the lasing mode [10].

In this work, we focus on another property of the PhC slab that allows it to operate as a
high Q, low threshold laser: the existence of band-edge modes with infinite photon lifetime,
i.e. with no means of coupling out of the slab. This phenomenon occurs for the lower band
edge in Fig. 1(b) and for singly degenerate modes in 2D periodic PhC slabs, corresponding
to the two lowest band-edge modes atΓ in Fig. 1(c). The absence of radiative components
at these points in the band diagram is a result of in-phase superpositions of the forward and
backward traveling waves, with in-plane electric field vectors adding destructively. This same
feature can be explained using the symmetry mismatch existing between the guided modes in
the PhC slab and the diffracted radiation field in air [38]. We shall reinforce these arguments in
the next section based on the electric field profiles of the radiation components. InfiniteQ above
the air light line can only be achieved in PhC slabs, this property being absent in VCSELs, or
conventional microcavity structures that use high reflectivity mirrors for mode trapping.

In order to study the mode trapping capabilities of the slab structures for use as photonic
crystal surface-emitting lasers (PCSEL), we first examine in detail the corrugated slab design.
This 2D design, though analytically and computationally much less demanding, encompasses
the same essential physics as a 3D PhC slab realizable in experiments, which we will also study
at the end of this section.

Figure 2(a) presents theQ of the two bands above the light line at small values ofkx, plotted
against frequency, in the vicinity of the bandgap for the PCSEL structure shown in Fig. 1(b),
with grooves 0.1a wide and 0.15adeep. We see from the figure that the two band-edge modes
differ drastically. TheQ of the lower frequency mode diverges rapidly askx → 0, while that
of the next-ordered band remains finite. This is clearly illustrated by the electric field profiles
in the unit cell, depicted in the two leftmost panels of Fig. 2(c) for the lower (left) and upper
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Fig. 2. (a) Variation ofQ asa function of frequency for the lowest two bands above the
light line for the infinite slab structure illustrated in Fig. 1 (b), as well as two other similar
designs where the depth of the grooves are reduced to 0.05aand 0.1a. (b) Variation of
Q as a function of frequency for the infinite slab (red lines), and slabs that are finite in
the x direction (but remain uniform and infinite in thez direction) with lengthLx. Depth
of the grooves is 0.05afor all slabs considered in (b) and (c). (c) The photonic crystal
slab is outlined in green and electric field pointing into the page is depicted with positive
(negative) values in red (blue). First two insets illustrate the mode profiles of the lower and
upper bands respectively, of the 2D infinite slabs at the band edges. Only a period,a, of
the slab in thex-y plane is shown. The lower band edge mode is anti-symmetric about the
groove while the upper band edge mode is symmetric. Corresponding to the band edges of
the bottom line plotted in (b), the two insets on the right show the modes of the 20a finite
slabs. The top (bottom) profile resembles the infinite slab’s lower (upper) band edge mode
where near their centers, they share the same symmetry relative to the groove.

(right) band-edge modes. The unboundedQ mode, whose radiative electric field component is
anti-symmetric about the groove, interferes destructively with itself in the far-field, resulting
in no net outcoupling to air. Forkx away fromΓ, this symmetry mismatch is lost, andQ de-
creases rapidly but remains large. On the other hand, the second mode is symmetric and vertical
emission out of the slab is possible. Note that despite this leakage, most of the electric field is
confined within the slab, forming a standing wave pattern due to the lateral feedback mecha-
nism described previously, a signature of Fano resonances. Apart from mode symmetries, the
resonances in the slabs are also influenced by the size of the grooves, which may be regarded as
periodic dielectric perturbations to an otherwise uniform slab. Results for 1D periodic grooves
with depth 0.1a and 0.05a are also shown in Fig. 2(a). Consistent with predictions from the
perturbation theory [33], the bandgap decreases with the grooves size whileQ increases, ap-
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Fig. 3. TotalQ of the two band-edge modes for the finite PhC slab punctured with 0.05a
deep grooves, and having total lateral size,Lx, ranging from 20 to 320 unit cells. Green
lines are the fitted curves using the relationships described in the text and the horizontal
line indicatesQ value of the corresponding infinite slab (for the symmetric mode case).

proaching the slab waveguide limit of infinity when no grooves are present.

