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Abstract
Using unitary (instead of general) matrices in
artificial neural networks (ANNs) is a promis-
ing way to solve the gradient explosion/vanishing
problem, as well as to enable ANNs to learn
long-term correlations in the data. This ap-
proach appears particularly promising for Recur-
rent Neural Networks (RNNs). In this work, we
present a new architecture for implementing an
Efficient Unitary Neural Network (EUNNs); its
main advantages can be summarized as follows.
Firstly, the representation capacity of the uni-
tary space in an EUNN is fully tunable, rang-
ing from a subspace of SU(N) to the entire uni-
tary space. Secondly, the computational com-
plexity for training an EUNN is merelyO(1) per
parameter. Finally, we test the performance of
EUNNs on the standard copying task, the pixel-
permuted MNIST digit recognition benchmark
as well as the Speech Prediction Test (TIMIT).
We find that our architecture significantly outper-
forms both other state-of-the-art unitary RNNs
and the LSTM architecture, in terms of the fi-
nal performance and/or the wall-clock training
speed. EUNNs are thus promising alternatives
to RNNs and LSTMs for a wide variety of appli-
cations.

1. Introduction
Deep Neural Networks (LeCun et al., 2015) have been suc-
cessful on numerous difficult machine learning tasks, in-
cluding image recognition(Krizhevsky et al., 2012; Don-
ahue et al., 2015), speech recognition(Hinton et al., 2012)
and natural language processing(Collobert et al., 2011;
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Bahdanau et al., 2014; Sutskever et al., 2014). However,
deep neural networks can suffer from vanishing and ex-
ploding gradient problems(Hochreiter, 1991; Bengio et al.,
1994), which are known to be caused by matrix eigenval-
ues far from unity being raised to large powers. Because
the severity of these problems grows with the the depth of
a neural network, they are particularly grave for Recurrent
Neural Networks (RNNs), whose recurrence can be equiv-
alent to thousands or millions of equivalent hidden layers.

Several solutions have been proposed to solve these prob-
lems for RNNs. Long Short Term Memory (LSTM) net-
works (Hochreiter & Schmidhuber, 1997), which help
RNNs contain information inside hidden layers with gates,
remains one of the the most popular RNN implementations.
Other recently proposed methods such as GRUs(Cho et al.,
2014) and Bidirectional RNNs (Berglund et al., 2015) also
perform well in numerous applications. However, none of
these approaches has fundamentally solved the vanishing
and exploding gradient problems, and gradient clipping is
often required to keep gradients in a reasonable range.

A recently proposed solution strategy is using orthogo-
nal hidden weight matrices or their complex generalization
(unitary matrices) (Saxe et al., 2013; Le et al., 2015; Ar-
jovsky et al., 2015; Henaff et al., 2016), because all their
eigenvalues will then have absolute values of unity, and can
safely be raised to large powers. This has been shown to
help both when weight matrices are initialized to be uni-
tary (Saxe et al., 2013; Le et al., 2015) and when they are
kept unitary during training, either by restricting them to a
more tractable matrix subspace (Arjovsky et al., 2015) or
by alternating gradient-descent steps with projections onto
the unitary subspace (Wisdom et al., 2016).

In this paper, we will first present an Efficient Unitary Neu-
ral Network (EUNN) architecture that parametrizes the en-
tire space of unitary matrices in a complete and compu-
tationally efficient way, thereby eliminating the need for
time-consuming unitary subspace-projections. Our archi-
tecture has a wide range of capacity-tunability to represent
subspace unitary models by fixing some of our parameters;
the above-mentioned unitary subspace models correspond
to special cases of our architecture. We also implemented
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an EUNN with an earlier introduced FFT-like architecture
which efficiently approximates the unitary space with min-
imum number of required parameters(Mathieu & LeCun,
2014b).

We then benchmark EUNN’s performance on both simu-
lated and real tasks: the standard copying task, the pixel-
permuted MNIST task, and speech prediction with the
TIMIT dataset (Garofolo et al., 1993). We show that our
EUNN algorithm with an O(N) hidden layer size can
compute up to the entire N × N gradient matrix using
O(1) computational steps and memory access per parame-
ter. This is superior to theO(N) computational complexity
of the existing training method for a full-space unitary net-
work (Wisdom et al., 2016) and O(logN) more efficient
than the subspace Unitary RNN(Arjovsky et al., 2015).

