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Inspired by a quantum interference phenomenon known in the
atomic physics community as electromagnetically induced trans-
parency (EIT), we propose an efficient weakly radiative wireless
energy transfer scheme between two identical classical resonant
objects, strongly coupled to an intermediate classical resonant
object of substantially different properties, but with the same res-
onance frequency. The transfer mechanism essentially makes use
of the adiabatic evolution of an instantaneous (so called ‘‘dark”)
eigenstate of the coupled 3-object system. Our analysis is based
on temporal coupled mode theory (CMT), and is general enough
to be valid for various possible sorts of coupling, including the res-
onant inductive coupling on which witricity-type wireless energy
transfer is based. We show that in certain parameter regimes of
interest, this scheme can be more efficient, and/or less radiative
than other, more conventional approaches. A concrete example of
wireless energy transfer between capacitively-loaded metallic
loops is illustrated at the beginning, as a motivation for the more
general case. We also explore the performance of the currently pro-
posed EIT-like scheme, in terms of improving efficiency and reduc-
ing radiation, as the relevant parameters of the system are varied.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The decade has witnessed a considerable interest in energy issues, such as safe generation of
renewable energy, energy storage and management, etc. In particular, there is a substantial recent
interest [1–5] in enabling efficient and safe wireless energy transfer, motivated by the increased
c. All rights reserved.
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involvement of autonomous electronic devices (e.g. laptops, cell phones, household robots) in almost
all aspects of our everyday lives, and the need to charge those devices repeatedly. In this respect, wire-
less nonradiative energy transfer schemes have been recently proposed [6,7] based on strong coupling
between electromagnetic resonances. In this work, we explore a somewhat different scheme of effi-
cient energy transfer between resonant objects coupled in some general way. Instead of transferring
energy directly between the two resonant objects, an intermediate resonant object will be used to
mediate the transfer. The intermediate object is chosen such as to couple very strongly to each of
the objects involved in the energy transfer (i.e. much more strongly than the other two objects couple
to each other). In practice, enabling such strong coupling will usually come with a price; in typical sit-
uations, the mediating object will often be substantially radiative. Yet, surprisingly enough, the pro-
posed ‘‘indirect” energy transfer scheme will be shown to be efficient and weakly-radiative by
merely introducing a meticulously chosen time variation of the coupling rates. The inspiration as to
why the particular time variation had to work so well comes from a quantum interference phenom-
enon, known in the atomic physics community as electromagnetically induced transparency [8] (EIT).
In EIT, 3 atomic states participate. Two of them (which are non-lossy) are coupled to one that has sub-
stantial losses. However, by meticulously controlling the mutual couplings between the states, one
can establish a coupled system which is overall non-lossy. This manifests itself in that a medium that
is originally highly opaque to some laser pulse (called ‘‘probe” laser), can be made transparent by
sending through it another laser pulse (called ‘‘Stokes” laser), provided that the temporal overlap be-
tween the two pulses is properly chosen. A closely related phenomenon known as Stimulated Raman
Adiabatic Passage (STIRAP) [9–11] takes place in a similar system; namely, the probe and Stokes laser
can be used to achieve a complete coherent population transfer between two molecular states of the
medium. Hence, we refer to the currently proposed scheme as the ‘‘EIT-like” energy transfer scheme.

To set the stage for our proposed indirect energy transfer scheme, we will first consider (in Section 2)
one concrete example of wireless energy transfer between two resonant capacitively-loaded conduct-
ing-wire loops [6], and show how the indirect EIT-like scheme can be made more efficient and less-radi-
ative in this particular system than the direct scheme, by including proper time variations in the coupling
rates. In Section 3, we analyze the underlying physical mechanism which turns out to be applicable not
just to ‘‘wireless” energy transfer, but more generally to any sort of energy transfer between resonant
objects. The analysis will be based on temporal coupled mode theory (CMT) [12], which is a valid descrip-
tion for well-defined resonances with large quality factors. In Section 4, we study the general case of EIT-
like energy transfer, how the transferred and lost energies vary with the rates of coupling and loss, both
with and without time variation of the coupling rates; we also investigate the range of relevant param-
eters in which the radiated energy is substantially reduced by using the EIT-like scheme.