3.2. Passive properties—finite structures

The symmetry of the lower band-edge mode, which forbids outcoupling, is exact only for the
infinite (periodic) structure. In any finite system, the photon lifetime is large but finite. Fig-
ure 2(b) shows theQ factor, as a function of frequency, for finite slabs with lateral sizes ranging
from 20 to 320 periods. These results were obtained from FDTD calculations, with the bound-
ary of the computational domain padded with absorbing boundary conditions (PMLs) to mimic
the behavior of a slab in free space. A couple of key observations are in order:(i) The lower
band-edge mode of the finite PhC slab no longer possesses an unboundedQ, owing to the fact
that an additional loss channel is opened up: energy can now leak from the sides of the slab.
This can be observed in the top right panel of Fig. 2(c) for a 20along PhC slab. These lateral
losses dominate in the lower band-edge mode. The bottom right panel of Fig. 2(c) shows the
symmetric mode, where both vertical and lateral power emission appears equally dominant. It
is thus no surprise that the netQ of the lower band-edge mode remains higher than that of the
symmetric mode [see Fig. 2(b)].(ii) The Q of the lasing structure increases with the number
of periods, so the lasing threshold correspondingly decreases. We shall quantify the losses in
Fig. 3, as functions of the number of periods.(iii) The resonant frequencies of the upper band-
edge mode are different in the finite and infinite slabs, due to the presence of lateral losses in
the former. In the finite system, increasingω leads to a corresponding increase inkx andvg,
and hence a decrease inQ. In the infinite system, there are no lateral losses, soQ increases with
frequency near the band-edge. For the lower band-edge, mode symmetry considerations ensure
thatQ remains a maximum for both infinite and finite slabs.

Next, we quantify theQ values of the corrugated slab in order to understand how the lateral
size of the device,Lx, affects the outcoupling of Fano resonances. Figure 3 compiles the total
Q (Qtot) of the two band-edge modes presented in Fig. 2(b) for PCSEL structures having 0.05a
deep grooves, withLx ranging from 20ato 320a. In order to operate the device at typical
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optical communication wavelength(∼ 1.55 µm), we seta = 675 nm here and in subsequent
results. Since a larger PhC slab provides longer confinement time,Q increases withLx for
both symmetric and anti-symmetric modes. The anti-symmetric mode has higherQ, due to
its reduced vertical emission, as already observed in Fig. 2(c). ForLx > 100 µm, the totalQ
of both modes tends towards that of their infinite counterpart [see Fig. 2(b)]:Qsym saturates at
1964, whereasQanti-symis unbounded. Therefore, the anti-symmetric mode holds great potential
for low-threshold laser operation. Using approximate analytic relationships that governQ’s
dependence onLx (unique for each mode), curves fitted to the calculated data are also plotted
in Fig. 3. We shall specify these relationships in the next paragraph.

To better explore the potential of the PhC slab as a vertical emission laser, we decomposeQtot

into two Q values governing the in-plane(Q‖) and orthogonal out-of-plane(Q⊥) directions.
The former is a measure of lateral losses from the sides of the slabs while the latter indicates
the degree of vertical emissions. They are related by 1/Qtot = 1/Q‖+1/Q⊥. FromQ‖ = ωτ‖/2
(τ‖/2 is the photon lifetime before escaping from the sides), it can be shown that nearΓ, Q‖

scales approximately with the finite slab’s size asC1L2
x, whereC1 is a constant independent of

Lx. This scaling may be derived by first quadratically approximating the band near the band-
edge asω ∝ k2