2. Background
2.1. Basic Recurrent Neural Networks

A recurrent neural network takes an input sequence and
uses the current hidden state to generate a new hidden state
during each step, memorizing past information in the hid-
den layer. We first review the basic RNN architecture.

Consider an RNN updated at regular time intervals t =
1, 2, ... whose input is the sequence of vectors x(t) whose
hidden layer h(t) is updated according to the following
rule:

h(t) = σ(Ux(t) +Wh(t−1)), (1)

where σ is the nonlinear activation function. The output is
generated by

y(t) = Wh(t) + b, (2)

where b is the bias vector for the hidden-to-output layer.
For t = 0, the hidden layer h(0) can be initialized to some
special vector or set as a trainable variable. For conve-
nience of notation, we define z(t) = Ux(t) + Wh(t−1)

so that h(t) = σ(z(t)).

2.2. The Vanishing and Exploding Gradient Problems

When training the neural network to minimize a cost func-
tion C that depends on a parameter vector a, the gradient
descent method updates this vector to a − λ∂C∂a , where λ
is a fixed learning rate and ∂C

∂a ≡ ∇C. For an RNN, the
vanishing or exploding gradient problem is most signifi-
cant during back propagation from hidden to hidden lay-
ers, so we will only focus on the gradient for hidden layers.
Training the input-to-hidden and hidden-to-output matrices
is relatively trivial once the hidden-to-hidden matrix has
been successfully optimized.

In order to evaluate ∂C
∂Wij

, one first computes the derivative

∂C
∂h(t) using the chain rule:

∂C

∂h(t)
=

∂C

∂h(T )

∂h(T )

∂h(t)
(3)

=
∂C

∂h(T )

T−1∏
k=t

∂h(k+1)

∂h(k)
(4)

=
∂C

∂h(T )

T−1∏
k=t

D(k)W, (5)

where D(k) = diag{σ′(Ux(k) + Wh(k−1))} is the Jaco-
bian matrix of the pointwise nonlinearity. For large times
T , the term

∏
W plays a significant role. As long as

the eigenvalues of D(k) are of order unity, then if W has
eigenvalues λi � 1, they will cause gradient explosion
| ∂C
∂h(T ) | → ∞, while if W has eigenvalues λi � 1, they

can cause gradient vanishing, | ∂C
∂h(T ) | → 0. Either situation

prevents the RNN from working efficiently.

3. Unitary RNNs
3.1. Partial Space Unitary RNNs

In a breakthrough paper, Arjovsky, Shah & Bengio (Ar-
jovsky et al., 2015) showed that unitary RNNs can over-
come the exploding and vanishing gradient problems and
perform well on long term memory tasks if the hidden-
to-hidden matrix in parametrized in the following unitary
form:

W = D3T2F−1D2ΠT1FD1. (6)

Here D1,2,3 are diagonal matrices with each element
eiωj , j = 1, 2, · · · , n. T1,2 are reflection matrices, and
T = I − 2 v̂v̂†

||v̂||2 , where v̂ is a vector with each of its en-
tries as a parameter to be trained. Π is a fixed permutation
matrix. F and F−1 are Fourier and inverse Fourier trans-
form matrices respectively. Since each factor matrix here
is unitary, the product W is also a unitary matrix.

This model uses O(N) parameters, which spans merely
a part of the whole O(N2)-dimensional space of unitary
N × N matrices to enable computational efficiency. Sev-
eral subsequent papers have tried to expand the space to
O(N2) in order to achieve better performance, as summa-
rized below.