2. An illustrative example of an EIT-like system

We start with a concrete case of wireless energy transfer between two identical resonant conduct-
ing loops, labeled by L1 and L3. The loops are capacitively-loaded and couple inductively via their mu-
tual inductance. Let rA denote the loops’ radii, NA their numbers of turns, and bA the radii of the wires
making the loops. We also denote by D13 the center-to-center separation between the loops. Resonant
objects of this type have two main loss mechanisms: ohmic absorption, and far-field radiation. Using
the same theoretical method from Ref. [6], we find that for rA ¼ 7 cm, bA ¼ 6 mm, and NA ¼ 15 turns,
the quality factors for absorption and radiation are, respectively, Q ðAÞabs � 2pf=CðAÞabs ¼ 3:19� 104 and
Q ðAÞrad � 2pf=CðAÞrad ¼ 2:6� 105 at a resonant frequency f ¼ 1:8� 107 Hz (remember that L1 and L3 are
identical and have the same properties). CðAÞabs, CðAÞrad are, respectively, the rates of absorptive and radia-
tive loss of L1 and L3, and the rate of coupling between L1 and L3 is denoted by j13. When the loops are
in fixed distinct parallel planes separated by D13 ¼ 1:4 m and have their centers on an axis (C) perpen-
dicular to their planes, as shown in Fig. 1a, the quality factor for inductive coupling is
Qj � 2pf=j13 ¼ 1:3� 104, independent of time. This configuration of parallel loops corresponds to
the largest possible coupling rate j13 at the particular separation D13. We denote the amplitude of
the electric field of the resonant mode of L1 by a1, and that of L3 by a3. As long as all the quality factors
involved are large enough, the time evolution of the mode amplitudes a1 and a3 can be modeled
according to the following temporal CMT equations [12]:



Fig. 1. Wireless energy transfer in an examplary system: (a) (left) Schematic of loops configuration in 2-object direct transfer.
(Right) Time evolution of energies in the 2-object direct energy transfer case. (b) (left) Schematic of 3-loops configuration in the
constant-j case. (right) Dynamics of energy transfer for the configuration in (b, left). Note that the total energy transferred E3 is
two times larger than in (a, right), but at the price of the total energy radiated being four times larger. (c) (left) Loop
configuration at t = 0 in the EIT-like scheme. (Center) Dynamics of energy transfer with EIT-like rotating loops. (Right) Loop
configuration at t ¼ tEIT . Note that E3 is comparable to (b, right), but the radiated energy is now much smaller: in fact, it is
comparable to (a, right).
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da1

dt
¼ �ðixþ CAÞ a1 þ ij13a3 ð1Þ

da3

dt
¼ �ðixþ CAÞ a3 þ ij13a1 ð2Þ
where x ¼ 2pf is the angular resonance frequency, and CA ¼ CðAÞrad þ CðAÞabs. The mode amplitudes a1ðtÞ
and a3ðtÞ are normalized such that ja1ðtÞj2 and ja3ðtÞj2 represent, respectively, the energies in L1 and
L3 at time t: E1ðtÞ � ja1ðtÞj2 and E3ðtÞ � ja3ðtÞj2. Starting with 100% of the total energy being initially
in L1 (i.e. ja3ðt ¼ 0Þj2 ¼ 0), we find that the energy transferred to L3 is maximum at time
ta ¼ 4774:6ð1=f Þ, and constitutes 29% of the initial total energy, as shown in Fig. 1a. The energies radi-
ated EradðtaÞ and absorbed EabsðtaÞ up to time ta constitute, respectively, 7.2% and 58.1% of the initial
total energy, with 5.8% of the energy remaining in L1. The CMT expressions used for EradðtaÞ and
EabsðtaÞ are given by:
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EradðtaÞ ¼
Z ta

0
2 CðAÞradja1ðtÞj2 þ 2CðAÞradja3ðtÞj2
� �

dt ð3Þ

EabsðtaÞ ¼
Z ta

0
2CðAÞabsja1ðtÞj2 þ 2CðAÞabsja3ðtÞj2
� �

dt ð4Þ
In order to improve the efficiency of the energy transfer from the current ’30%, we now consider
different ways to boost the energy transferred from L1 to L3 while keeping the distance D13 separating
them fixed. Since the relative orientations of the two loops are already chosen to yield the maximum
j13, we no longer have much flexibility in improving the efficiency of transfer between these given
resonant objects at the same separation D13. So, we introduce an intermediate resonant object that
couples strongly to both L1 and L3, while having the same resonant frequency as both of them. For
the sake of illustration in the particular concrete system under consideration, we also take that medi-
ator to be a capacitively-loaded conducting-wire loop, and we label it by L2. We place L2 at equal dis-
tance ðD12 ¼ D23 ¼ D13=2 ¼ 0:7 mÞ from L1 and L3 such that its axis also lies on the same axis (C), and
we orient it such that its plane is parallel to the planes of L1 and L3. In order for L2 to couple strongly to
L1 and L3, its size needs to be substantially larger than the size of L1 and L3. However this increase in
the size of L2 has a considerable drawback in the sense that it is also accompanied by a significant in-
crease in the undesired radiated energy. This feature is quite generic for the resonant systems of this
type: stronger coupling can often be enabled by increasing the objects’ size, but it implies stronger
radiation from the object in question. Large radiation is often undesirable because it could lead to
far-field interference with other RF systems, and in some systems also because of safety concerns.
For rB ¼ 70 cm, bB ¼ 1:5 cm, and NB ¼ 1 turn, we get Q ðBÞabs � 2pf=CðBÞabs ¼ 7706, Q ðBÞrad � 2pf=CðBÞrad ¼ 400,
and Qj12