‖ so that thevg = dω/dk‖ ∝ k‖. In addition, taking the limit at∆k‖∆x = C, where
C is a constant and∆x = Lx here, it may be concluded that∆k‖ scales as 1/Lx. This sets the
characteristic scale fork‖ and hence,vg ∝ 1/Lx. Thus, together with the distanceLx the pho-
ton travels,τ‖ scales asL2

x. Since both band-edge modes possess low group velocity and thus
relatively large lateral photon confinement, and experience the same structural interfaces,Q‖

behaves in the same manner for both modes. The same does not apply toQ⊥, where modal
symmetry mismatch considerations act to impede outcoupling. To obtain an approximate scal-
ing of Qtot with Lx, we assumeQanti-sym

⊥ to remain much larger thanQanti-sym
‖ while Qsym

⊥ to

be a finite value independent ofLx but related to the groove size. Hence,Qanti-sym
tot ∼C2L2

x and
Qsym

tot ∼ Qsym
periodic/(1+C3/L2

x), whereQsym
periodic is the value for the symmetric mode of the corre-

sponding infinite slab.C2 andC3 are constants independent ofLx. Curve fitting results shown
for Qtot are made using these relationships and a reasonably good match is achieved. It now
becomes clear that great variance of the photon lifetimes for the two modes in Fig. 3 arises
purely from theirQ⊥. We conclude that, for smallLx, the PhC slab behaves as an in-plane
emitting device; to excite enough of the band-edge effects and achieve a vertical out-of-plane
emitter with large lasing area, it is critical that the dimensions containing the periodicity be
made sufficiently large.

3.3. Lasing—infinite periodic structures

Thus far, we have based our analysis on the properties of the passive dielectric structure. Let us
now consider the effects of adding gain; specifically, the four-level gain medium described in
Section 2. For simplicity, we assume that the gain is uniformly distributed within the dielectric
(the effects of non-uniform gain are outside the scope of this paper, but the present numerical
techniques can treat it effectively). For the decay lifetimes, we takeτ10 = τ32 = 5×10−14 s and
τ21 = 5× 10−12 s (so a metastable state can form atN2). For the coupling constant, we take
σm = 1×10−4 C2/kg (this value was obtained assuming that the Purcell effect is negligible);
for the total electron density, we takeNtot = 5×1023 m−3. These values are realistic, and similar
to those used in Ref. [9]. For each structure, we choose a different value of the gain centerωm,
in order to select the mode that we wish to lase; in the FDTD calculations, this frequency is
set to the frequency of the corresponding passive mode. The gain linewidthΓm is taken to be
0.002(2πc/a), which is sufficiently narrow to avoid exciting neighboring modes.

First, we compute the lasing properties of theinfinite slab. The computational domain is
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Fig. 4. Output power versusRp relationshipsof the 2D infinite slab described in Fig. 1(b),
for three depths of the air grooves at 0.05a, 0.1a, and 0.15a(width remains at 0.1a), with
correspondingQ values 1964, 451, and 230 respectively. Both semi-analytic predictions
from CMT (solid lines) and FDTD (filled circles) steady-state calculations are plotted for
the upper band-edge mode atkx = 0(2π/a). There is good agreement between the semi-
analytic and calculated values. The threshold is higher for the lower-Q PhC slab which
clearly suggests that higher pumping rates are needed to overcome systems with higher
losses.

similar to the one shown in Fig. 1(b), with periodic boundary conditions along the left and
right boundaries and PML absorbers along the top and bottom boundaries. Figure 4 shows the
resulting plot of output power versusRp. Three different structures, with groove depths of 0.05a,
0.1a, and 0.15a, are simulated; the groove width is kept at 0.1a, and slab thickness at 0.3a. The
filled circles in this plot are the results of FDTD calculations (time-stepping until steady-state
laser operation was achieved); the solid lines are the CMT predictions, with parameters fitted
from separate FDTD calculations of the passive structure’s Fano resonance frequency, electric
field mode profile, andQ.