3.2. Full Space Unitary RNNs

In order to maximize the power of Unitary RNNs, it is
preferable to have the option to optimize the weight ma-
trix W over the full space of unitary matrices rather than
a subspace as above. A straightforward method for imple-
menting this is by simply updating W with standard back-
propagation and then projecting the resulting matrix (which
will typically no longer be unitary) back onto to the space
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of unitary matrices. Defining Gij ≡ ∂C
∂Wij

as the gradient
with respect to W, this can be implemented by the proce-
dure defined by (Wisdom et al., 2016):

A(t) ≡ G(t)†W(t) −W(t)†G(k), (7)

W(t+1) ≡
(

I +
λ

2
A(t)

)−1(
I− λ

2
A(t)

)
W(t).(8)

This method shows that full space unitary networks are su-
perior on many RNN tasks (Wisdom et al., 2016). A key
limitation is that the back-propation in this method can-
not avoid N -dimensional matrix multiplication, incurring
O(N3) computational cost.

4. Efficient Unitary Neural Network (EUNN)
Architectures

In the following, we first describe a general parametrization
method able to represent arbitrary unitary matrices with up
to N2 degrees of freedom. We then present an efficient
algorithm for this parametrization scheme, requiring only
O(1) computational and memory access steps to obtain the
gradient for each parameter. Finally, we show that our
scheme performs significantly better than the above men-
tioned methods on a few well-known benchmarks.

4.1. Unitary Matrix Parametrization

Any N × N unitary matrix WN can be represented as a
product of rotation matrices {Rij} and a diagonal matrix
D, such that WN = D

∏N
i=2

∏i−1
j=1 Rij , where Rij is

defined as the N -dimensional identity matrix with the el-
ements Rii, Rij , Rji and Rjj replaced as follows (Reck
et al., 1994; Clements et al., 2016):(

Rii Rij
Rji Rjj

)
=

(
eiφij cos θij −eiφij sin θij

sin θij cos θij

)
. (9)

where θij and φij are unique parameters corresponding
to Rij. Each of these matrices performs a U(2) unitary
transformation on a two-dimensional subspace of the N-
dimensional Hilbert space, leaving an (N−2)-dimensional
subspace unchanged. In other words, a series of U(2) ro-
tations can be used to successively make all off-diagonal
elements of the given N × N unitary matrix zero. This
generalizes the familiar factorization of a 3D rotation ma-
trix into 2D rotations parametrized by the three Euler an-
gles. To provide intuition for how this works, let us briefly
describe a simple way of doing this that is similar to Gaus-
sian elimination by finishing one column at a time. There
are infinitely many alternative decomposition schemes as
well; Fig. 1 shows two that are particularly convenient to
implement in software (and even in neuromorphic hard-
ware (Shen et al., 2016)). The unitary matrix WN is mul-
tiplied from the right by a succession of unitary matrices

RNj for j = N − 1, · · · , 1. Once all elements of the last
row except the one on the diagonal are zero, this row will
not be affected by later transformations. Since all transfor-
mations are unitary, the last column will then also contain
only zeros except on the diagonal:

WNRN,N−1RN,N−2 · ·RN,1 =

(
WN−1 0

0 eiwN

)
(10)

)

)

W

R)

Figure 1. Unitary matrix decomposition: An arbitrary unitary
matrix W can be decomposed (a) with the square decomposi-
tion method of Clements et al. (Clements et al., 2016) discussed
in section 4.2; or approximated (b) by the Fast Fourier Trans-
formation(FFT) style decomposition method (Mathieu & LeCun,
2014b) discussed in section 4.3. Each junction in the a) and b)
graphs above represent the U(2) matrix as shown in c).

The effective dimensionality of the the matrix W is thus
reduced toN−1. The same procedure can then be repeated
N − 1 times until the effective dimension of W is reduced
to 1, leaving us with a diagonal matrix:1

WNRN,N−1RN,N−2 · · ·Ri,jRi,j−1 · · ·R3,1R2,1 = D,
(11)

where D is a diagonal matrix whose diagonal elements are
eiwj , from which we can write the direct representation of
WN as

WN = DR−12,1R
−1
3,1 . . .R

−1
N,N−2R

−1
N,N−1

= DR′2,1R
′
3,1 . . .R

′
N,N−2R

′
N,N−1. (12)

where

R′ij = R(−θij ,−φij) = R(θij , φij)
−1 = R−1ij (13)