� 2pf=j12 ¼ Qj23
¼ 180 at f ¼ 1:8� 107 Hz. A schematic diagram of the 3-loops configura-

tion is depicted in Fig. 1b. If we denote the amplitude of the E-field of the resonance mode in L2 by
a2, then the CMT equations can be written as:
da1

dt
¼ �ðixþ CAÞa1 þ ij12a2 ð5Þ

da2

dt
¼ �ðixþ CBÞa2 þ ij12a1 þ ij23a3 ð6Þ

da3

dt
¼ �ðixþ CAÞa3 þ ij23a2 ð7Þ
Note that since the coupling rates j12 and j23 are ’70 times larger than j13, we can ignore the direct
coupling between L1 and L3, and focus only on the indirect energy transfer through the intermediate
loop L2. If initially all the energy is placed in L1, i.e. if E2ðt ¼ 0Þ � ja2ðt ¼ 0Þj2 ¼ 0 and
E3ðt ¼ 0Þ � ja3ðt ¼ 0Þj2 ¼ 0, then the optimum in energy transferred to L3 occurs at a time
tb ¼ 129:2ð1=f Þ, and is equal to E3ðtbÞ ¼ 61:50%. The energy radiated up to tb is EradðtbÞ ¼ 31:1%, while
the energy absorbed is EabsðtbÞ ¼ 3:3%, and 4.1% of the initial energy is left in L1. Thus while the energy
transferred, now indirectly, from L1 to L3 has increased by a factor of 2 relative to the 2-loops direct
transfer case, the energy radiated has undesirably increased by a significant factor of 4. Also note that
the transfer time in the 3-loops case is now ’35 times shorter than in the 2-loops direct transfer be-
cause of the stronger coupling rate. The dynamics of the energy transfer in the 3-loops case is shown in
Fig. 1b, where the expressions used for EradðtbÞ and EabsðtbÞ are given by:
EradðtbÞ ¼
Z tb

0
2CA

radja1ðtÞj2 þ 2CB
radja2ðtÞj2 þ 2CA

radja3ðtÞj2
� �

dt ð8Þ

EabsðtbÞ ¼
Z tb

0
2CA

absja1ðtÞj2 þ 2CB
absja2ðtÞj2 þ 2CA

absja3ðtÞj2
� �

dt ð9Þ
Thus the switch from 2-loops direct transfer to 3-loops indirect transfer had an expected significant
improvement in efficiency, but it came with the undesirable effect of increased radiated energy. Let us
now consider some modifications to the 3-loops indirect transfer scheme, aiming to reduce the total
radiated energy back to its reasonable value in the 2-loops direct transfer case, while maintaining the
total energy transfer at a level comparable to Fig. 1b. As shown in Fig. 1c, we will keep the orientation
of L2 fixed, and start initially (t=0) with L1 perpendicular to L2 and L3 parallel to L2, then uniformly ro-
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tate L1 and L3, at the same rates, until finally, at ðt ¼ tEITÞ, L1 becomes parallel to L2 and L3 perpendic-
ular to it, where we stop the transfer process. This process can be modeled by the following time var-
iation in the coupling rates:
j12ðtÞ ¼ j sin pt=2tEITð Þ ð10Þ
j23ðtÞ ¼ j cos pt=2tEITð Þ ð11Þ
for 0 < t < tEIT , and Qj ¼ 180:1 as before. By using the same CMT analysis as in Eqs. (5)–(7), we find, in
Fig. 1c, that for tEIT ¼ 1989:4ð1=f Þ, an optimum transfer of 61.2% can be achieved at tc ¼ 1;798:5ð1=f Þ,
with only 8.2% of the initial energy being radiated, 28.6% absorbed, and 2% left in L1. This is quite
remarkable: by simply rotating the loops during the transfer, the energy radiated has dropped by a
factor of 4, while keeping the same 61% level of the energy transferred, although the instantaneous
coupling rates are now smaller than j. This considerable decrease in radiation is on first sight quite
counterintuitive, because the intermediate resonator L2, which mediates all the energy transfer, is
highly radiative (’650 times more radiative than L1 and L3), and there is much more time to radiate,
since the whole process lasts 14 times longer than in Fig. 1b.