For each of the calculations in Fig. 4, the gain centerωm is situated at the resonance frequency
of the symmetric mode, as determined by the passive-structure FDTD calculations presented
earlier. (Since this is the infinite structure, the anti-symmetric mode does not allow power emis-
sion.) For groove depths[0.05a,0.1a,0.15a], we haveωm = [0.435,0.444,0.456]×(2πc/a)and
Q values[1964,451,230]; see Fig. 2(a). As expected, the laser threshold is inversely propor-
tional toQ; physically speaking, higher input pump rates are needed to overcome larger losses.
Moreover, the three structures exhibit very similar rates of growth of output power,dP/dRp.
As we shall see, this is not true for finite structures.

The agreement between FDTD and CMT is very good. In particular, CMT predicts that the
output power grows linearly withRp above the lasing threshold, and the FDTD results are
very close to linear. The match remains excellent forRp as much as an order of magnitude
above the lasing threshold. This shows that the CMT model that we have developed greatly
complements the FDTD approach. The CMT is particularly useful forRp near threshold, where
FDTD computations are very time-consuming due to the temporal turn-on delay before lasing
action begins. For largerRp, the results begin to deviate; the influence of the gain media on the

#136900 - $15.00 USD Received 20 Oct 2010; revised 8 Dec 2010; accepted 10 Dec 2010; published 13 Jan 2011
(C) 2011 OSA 17 January 2011 / Vol. 19,  No. 2 / OPTICS EXPRESS  1556



(a) (b)

Fig. 5. Output power versusRp relationshipsof the 2D finite slabs described in Fig. 2(b) for
three dimensions ofLx at 20a, 40a, and 80a. Size of the grooves is fixed at 0.05a×0.1a.
(a) Higher-frequency symmetric modes with correspondingQ values 179, 413, and 925. (b)
Lower-frequency anti-symmetric modes with correspondingQ values 231, 749, and 3243.
Both semi-analytic predictions from CMT (solid lines) and FDTD (filled circles) steady-
state calculations are shown. Insets plot the same data in linear scale forRp values near
threshold. In addition, (b) also shows the SALT (dashed lines) results for the 20aand 40a
slabs. Good agreements between the three methods are observed. Slope of the lines changes
with Lx (see text) while the right plot confirms that the anti-symmetric mode has the largest
Q in the finite system that is available for lasing.

fields can no longer be taken to be linear, so second order corrections to CMT are required and
the lasing modes are no longer accurately described by the modes of the linear (passive) cavity.

3.4. Lasing—finite structures

Figure 5 showsRp versus total power output obtained by FDTD and CMT, for finite slabs.
(In the FDTD calculations, the PML absorber is now placed along all four boundaries of the
computational domain.) Three different slab widths are used:Lx = 20a, 40a, and 80a. We fix
the groove depth at 0.05a, with all other parameters kept the same as in Fig. 4.

The left-hand plot in Fig. 5 shows the upper band-edge modes, while the right-hand plot
shows the anti-symmetric lower band-edge. Readers are referred to Fig. 2(b) or the figure cap-
tion for theQ values and frequencies of these modes. As expected, the structures with larger
Lx have lower lasing thresholds, due to stronger diffraction of the waves, which is needed for
better feedback and modal confinement. The band-edge effects in finite PhC slabs depend upon
the degree of overlap between the lasing modes and the periodic dielectric, as well as the lateral
sizes in their periodic planes [26]. The close proximity of the gain medium to the air grooves in
our setup ensures that the former condition is well met, so that band-edge mode laser operation
can be achieved forLx of as little as 20a. It is also noted from the two plots that the lower
band-edge modes give rise to lower thresholds than the upper band-edge modes, for slabs of
equalLx. Moreover, the slopesdP/dRp are different. The large 80aslab, with the largest lasing
area, emits the most power and therefore exhibits the highest slope. This can clearly be seen
from the insets of Fig. 5(a) and 5(b), where linear plots of the same data are shown for values
near the thresholds.