1Note that Gaussian Elimination would make merely the up-
per triangle of a matrix vanish, requiring a subsequent series of
rotations (complete Gauss-Jordan Elimination) to zero the lower
triangle. We need no such subsequent series because since W is
unitary: it is easy to show that if a unitary matrix is triangular, it
must be diagonal.
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This parametrization thus involves N(N − 1)/2 different
θij-values, N(N − 1)/2 different φij-values and N dif-
ferent wi-values, combining to N2 parameters in total and
spans the entire unitary space. Note we can always fix a
portion of our parameters, to span only a subset of unitary
space – indeed, our benchmark test below will show that
for certain tasks, full unitary space parametrization is not
necessary. 2

4.2. Tunable space implementation

The representation in Eq. 12 can be made more compact
by reordering and grouping specific rotational matrices, as
was shown in the optical community (Reck et al., 1994;
Clements et al., 2016) in the context of universal multiport
interferometers. For example (Clements et al., 2016), a uni-
tary matrix can be decomposed as

WN = D
(
R

(1)
1,2R

(1)
3,4 . . .R

(1)
N/2−1,N/2

)
×
(
R

(2)
2,3R

(2)
4,5 . . .R

(2)
N/2−2,N/2−1

)
× . . .

= DF
(1)
A F

(2)
B . . .F

(L)
B , (14)

where every

F
(l)
A = R

(l)
1,2R

(l)
3,4 . . .R

(l)
N/2−1,N/2

is a block diagonal matrix, with N angle parameters in to-
tal, and

F
(l)
B = R

(l)
2,3R

(l)
4,5 . . .R

(l)
N/2−2,N/2−1

withN−1 parameters, as is schematically shown in Fig. 1a.
By choosing different values for L , WN will span a dif-
ferent subspace of the unitary space. Specifically,when
L = N , WN will span the entire unitary space.

Following this physics-inspired scheme, we decompose our
unitary hidden-to-hidden layer matrix W as

W = DF
(1)
A F

(2)
B F

(3)
A F

(4)
B · · ·F

(L)
B . (15)

4.3. FFT-style approximation

Inspired by (Mathieu & LeCun, 2014a), an alternative way
to organize the rotation matrices is implementing an FFT-
style architecture. Instead of using adjacent rotation matri-
ces, each F here performs a certain distance pairwise rota-
tions as shown in Fig. 1b:

W = DF1F2F3F4 · · ·Flog(N). (16)

The rotation matrices in Fi are performed between pairs of
coordinates

(2pk + j, p(2k + 1) + j) (17)

2Our preliminary experimental tests even suggest that a full-
capacity unitary RNN is even undesirable for some tasks.

where p = N
2i , k ∈ {0, ..., 2i−1} and j ∈ {1, ..., p}.

This requires only log(N) matrices, so there are a total
of N log(N)/2 rotational pairs. This is also the minimal
number of rotations that can have all input coordinates in-
teracting with each other, providing an approximation of
arbitrary unitary matrices.

4.4. Efficient implementation of rotation matrices

To implement this decomposition efficiently in an RNN,
we apply vector element-wise multiplications and permu-
tations: we evaluate the product Fx as

Fx = v1 ∗ x + v2 ∗ permute(x) (18)

where ∗ represents element-wise multiplication, F refers to
general rotational matrices such as FA/B in Eq. 14 and Fi
in Eq. 16. For the case of the tunable-space implementa-
tion, if we want to implement F

(l)
A in Eq. 14, we define v

and the permutation as follows:

v1 = (eiφ
(l)
1 cos θ

(l)
1 , cos θ

(l)
1 , eiφ

(l)
2 cos θ

(l)
2 , cos θ

(l)
2 , · · · )

v2 = (−eiφ
(l)
1 sin θ

(l)
1 , sin θ

(l)
1 ,−eiφ

(l)
2 sin θ2, sin θ

(l)
2 , · · · )

permute(x) = (x2, x1, x4, x3, x6, x5, · · · ).