A clue to the physical mechanism behind this surprising result can be obtained by observing the dif-
ferences between the green curves in Fig. 1b and c. Unlike the case of constant coupling rates, depicted in
Fig. 1b, where the amount of energy ultimately transferred to L3 goes first through the intermediate loop
L2, in the case of time-varying coupling rates, shown in Fig. 1c, there is almost little or no energy in L2 at all
times during the transfer. In other words, the energy is transferred quite efficiently from L1 to L3, med-
iated by L2 without ever being in the highly radiative intermediate loop L2. (Note that direct transfer from
L1 to L3 is identically zero here since L1 is always perpendicular to L3, so all the energy transfer is indeed
mediated through L2.) This surprising phenomenon is actually quite similar to the well-known electro-
magnetically induced transparency [8] (EIT), which enables complete population transfer between two
quantum states through a third lossy state, coupled to each of the other two states.

3. Physical mechanism behind EIT-like energy transfer scheme

We note that the mechanism explored in the previous section is not restricted to wireless energy
transfer between inductively coupled loops, but its scope extends beyond, to the general case of en-
ergy transfer between resonant objects (henceforth denoted by Ri) coupled in some general way.
So, all the rest of this article falls in this general context, and the only constraints for the EIT-like
scheme are that the three resonant objects have the same resonance angular frequency, which we de-
note by xo, that all quality factors be large enough for CMT to be valid, and that the initial and final
resonant objects have the same loss rate CA. R1 and R3 will be assumed to have negligible mutual inter-
actions with each other, while each of them can be strongly coupled to R2. However, as is often the
case in practice of wireless power transfer [6], R2’s strong coupling with other objects will be assumed
to be accompanied with its inferior loss properties compared to R1 and R3, usually in terms of substan-
tially larger radiation losses. To analyze the problem in detail, we start by rewriting the CMT Eqs. (5)–
(7) in matrix form, and then diagonalizing the resulting time evolution operator bCðtÞ.
d
dt

a1

a2

a3

0B@
1CA ¼ �ðixo þ CAÞ ij12 0

ij12 �ðixo þ CBÞ ij23

0 ij23 �ðixo þ CAÞ

0B@
1CA a1

a2

a3

0B@
1CA � bCðtÞ a1

a2

a3

0B@
1CA ð12Þ
In the special case where the coupling rates j12 and j23 are constant and equal, Eq. (12) admits a sim-
ple analytical solution, presented in the appendix. In the more general case of time dependent and un-
equal coupling rates j12ðtÞ and j23ðtÞ, the CMT operator bCðtÞ has an interesting feature which results
from the fact that one of its eigenstates, ~V1, with complex eigenvalue k1 ¼ �ðixo þ CAÞ, has the form
~V1 ¼ e�ixot�CAt

�j23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj12Þ2þðj23Þ2
p

0
j12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðj12Þ2þðj23Þ2
p

0BBB@
1CCCA ð13Þ
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This eigenstate ~V1 is the most essential building block of our proposed efficient weakly-radiative en-
ergy transfer scheme, because it has no energy at all in the intermediate (lossy) resonator R2, i.e.
a2ðtÞ ¼ 0 8 t whenever the 3-object system is in state ~V1. In fact if CA ! 0, then the EIT-like energy
transfer scheme can be made completely nonradiative, no matter how large is the radiative rate
CB

rad, as shown in Fig. 2. Moreover, if the 3-object system is in state ~V1, then j12 ¼ 0 corresponds to
all the system’s energy being in R1, while j23 ¼ 0 corresponds to all the system’s energy being in
R3. So, the important considerations necessary to achieve efficient weakly radiative energy transfer,
consist of preparing the system initially in state ~V1. Thus, if at t ¼ 0 all the energy is in R1, then one
should have j12ðt ¼ 0Þ ¼ 0 and j23ðt ¼ 0Þ – 0. In the loops’ case where coupling is performed through
induction, these values for j12 and j23 correspond to exactly the same configuration that we had con-
sidered in Fig. 1c, namely starting with L1 ? L2 and L3 k L2. In order for the total energy of the system
to end up in R3, we should have j12ðt ¼ tEITÞ– 0 and j23ðt ¼ tEITÞ ¼ 0. This ensures that the initial and
final states of the 3-object system are parallel to ~V1. However, a second important consideration is to
keep the 3-object system at all times in ~V1ðtÞ, even as j12ðtÞ and j23ðtÞ are varied in time. This is cru-
cial in order to prevent the system’s energy from getting into the intermediate object R2, which may be
highly radiative as in the example of Fig. 1, and requires changing j12ðtÞ and j23ðtÞ slowly enough so
as to make the entire 3-object system adiabatically follow the time evolution of ~V1ðtÞ. The criterion for
adiabatic following can be expressed, in analogy to the population transfer case[9], as
Fig. 2.
cosðpt=
~V2;3j
d~V1