The FDTD calculations were performed using a resolution of 20 pixels pera, which is rela-
tively low; in particular, the groove depth of 0.05acorresponds to one pixel. The low resolution
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Fig. 6. CF eigenvalue spectrumηn for PCSELs with lateral sizesLx ranging from 20a
to 30a. Im[ηn] represents the gain needed to reach threshold, hence eigenvalues with the
smallest magnitude of the imaginary part and nearest to the gain center correspond to the
first lasing mode. For each structure, we choose the gain centerωm to minimize the thresh-
old for the anti-symmetric Fano mode, and compute{ηn(ω)} at the resulting lasing fre-
quencyω = ωL. Inset: threshold lasing mode for theLx = 20astructure.

is due to computational limitations, especially near threshold, where very many time steps are
required to bring the laser to its steady state. The CMT parameters were fitted from passive
FDTD calculations performed with the same spatial resolution, and the fact that the CMT re-
sults agree well with FDTD indicates that the two methods face consistent discretization errors,
as expected.

In order to confirm the FDTD/CMT findings, we have also carried out more precise calcula-
tions using the SALT described in Section 2.4. Since the SALT is a frequency-domain method,
it does not face the time-stepping problem of FDTD near threshold, and it is possible to apply
much finer spatial discretization. The CF basis functions (and hence the lasing modes) were
computed via an FEM technique, using a non-uniform triangular mesh with maximum mesh
size 0.01a within the dielectric structure. Convergence was tested by halving the mesh size,
whereupon∼1% deviation in the computed CF eigenvalues was observed.

Figure 6 shows the CF eigenvalue spectrum{ηn(ω)} of the finite PCSEL structure, for sev-
eral different values of the total slab lengthLx. Recall from Section 2.4 that the CF eigenvalues
are the discrete complex contributions to the dielectric function from the gain medium, required
to produce a resonance at a given real frequencyω. For eachω, we find that one particular CF
state hasηn(ω) lying significantly closer to the real axis (i.e. requiring less amplification) than
all the others. The spatial structure of this CF state, shown in the inset of Fig. 6 forLx = 20a,
corresponds closely to the anti-symmetric Fano mode of the passive structure (see Fig. 2). The
complex CF eigenvalues depend onω, and increasingω causes them to drift leftwards in the
complexη plane (reflecting increasing mode confinement). The CF eigenvalue spectra in Fig. 6
are plotted at the optimal threshold lasing frequencyωL of each structure. In the SALT calcula-
tions, we did not chooseωm using the FDTD calculations of the passive structure, as we did for
the FDTD and CMT calculations; this would be inappropriate, as the SALT calculation uses a
different and finer grid (this discretization mismatch is further exacerbated by the fact thatΓm

is chosen to be small). Instead, the thresholds were found using the self-consistent procedure
described in Section 2.4, and the optimal choice of gain centerωm is the one that minimizes
Rth

p for the anti-symmetric lasing mode. As we see from (32) and in Fig. 6, this corresponds to
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Fig.7. (Left) Lasing frequencyωL and optimal gain centerωm, (Center) the lasing threshold
Rth

p , (Right) and the power slope(dP/dRp)/Lz, as a function of lateral sizeLx, computed
using the self-consistent ab-initio laser theory (SALT). The inset shows the modal gain
of the first and second modes (a mode turns on when its modal gain reaches unity [25]),
indicating that the second mode does not turn on at anyRp for this choice of gain medium.

making the relevant CF eigenvalueηn(ωL) purely imaginary, so thatωm ≃ ωL.
Figure 7 shows the effect of the structure’s lateral sizeLx on the optimal lasing frequencyωL,

the lasing thresholdRth
p , and the power slopedP/dRp. The increase ofωL with Lx agrees with

the FDTD results shown in Fig. 2, while the numerical values ofωL differ from the FDTD pre-
dictions by∼ 4%, a very acceptable deviation considering the difference in resolution between
the two calculations. Likewise,Rth

p differs from the FDTD result by∼ 9%, but shows a similar
decrease withLx. The power slope, given by Eq. (36), was found to increase approximately
linearly with Lx. The power output calculated by the SALT is shown by the dashed curves in
Fig. 5. Apart from the aforementioned 9% difference inRth

p , these results are in good agreement
with FDTD, and in particular are in slightly better agreement than CMT for largeRp.