For the FFT-style approach, if we want to implement F1 in
Eq 16, we define v and the permutation as follows:

v1 = (eiφ
(l)
1 cos θ

(l)
1 , eiφ

(l)
2 cos θ

(l)
2 , · · · , cos θ(l)1 , · · · )

v2 = (−eiφ
(l)
1 sin θ

(l)
1 ,−eiφ

(l)
2 sin θ2, · · · , sin θ(l)1 , · · · )

permute(x) = (xn
2 +1, xn

2 +2 · · ·xn, x1, x2 · · · ).

In general, the pseudocode for implementing operation F
is as follows:

Algorithm 1 Efficient implementation for F with parame-
ter θi and φi.

Input: input x, size N ; parameters θ and φ, size N/2;
constant permuatation index list ind1 and ind2.
Output: output y, size N .
v1← concatenate(cos θ, cos θ * exp(iφ))
v2← concatenate(sin θ, - sin θ * exp(iφ))
v1← permute(v1, ind1)
v2← permute(v2, ind1)
y← v1 ∗ x + v2 ∗ permute(x, ind2)

Note that ind1 and ind2 are different for different F.

From a computational complexity viewpoint, since the op-
erations ∗ and permute take O(N) computational steps,
evaluating Fx only requires O(N) steps. The product Dx
is trivial, consisting of an element-wise vector multiplica-
tion. Therefore, the product Wx with the total unitary
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matrix W can be computed in only O(NL) steps, and
only requires O(NL) memory access (for full-space im-
plementation L = N , for FFT-style approximation gives
L = logN ). A detailed comparison on computational
complexity of the existing unitary RNN architectures is
given in Table 1.

4.5. Nonlinearity

We use the same nonlinearity as (Arjovsky et al., 2015):

(modReLU(z,b))i =
zi
|zi|
∗ ReLU(|zi|+ bi) (19)

where the bias vector b is a shared trainable parameter, and
|zi| is the norm of the complex number zi.

For real number input, modReLU can be simplified to:

(modReLU(z,b))i = sign(zi) ∗ ReLU(|zi|+ bi) (20)

where |zi| is the absolute value of the real number zi.

We empirically find that this nonlinearity function performs
the best. We believe that this function possibly also serves
as a forgetting filter that removes the noise using the bias
threshold.

5. Experimental tests of our method
In this section, we compare the performance of our Effi-
cient Unitary Recurrent Neural Network (EURNN) with

1. an LSTM RNN (Hochreiter & Schmidhuber, 1997),

2. a Partial Space URNN (Arjovsky et al., 2015), and

3. a Projective full-space URNN (Wisdom et al., 2016).

All models are implemented in both Tensorflow and
Theano, available from https://github.com/
jingli9111/EUNN-tensorflow and https:
//github.com/iguanaus/EUNN-theano.

5.1. Copying Memory Task

We compare these networks by applying them all to the
well defined Copying Memory Task (Hochreiter & Schmid-
huber, 1997; Arjovsky et al., 2015; Henaff et al., 2016).
The copying task is a synthetic task that is commonly used
to test the network’s ability to remember information seen
T time steps earlier.

Specifically, the task is defined as follows (Hochreiter &
Schmidhuber, 1997; Arjovsky et al., 2015; Henaff et al.,
2016). An alphabet consists of symbols {ai}, the first n of
which represent data, and the remaining two representing
“blank” and “start recall”, respectively; as illustrated by the
following example where T = 20 and M = 5:

Input: BACCA--------------------:----
Output: -------------------------BACCA

In the above example, n = 3 and {ai} = {A,B,C,−, :}.
The input consists of M random data symbols (M = 5
above) followed by T − 1 blanks, the “start recall” symbol
and M more blanks. The desired output consists of M +T
blanks followed by the data sequence. The cost function
C is defined as the cross entropy of the input and output
sequences, which vanishes for perfect performance.