dt

* +�����
������ k2;3 � k1

�� �� ð14Þ
where ~V2 and ~V3 are the remaining two eigenstates of bCðtÞ, with corresponding eigenvalues k2 and k3.
In principle, one would think of making the transfer time tEIT as long as possible to ensure adiabaticity.
However there is a limitation on how slow the transfer process can optimally be, imposed by the
losses in R1 and R3. Such a limitation may not be a strong concern in a typical atomic EIT case, because
the initial and final states there can be chosen to be non-lossy ground states. However, in our case,
losses in R1 and R3 are not avoidable, and can be detrimental to the energy transfer process whenever
the transfer time tEIT is not less than 1=CA. This is because, even if the 3-object system is carefully kept
in ~V1 at all times, the total energy of the system will decrease from its initial value as a consequence of
losses in R1 and R3. Thus the duration of the transfer should be a compromise between these two lim-
its: the desire to keep tEIT long enough to ensure near-adiabaticity, but short enough not to suffer from
losses in R1 and R3.

We can now also see in the EIT framework why is it that we got a considerable amount of radiated
energy when the inductive coupling rates of the loops were kept constant in time, i.e. in constant-j
case, like in Fig. 1b. The reason is that, when j12 ¼ j23 ¼const, the energies in R1 and R3 will always
be equal to each other if the 3-object system is to stay in ~V1. So one cannot transfer energy from R1 to
R3 by keeping the system purely in state ~V1; note that even the initial state of the system, in which all
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the energy is in R1, is not in ~V1, and has nonzero components along the eigenstates ~V2 and ~V3 which
implies a finite energy in R2, and consequently result in an increased radiation, especially if CB

rad � CA
rad

as in our concrete example.
Although the analysis presented above, in terms of the adiabatic following of the eigenstate ~V1,

clarifies why the EIT-like transfer scheme is weakly radiative, this explanation still seems to be puz-
zling and somewhat paradoxical. The origin of the paradox stems from the fact that, in the EIT-like
approach, there is no energy at all in the mediator R2. That is to say, energy is efficiently transferred
through the intermediate resonator R2 without ever being in it. This apparent contradiction can be re-
solved by looking at the detailed contributions to the time-rate of change of the energy E2 in R2. As we
show it in more details in the appendix, the EIT-like approach ensures that the energy leaves R2 (to R3)
as soon as it reaches R2 (from R1).

4. Under which conditions is EIT-like approach beneficial?

In the abstract case of energy transfer from R1 to R3, where no constraints are imposed on the rel-
ative magnitude of j; CA

rad; CB
rad; CA

abs and CB
abs, there is no reason to think that the EIT-like transfer is

always better than the constant-j one, in terms of the transferred and radiated energies. In fact, there
could exist some range of the parameters ðj; CA

rad; CB
rad; CA

abs; CB
absÞ, for which the energy radiated in

the constant-j transfer case is less than that radiated in the EIT-like case. For this reason, we inves-
tigate both the EIT-like and constant-j transfer schemes, as we vary all the crucial parameters of
the system. The percentage of energies transferred and lost (radiated + absorbed) depends only on
the relative values of j; CA and CB. Here, CA ¼ CA

rad þ CA
abs, and CB ¼ CB

rad þ CB
abs. Hence we first calcu-

late and visualize the dependence of these energies on the relevant parameters j=CB and CB=CA, in the
contour plots shown in Fig. 3.

The way the contour plots are calculated is as follows. For each value of (j=CB;CB=CA) in the adi-
abatic case, where j12ðtÞ and j23ðtÞ are given by Eqs. (10) and (11), one tries a range of values of tEIT .
For each tEIT , the maximum energy transferred E3ð%Þ over 0 < t < tEIT , denoted by maxðE3; tEITÞ, is cal-
culated together with the total energy lost at that maximum transfer. Next the maximum of
maxðE3; tEITÞ over all values of tEIT is selected and plotted as a single point on the contour plot in
Fig. 3a. We refer to this point as the optimum energy transfer ð%Þ in the EIT-like case for the particular
(j=CB;CB=CA) under consideration. We also plot in Fig. 3d the corresponding value of the total energy
lost (%) at the optimum of E3. We repeat these calculations for all pairs (j=CB;CB=CA) shown in the
contour plots. In the constant-j transfer case, for each (j=CB;CB=CA), the time evolution of E3ð%Þ
and Elost are calculated for 0 < t < 2=j, and optimum transfer, shown in Fig. 3b, refers to the maximum
of E3ðtÞ over 0 < t < 2=j. The corresponding total energy lost at optimum constant-j transfer is shown
in Fig. 3e. Now that we calculated the energies of interest as functions of (j=CB;CB=CA), we look for
ranges of the relevant parameters in which the EIT-like transfer has advantages over the constant-j
one. So, we plot the ratio of ðE3ÞEIT�like=ðE3Þconstant�j in Fig. 3c, and ðElostÞconstant�j=ðElostÞEIT�like in Fig. 3f.
We find that, for CB=CA > 50, the optimum energy transferred in the adiabatic case exceeds that in
the constant-j case, and the improvement factor can be larger than 2. From Fig. 3f, one sees that
the EIT-like scheme can reduce the total energy lost by a factor of 3 compared to the constant-j
scheme, also in the range CB=CA > 50.