A unique advantage of SALT is its ability to predict higher modal thresholds. Within SPA-
SALT, predicting the second modal threshold, including mode competition, is a simple exten-
sion of the single-mode theory [42]. The results of such a calculation, shown as the inset to
Fig. 7, indicate that a second lasing mode will never turn on for this choice ofωm andΓm. For
experimental systems, in which the gain parameters are not fully controllable, such calculations
are useful for estimating the range of single-mode operation.

3.5. 3D slab lasers

We now turn our attention to the 3D slab system illustrated in the inset Fig. 1(c), consisting of
a square lattice of air cylinders. The slab thickness is 0.3a, while the radius and depth of the air
cylinders are 0.15a. This design operates based on the same principles as the simpler 1D perio-
dic grooves design, so that the physical concepts explored previously may be equally applied
in this case. In Fig. 8, the magnetic and electric field profiles of TE-like excitations are pro-
vided for the four modes atΓ, two being non-degenerate (two lowest frequency modes) and the
remaining pair is degenerate. Analogous to the anti-symmetric modes that exist in corrugated
slabs, the non-degenerate modes of such infinite periodic slabs have infinite photon lifetime,
which again may be attributed to mode symmetry mismatch with the radiative continuum [37]:
at Γ of the square lattice, its irreducible representation may either be 1D (singly-degenerate)
or 2D (doubly-degenerate), and possesses the full symmetry of the lattice. Such symmetries
enforced upon the singly-degenerate modes ensure that their in-plane radiative components
cancel. This can be seen from the electric field mode profiles in Fig. 8(a) and 8(b), where the
Ex components are of opposite directions relative to the air cylinder. The same holds forEy.
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Fig. 8. (a) Magnetic and electric field profiles of the first singly-degenerate mode atΓ in
a unit cell of the 0.3a-thick 3D PhC slab structure shown in Fig. 1(c), partially punctured
with square lattice of air cylinders having height and radius 0.15a. The PhC slab is outlined
in green. Top panels depict the lateral cuts along the xy-plane with magnetic field pointing
into the page and electric field pointing to the left, where positive (negative) values are in
red (blue). Bottom panels are cuts along the yz-plane with magnetic field pointing down-
wards and electric field pointing into the page, where positive (negative) values are in red
(blue). These results are only for TE-like modes.Ey (not shown) has the same profile as
Ex, except rotated 90◦ about z-axis. (b) Same as in (a) but for the second singly-degenerate
mode. (c) Same as in (a) but for the doubly-degenerate mode. Its counterpart at the same
frequency has the magnetic field profile rotated 90◦ about z-axis. (d) Output power versus
Rp relationships retrieved from CMT is also plotted for air cylinders with radius 0.3a, 0.4a,
and 0.5a, for the doubly-degenerate mode presented in (c). Their respective frequencies are
0.449, 0.457, and 0.466(2πc/a)with Qs equal 764, 263, and 126.

Hence, no coupling to air is observed. On the other hand, vertical radiation of the electric field
occurs for the degenerate modes in Fig. 8(c) indicating low finiteQ values. We apply the CMT
approach to calculate the power output from a unit cell for the degenerate mode at three radii of
the air cylinders shown in Fig. 8(d). As in the corrugated slab,Q increases for smaller air cylin-
ders leading to lower threshold pump rate. Practical considerations with regards to size of the
structural periodic perturbations include the ease of fabrication as dimensions scale down, and
also the need for close proximity to the gain layers for enhancement of the band-edge effects.