We use n = 8 and input length M = 10. The symbol
for each input is represented by an n-dimensional one-hot
vector. We trained all five RNNs for T = 1000 with the
same batch size 128 using RMSProp optimization with a
learning rate of 0.001. The decay rate is set to 0.5 for EU-
RNN, and 0.9 for all other models respectively. (Fig. 2).
This results show that the EURNN architectures introduced
in both Sec.4.2 (EURNN with N=512, selecting L=2) and
Sec.4.3 (FFT-style EURNN with N=512) outperform the
LSTM model (which suffers from long term memory prob-
lems and only performs well on the copy task for small time
delays T ) and all other unitary RNN models, both in-terms
of learnability and in-terms of convergence rate. Note that
the only other unitary RNN model that is able to beat the
baseline for T = 1000 (Wisdom et al., 2016) is signifi-
cantly slower than our method.

Moreover, we find that by either choosing smaller L or by
using the FFT-style method (so that W spans a smaller uni-
tary subspace), the EURNN converges toward optimal per-
formance significantly more efficiently (and also faster in
wall clock time) than the partial (Arjovsky et al., 2015) and
projective (Wisdom et al., 2016) unitary methods. The EU-
RNN also performed more robustly. This means that a full-
capacity unitary matrix is not necessary for this particular
task.

5.2. Pixel-Permuted MNIST Task

The MNIST handwriting recognition problem is one of the
classic benchmarks for quantifying the learning ability of
neural networks. MNIST images are formed by a 28×28
grayscale image with a target label between 0 and 9.

To test different RNN models, we feed all pixels of the
MNIST images into the RNN models in 28×28 time steps,
where one pixel at a time is fed in as a floating-point num-
ber. A fixed random permutation is applied to the order
of input pixels. The output is the probability distribution
quantifying the digit prediction. We used RMSProp with a
learning rate of 0.0001 and a decay rate of 0.9, and set the
batch size to 128.

As shown in Fig. 3, EURNN significantly outperforms
LSTM with the same number of parameters. It learns faster,
in fewer iteration steps, and converges to a higher classifi-

https://github.com/jingli9111/EUNN-tensorflow
https://github.com/jingli9111/EUNN-tensorflow
https://github.com/iguanaus/EUNN-theano
https://github.com/iguanaus/EUNN-theano
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Table 1. Performance comparison of four Recurrent Neural Network algorithms: URNN (Arjovsky et al., 2015), PURNN (Wisdom et al.,
2016), and EURNN (our algorithm). T denotes the RNN length and N denotes the hidden state size. For the tunable-style EURNN, L
is an integer between 1 and N parametrizing the unitary matrix capacity.

Model Time complexity of one number of parameters Transition matrix
online gradient step in the hidden matrix search space

URNN O(TN logN) O(N) subspace of U(N)
PURNN O(TN2 +N3) O(N2) full space of U(N)

EURNN (tunable style) O(TNL) O(NL) tunable space of U(N)
EURNN (FFT style) O(TN logN) O(N logN) subspace of U(N)

Table 2. MNIST Task result. EURNN corresponds to our algorithm, PURNN corresponds to algorithm presented in (Wisdom et al.,
2016), URNN corresponds to the algorithm presented in (Arjovsky et al., 2015).

Model hidden size number of validation test
(capacity) parameters accuracy accuracy

LSTM 80 16k 0.908 0.902
URNN 512 16k 0.942 0.933

PURNN 116 16k 0.922 0.921
EURNN (tunable style) 1024 (2) 13.3k 0.940 0.937

EURNN (FFT style) 512 (FFT) 9.0k 0.928 0.925
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Copying Memory Task, delay time T=1000
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PURNN with N=128
URNN with N=512
LSTM with N=80
baseline

Figure 2. Copying Task for T = 1000. EURNN corresponds to
our algorithm, projective URNN corresponds to algorithm pre-
sented in (Wisdom et al., 2016), URNN corresponds to the algo-
rithm presented in (Arjovsky et al., 2015). A useful baseline per-
formance is that of the memoryless strategy, which outputs M+T
blanks followed by M random data symbols and produces a cross
entropy C = (M logn)/(T + 2 ∗M). [Note that each iteration
for PURNN takes about 32 times longer than for EURNN mod-
els, for this particular simulation, so the speed advantage is much
greater than apparent in this plot.]

cation accuracy. In addition, the EURNN reaches a similar
accuracy with fewer parameters. In Table. 2, we compare
the performance of different RNN models on this task.
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Figure 3. Pixel-permuted MNIST performance on the validation
dataset.