Although one is usually interested in reducing the total energy lost (radiated + absorbed) as
much as possible in order to make the transfer more efficient, the undersirable nature of the radi-
ated energy makes it often important to consider reducing the energy radiated, instead of only
considering the total energy lost. For this purpose, we calculate the energy radiated at optimum
transfer in both the EIT-like and constant-j schemes, and compare them. The relevant parameters
in this case are j=CB; CB=CA; CA

rad=CA, and CB
rad=CB. The problem is more complex because the

parameter space is now 4-dimensional. So we focus on those particular cross sections that can
best reveal the most important differences between the two schemes. From Fig. 3c and f, one
can guess that the best improvement in both E3 and Elost occurs for CB=CA P 500. Moreover,
knowing that it is the intermediate object R2 that makes the main difference between the EIT-like
and constant-j schemes, being ‘‘energy-empty” in the EIT-like case and ‘‘energy-full” in the con-
stant-j one, we first look at the special situation where CA

rad ¼ 0. In Fig. 4a and b, we show con-



Fig. 3. Comparison between the EIT-like and constant-j energy transfer schemes, in the general case: (a) Optimum E3 ð%Þ in
EIT-like transfer, (b) optimum E3 ð%Þ in constant-j transfer, (c) ðE3ÞEIT�like =ðE3Þconstant-j , (d) energy lost ð%Þ at optimum EIT-like
transfer, (e) energy lost ð%Þ at optimum constant-j transfer, (f) ðElostÞconstant-j =ðElostÞEIT-like .
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tour plots of the energy radiated at optimum transfer, in the constant-j and EIT-like schemes,
respectively, for the particular cross section having CB=CA ¼ 500 and CA

rad ¼ 0. Comparing these
two figures, one can see that, by using the EIT-like scheme, one can reduce the energy radiated
by a factor of 6.3 or more.

To get a quantitative estimate of the radiation reduction factor in the general case where
CA

rad – 0, we calculate the ratio of energies radiated at optimum transfers in both schemes,
namely,



Fig. 4. Comparison between radiated energies in the EIT-like and constant-j energy transfer schemes: (a) Eradð%Þ in the
constant-j scheme for CB=CA ¼ 500 and CA

rad ¼ 0, (b) Eradð%Þ in the EIT-like scheme for CB=CA ¼ 500 and CA
rad ¼ 0, (c)

ðEradÞconstant-j =ðEradÞEIT-like for CB=CA ¼ 50, (d) ðEradÞconstant-j =ðEradÞEIT-like for CB=CA ¼ 500, (e) ½ðEradÞconstant-j=ðEradÞEIT�like� as a function
of j=CB and CB=CA , for CA

rad ¼ 0.
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ðEradÞconstant-j
ðEradÞEIT-like

¼

R tconstant-j
opt

0
CB

rad

CA
rad
jaconstant-j

2 ðtÞj2 þ jaconstant-j
1 ðtÞj2 þ jaconstant-j

3 ðtÞj2
� �� �

dt

R tEIT-like
opt

0
CB

rad

CA
rad
jaEIT-like

2 ðtÞj2 þ jaEIT-likeðtÞj2 þ jaEIT-like
3 ðtÞj2

� �� �
dt

ð15Þ
which depends only on CB
rad=C

A
rad, the time-dependent mode amplitudes, and the optimum transfer

times in both schemes. The latter two quantities are completely determined by j=CB, and CB=CA.
Hence the only parameters relevant to the calculations of the ratio of radiated energies are
CB

rad=C
A
rad, j=CB, and CB=CA, thus reducing the dimensionality of the investigated parameter space from

4 down to 3. For convenience, we multiply the first relevant parameter CB
rad=C

A
rad by CA=CB, which be-

comes ðCB
rad=CBÞ=ðCA

rad=CAÞ, i.e. the ratio of quantities that specify what percentage of each object’s loss
is radiated. Next, we calculate the ratio of energies radiated as a function of ðCB

rad=CBÞ=ðCA
rad=CAÞ and

j=CB, in the two special cases CB=CA ¼ 50, and CB=CA ¼ 500, and we plot them in Fig. 4c and d, respec-
tively. We also show, in Fig. 4e, the dependence of ðEradÞconstant-j =ðEradÞEIT-like on j=CB and CB=CA, for the
special case CA

rad ¼ 0. As can be seen from Fig. 4c and d, the EIT-like scheme is less radiative than the
constant-j scheme whenever (CB

rad=CB) is larger than (CA
rad=CA), and the radiation reduction ratio in-

creases as CB=CA and j=CB are increased (see Fig. 4e).