Lastly, we examine the finite size 3D slab in Fig. 9. Having already verified the CMT pre-
dictions with FDTD method, the former is again adopted to calculate the power output of finite
0.3a-thick PhC slabs with air cylinders 0.15adeep and diameter 0.3a. Three sizes of the PhC
region are studied: 15a× 15a, 25a× 25a and 35a× 35a. In order to excite PhC states and
to model realistic conditions in similar PhC lasers operating with an optically or electrically
pumped central area, the 2D PhC region has to be surrounded by un-pumped regions. This is
achieved in our simulations by truncating the finite size PhC in air and extending the uniform
dielectric slab into the PML, which surround the whole computational domain. The lasing mode
considered is that of the first singly-degenerate mode shown in Fig. 8(a) and may be compared
to the field profiles presented in Fig. 9 for the slab with 15a×15aPhC region. The slope [as
defined in Eq. (22)] and threshold pump rate improves for the larger PhC, consistent with what
we would have expected, while the PCSEL remains single-mode. The primary losses for the
small-sized PhC considered here is through the lateral leakage into the absorbing boundaries.
Further note that magnitudes of the output power, and hence slope, are significantly higher than
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Fig. 9. Top: Magnetic and electric field profiles corresponding to the singly-degenerate
modein finite 15a×15aPhC slab structure described in Fig. 8(a). The PhC slab is outlined
in green. Top two panels depict the lateral cuts along the xy-plane with magnetic field
pointing into the page and electric field pointing to the left, where positive (negative) values
are in red (blue). Bottom panels are cuts along the yz-plane with magnetic field pointing
downwards and electric field pointing into the page, where positive (negative) values are in
red (blue). These results are only for TE-like modes.Ey (not shown) has the same profile as
Ex, except rotated 90◦ about z-axis. Bottom: Output power versusRp relationships retrieved
from CMT. Frequencies andQ values of the 15a×15a, 25a×25a, and 35a×35aPCSEL
structures are 0.431, 0.433, 0.435(2πc/a), and 64, 178, 385, respectively.

those found for the corrugated slabs in Fig. 5. This can be understood as a consequence of an
additional dimension present in the current calculations. We confirm that the singly degenerate
modes for these finite slabs have highQs relative to the degenerate modes and hence, should
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be the ones within the first set of frequencies atΓ that,in practice, are selected for lasing. Such
mode selection (singly-degenerate) should be possible owing to the distinct frequencies and
field profiles of the four modes atΓ, and its lower pumping rate requirements. We also note
here that upon successful coupling to the desired laser modes,Q may further be increased by
enhancing the confinement geometrically:(i) in the lateral directions by employing PhC het-
erostructures, and(ii) in the out-of-plane direction via the addition of DBRs on top or below
the PhC slab [58].

4. Conclusions

We have shown that the lasing action in PCSELs originates from Fano resonances. Of particular
interest for lasing are dark Fano resonances. We used three different theoretical techniques
suitable for studying these systems. We have seen that in actual finite-size structures, the largeQ
factors displayed by these dark states lead to a significant reduction of the corresponding lasing
threshold with respect to conventional VCSELs. In addition, our calculations suggest that, for
input pump rates close to the threshold, PCSEL structures emit most of their lasing power in the
plane of periodicity rather than in the vertical direction. However, notice that this lasing power
can be directed into the out-of-plane direction simply by perturbing the symmetry of dark Fano
resonances [10]. We believe the findings reported here provide further physical insight into
lasing action in PCSELs and will help designing active devices based on this class of systems.
Finally, it should also be mentioned that spontaneous emission has not been included in our
simulations as it does not affect the physics explored and the conclusions of this work. This
leads to no output power detected below the threshold pump rateRth

p . Spontaneous emission
may be effectively simulated in FDTD by introducing noise-like dipole sources in our gain
medium [9].
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