5.3. Speech Prediction on TIMIT dataset

We also apply our EURNN to real-world speech predic-
tion task and compare its performance to LSTM. The main
task we consider is predicting the log-magnitude of future
frames of a short-time Fourier transform (STFT) (Wisdom
et al., 2016; Sejdi et al., 2009). We use the TIMIT dataset
(Garofolo et al., 1993) sampled at 8 kHz. The audio .wav
file is initially diced into different time frames (all frames
have the same duration referring to the Hann analysis win-
dow below). The audio amplitude in each frame is then
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Table 3. Speech Prediction Task result. EURNN corresponds to our algorithm, projective URNN corresponds to algorithm presented in
(Wisdom et al., 2016), URNN corresponds to the algorithm presented in (Arjovsky et al., 2015).

Model hidden size number of MSE MSE
(capacity) parameters (validation) (test)

LSTM 64 33k 71.4 66.0
LSTM 128 98k 55.3 54.5

EURNN (tunable style) 128 (2) 33k 63.3 63.3
EURNN (tunable style) 128 (32) 35k 52.3 52.7
EURNN (tunable style) 128 (128) 41k 51.8 51.9

EURNN (FFT style) 128 (FFT) 34k 52.3 52.4

Figure 4. Example spectrograms of ground truth and RNN prediction results from evaluation sets.

Fourier transformed into the frequency domain. The log-
magnitude of the Fourier amplitude is normalized and used
as the data for training/testing each model. In our STFT
operation we uses a Hann analysis window of 256 sam-
ples (32 milliseconds) and a window hop of 128 samples
(16 milliseconds). The frame prediction task is as follows:
given all the log-magnitudes of STFT frames up to time t,
predict the log-magnitude of the STFT frame at time t+ 1
that has the minimum mean square error (MSE). We use

a training set with 2400 utterances, a validation set of 600
utterances and an evaluation set of 1000 utterances. The
training, validation, and evaluation sets have distinct speak-
ers. We trained all RNNs for with the same batch size 32
using RMSProp optimization with a learning rate of 0.001,
a momentum of 0.9 and a decay rate of 0.1.

The results are given in Table. 3, in terms of the mean-
squared error (MSE) loss function. Figure. 4 shows predic-
tion examples from the three types of networks, illustrat-
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ing how EURNNs generally perform better than LSTMs.
Furthermore, in this particular task, full-capacity EURNNs
outperform small capacity EURNNs and FFT-style EU-
RNNs.

6. Conclusion
We have presented a method for implementing an Efficient
Unitary Neural Network (EUNN) whose computational
cost is merely O(1) per parameter, which is O(logN)
more efficient than the other methods discussed above. It
significantly outperforms existing RNN architectures on
the standard Copying Task, and the pixel-permuted MNIST
Task using a comparable parameter count, hence demon-
strating the highest recorded ability to memorize sequential
information over long time periods.

It also performs well on real tasks such as speech predic-
tion, outperforming an LSTM on TIMIT data speech pre-
diction.

We want to emphasize the generality and tunability of our
method. The ordering of the rotation matrices we presented
in Fig. 1 are merely two of many possibilities; we used it
simply as a concrete example. Other ordering options that
can result in spanning the full unitary matrix space can be
used for our algorithm as well, with identical speed and
memory performance. This tunability of the span of the
unitary space and, correspondingly, the total number of pa-
rameters makes it possible to use different capacities for
different tasks, thus opening the way to an optimal perfor-
mance of the EUNN. For example, as we have shown, a
small subspace of the full unitary space is preferable for the
copying task, whereas the MNIST task and TIMIT task are
better performed by EUNN covering a considerably larger
unitary space. Finally, we note that our method remains
applicable even if the unitary matrix is decomposed into a
different product of matrices (Eq. 12).

This powerful and robust unitary RNN architecture also
might be promising for natural language processing be-
cause of its ability to efficiently handle tasks with long-term
correlation and very high dimensionality.
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