5. Conclusion

In conclusion, we proposed an efficient weakly radiative energy transfer scheme between two
identical resonant objects, based on an EIT-like transfer of the energy through a mediating resonant
object with the same resonant frequency. We analyzed the problem using CMT, and pointed out that
the fundamental principle underlying our energy transfer scheme is similar to the known EIT process
[9] in which there is complete population transfer between two quantum states. We also explored
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how the EIT-like scheme compares to the constant-j one, as the relevant parameters of the system are
varied. We motivated all this, initially, by specializing to the problem of witricity-like wireless energy
transfer between inductively-coupled metallic loops. However, our proposed scheme, not being re-
stricted to the special type of resonant inductive coupling, is not bound only to wireless energy trans-
fer, and could potentially find applications in various other unexplored types of coupling between
general resonant objects. In fact, in this context, the work presented here generalizes the concept of
EIT, previously known as a quantum mechanical phenomenon that exists in microscopic systems, to
a more general energy transfer phenomenon, between arbitrary classical resonant objects. We focused
on the particular example of electromagnetic resonators, but the nature of the resonators and their
coupling mechanisms could as well be quite different, e.g. acoustic, mechanical, etc. Since all these res-
onant phenomena could be modeled with nearly identical CMT equations, the same behavior would
occur.

Acknowledgments

Finally, we acknowledge Dr. Peter Bermel and Prof. Steven G. Johnson for their help. This work was
supported in part by the Materials Research Science and Engineering Center Program of the National
Science Foundation under award DMR 02-13282, the Army Research Office through the Institute for
Soldier Nanotechnologies contract W911NF-07-D-0004, DARPA via the U.S. Army Research Office un-
der contract W911NF-07-D-0004, the U.S. Department of Energy under award number DE-FG02-
99ER45778, and by a grant from 3M. We also acknowledge support of the Buchsbaum award.

Appendix A

A.1. Analytical solution of the 3-object system in the constant-j case

The CMT equations Eq. (12) admit a simple analytical solution in the special case where the cou-
pling rates j12ðtÞ and j23ðtÞ are independent of time and equal to each other, namely when
j12 ¼ j23 ¼ constant independent of time. After making the following set of substitutions
R � 1
U
� CA þ CB

2
ffiffiffi
2
p

j
ð16Þ

D � CB � CA

2
ffiffiffi
2
p

j
ð17Þ

T �
ffiffiffi
2
p

jt ð18Þ
we obtain the expressions below for the time-varying amplitudes
a1ðTÞ ¼
1
2

e�ixte�RT Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 1

p sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 1

p
T

� �
þ cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 1

p
T

� �
þ e�DT

" #
ð19Þ

a2ðTÞ ¼ ie�ixte�RT 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 1

p sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 1

p
T

� �
ð20Þ

a3ðTÞ ¼
1
2

e�ixte�RT Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 1

p sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 1

p
T

� �
þ cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 1

p
T

� �
� e�DT

" #
ð21Þ
The time topt at which the energy transferred to R3 is optimum, can be obtained by setting the time
derivative of the energy ja3ðTÞj2 in R3 to zero, and is therefore a solution to the following equation
R
Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 � 1
p sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 1

p
T

� �
þ cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 1

p
T

� �" #
�

D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 1

p
D

sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 1

p
T

� �
þ cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 1

p
T

� �" #
¼ ðR� DÞeDT ð22Þ
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In general, this equation may not have an obvious analytical solution, but it does admit a simple
solution in the two special cases that we will consider below.

In the first special case, we set D ¼ 0, and thus we have CA ¼ CB ¼ C and R ¼ 1
U ¼ Cffiffi

2
p

j
. In this case,

Topt �
ffiffiffi
2
p

jtopt becomes
Topt ¼ 2 tan�1 1
R

� 	
¼ 2 tan�1U ð23Þ
and the efficiency of the 3-object system becomes
g � ja3ðToptÞj2

ja1ð0Þj2
¼ U2

1þ U2 exp
�2tan�1U

U

� 	" #2

ð24Þ
which is just the square of the efficiency of the two-object system [6]. Therefore, when all objects are
the same, the efficiency of the 3-object system at optimum is equal to the square of the efficiency of
the 2-object system, and hence is smaller than it.

In the second special case, we set D ¼ R ¼ 1
U ¼

CB

2
ffiffi
2
p

j
, that is to say we set CA ¼ 0. The analytical

expressions for Topt and g become, respectively
Topt ¼
pUffiffiffiffiffiffiffiffiffi
U2�1
p ; U > 1

1; U 6 1

(
ð25Þ

g ¼
1
4 1þ exp �pffiffiffiffiffiffiffiffiffi

U2�1
p
� 	
 �2

; U > 1

1
4 ; U 6 1

8><>: ð26Þ
Therefore, the optimum efficiency in this case, is larger when j > CB
2
ffiffi
2
p .

A.2. Resolution of apparent paradox in EIT-like scheme

As we said earlier in the text, the explanation of the EIT-like scheme in terms of the adiabatic fol-
lowing of the eigenstate ~V1, seems to be puzzling and somewhat paradoxical. The reason is that energy
is efficiently transferred through the intermediate resonator R2 without ever being in it. This apparent
contradiction can be resolved by looking at the detailed contributions to the time-rate of change of the
energy E2 in R2. Since the energy in R2 at time t is E2ðtÞ ¼ ja2ðtÞj2, one can use the CMT Eq. (12) and
calculate the power dE2ðtÞ=dt through R2, to obtain
dja2j2

dt
¼ �2CBja2j2 � 2j12Imða�2a1Þ þ 2j23Imða�3a2Þ: ð27Þ
The first term on the right-hand side of this equation corresponds to the total power lost in R2. The
second term can be identified with the time-rate P12ðtÞ of energy transfer from R1 to R2, namely
P12ðtÞ ¼ �2j12ðtÞImða�2ðtÞa1ðtÞÞ. Similarly, the third term can be identified with the time-rate P23ðtÞ
of energy transfer from R2 to R3: P23ðtÞ ¼ 2j23ðtÞImða�3ðtÞa2ðtÞÞ. Note that because P12ðtÞ represents
the rate at which energy gets into R2 (coming from R1), this term will be positive. Similarly, because
P23ðtÞ is the rate at which energy gets out of R2 (going to R3), this term will be negative. For simplicity,
we will focus on the case where CA ¼ CB ¼ 0, and take the time variation of the coupling rates to be
given by Eqs. (10) and (11). In this case, the total energy in the 3-object system is conserved, and the
change in the energy E2 can arise only from the exchange of energy between R1 and R2, and between R2

and R3. In this special case, the rate of change of E2, which equals the sum P12 þ P23, is oscillatory in
time with amplitude Asum. It turns out that as the transfer time tEIT gets longer, the peak amplitude
Asum of the sum P12 þ P23 approaches zero. This means that at the moment when energy reaches R2

from R1, it leaves R2 immediately to R3. Therefore, dE2ðtÞ=dt is almost zero 8 t, and the energy in R2

remains approximately equal to its initial value of zero throughout the EIT-like transfer, despite the
fact that all the energy initially in R1 goes through R2 as it gets transferred to R3. To illustrate this point,
we consider again the case CA ¼ CB ¼ 0, and choose the coupling rate j such that Qj ¼ 1000. In Fig. 5a,
we plot the powers P12, P23 and their sum as functions of time when the duration of the transfer is
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Fig. 5. (a) P12, P23 and P12 þ P23 as functions of time for CA ¼ CB ¼ 0, Qj ¼ 1000, and tEIT ¼ 6366:2ð1=f Þ. (b) Same plot as in (a)
but with tEIT five times longer. (c) Max(P12 þ P23)/max(P12 � P23Þ versus tEIT for CA ¼ CB ¼ 0 and Qj ¼ 1000.
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tEIT ¼ 6366:2ð1=f Þ. In Fig. 5b, we repeat the same plots but now with a transfer time five times longer.
As can be seen by comparing Fig. 5a and b, we find that the relative amplitude Asum, compared to char-
acteristic magnitudes of P12 and P23, has dramatically decreased. To get a quantitative estimate of this
decrease in the amplitude of P12 þ P23, we show in Fig. 5c, the ratio of Asum over the maximum of
P12 � P23 as a function of tEIT . We find that, indeed, as the transfer time gets longer, meaning that
the adiabatic condition is better satisfied, the amplitude Asum gets smaller and smaller compared to
the peak of P12, and consequently the deviation of the energy in R2 from its initial zero value becomes
negligible. Therefore, one way to look at why the EIT mechanism works so well, is to note that the EIT-
approach ensures that the energy leaves R2 (to R3) as soon as it reaches R2 (from R1).
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