
Enabling single-mode behavior over large
areas with photonic Dirac cones
Jorge Bravo-Abada,1, John D. Joannopoulosb, and Marin Soljačićb

aDepartamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, 28049 Madrid, Spain; and bDepartment of Physics,
Massachusetts Institute of Technology, Cambridge, MA 02139

Contributed by John D. Joannopoulos, May 1, 2012 (sent for review March 27, 2012)

Many of graphene’s unique electronic properties emerge from its
Dirac-like electronic energy spectrum. Similarly, it is expected that a
nanophotonic system featuring Dirac dispersion (two conical bands
touching at a single point, the so-called Dirac point) will open a
path to a number of important research avenues. To date, however,
all proposed realizations of a photonic analog of graphene lack
fully omnidirectional out-of-plane light confinement, which has
prevented creating truly realistic implementations of this class of
systems able to mimic the two-dimensional transport properties
of graphene. Here we report on a novel route to achieve all-dielec-
tric three-dimensional photonic materials featuring Dirac-like dis-
persion in a quasi-two-dimensional system. We further discuss
how this finding could enable a dramatic enhancement of the
spontaneous emission coupling efficiency (the β-factor) over large
areas, defying the common wisdom that the β-factor degrades
rapidly as the size of the system increases. These results might
enable general new classes of large-area ultralow-threshold lasers,
single-photon sources, quantum information processing devices
and energy harvesting systems.

Since its isolation from bulk graphite in 2004 (1), graphene—a
one-atom-thick sheet of carbon—has attracted an ever-

increasing amount of interest (2–7); nowadays, the study of the
electronic properties of this two-dimensional (2D) material has
become one of the most active areas of condensed matter physics.
This general endeavor has also stimulated new directions in
related research fields, especially those originally inspired by the
physics of electronic transport in crystalline solids. Of particular
relevance in this context are photonic materials whose dielectric
constant is periodically structured at the subwavelength scale, the
so-called photonic crystals (PhCs) (8). By exploiting the analogy
between the propagation of electrons in graphene and the pro-
pagation of photons in suitably designed 2D PhCs, phenomena
such as directional optical waveguiding (9), pseudodiffusive
transport of light (10, 11), Klein tunneling (12), and the observa-
tion of the Zitterbewegung of photons (13) have been recently pro-
posed. The existence of Dirac points at the center of the Brillouin
zone induced by accidental degeneracy in square lattice 2D PhCs
has also been discussed recently (14). However, all these systems
share the common fundamental drawback that they lack fully om-
nidirectional out-of-plane light confinement, which has so far
prevented the creation of a truly realistic implementation of a
photonic counterpart of graphene.

In this article, we propose a feasible approach to achieve simul-
taneously quasi-two-dimensional light propagation and Dirac
cone dispersion in an all-dielectric 3D photonic material particu-
larly suitable for optical device integration. We show how the
unique light confining properties of a proper choice of 3D layered
PhCs enables creating extended planar defect modes whose dis-
persion relation exhibits isolated Dirac points inside a complete
3D photonic band gap. In the limit in which the emitter frequency
virtually coincides with the Dirac point frequency (i.e., the fre-
quency of the Dirac cone vertex) the number of photonic states
available to the emitter approaches one, even if the system
features a macroscopic area. Thereby, the photonic materials pre-
sented in this article enable the implementation of structures

much larger than the wavelength, which nevertheless have values
of the β-factor, which measures the fraction of spontaneous
emitted radiation captured by a certain targeted mode, close to
unity. Due to the crucial role played by the β-factor in various
areas of physics (from optoelectronics to quantum computation
or energy harvesting), we believe that these results hold a great
promise for the development of novel types of nanodevices.

A schematic of the considered photonic material is rendered in
Fig. 1A. We start by considering the electromagnetic properties
of the PhC before the defect plane is introduced; it is a face-
centered cubic (fcc) 3D PhC of air (or low-index) cylinders
embedded in a dielectric background and oriented along the
(1 1 1) direction (15, 16). This peculiar class of layered PhCs can
actually be viewed as an alternating stack of two different types
of layers. One of the layers has the form of a triangular lattice
of finite-height dielectric rods in air (labeled as “rod layer” in
Fig. 1A), whereas the other layer can be described as a triangular
lattice of air holes milled in a dielectric slab (labeled as “hole
layer” in Fig. 1A). This PhC features two important characteris-
tics. First, each of the two types of layers displays a highly
symmetric cross-section that mimics a canonical 2D photonic-
crystal structure: One is a periodic array of air holes in a dielectric
slab, and the other is a periodic array of hexagonal-like rods in
air. Second, although neither of the layers displays a complete
(omnidirectional) photonic band gap by itself, when the layers
are periodically stacked as shown in Fig. 1A, a large complete
photonic band gap can be obtained, using practical values of
the refractive index contrast (15, 16).

Next, consider creating an extended planar electromagnetic
defect mode in the 3D PhC described above. In order to do that,
we introduce into the structure a single defect layer that perturbs
the original periodic sequence rod layer/hole layer/rod layer
along the (1 1 1) direction. In particular, we remove a hole layer
of the structure and replace it by a triangular lattice of finite-
height dielectric rods with circular cross-section (green cylinders
in Fig. 1A), whose radius, height, and dielectric constant are given
by rd, hd, and ϵd, respectively.

It is known (16, 17) that the introduction of line defects into
layered 3D PhCs of the type described above enables the imple-
mentation of localized electromagnetic states whose dispersion
relation, field profiles, and polarization are in a close correspon-
dence with those associated with the corresponding 2D PhC
geometries. Similarly, one would expect that the spectral proper-
ties of the planar extended states localized in the defect layer
rendered in Fig. 1A should, to some extent, inherit properties
associated with the Bloch states of the bona fide 2D counterpart
of this defect layer (i.e., those that are present in a triangular
array of infinitely long high-index rods). On the other hand, it
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has been demonstrated that the intrinsic symmetry properties of
2D PhCs based on a triangular lattice can induce the presence of
Dirac points near high-symmetry points of the band structure (9–
11). Thus, this line of reasoning suggests the feasibility of creating
a single 3D physical system simultaneously featuring quasi-two-
dimensional light propagation and Dirac cone dispersion. In ad-
dition to these two features, it is also crucial that the mentioned
Dirac cone dispersion is isolated within a given frequency band-
width, or, equivalently, that the Dirac cone is fully separated from
the rest of the bands present in the band structure. Only by com-
bining all three of these features in the same system, it is possible
to fully exploit the analogy between electronic and photonic gra-
phene. We emphasize that although, in principle, it is not chal-
lenging to obtain each of these three characteristics separately in
a photonic structure, achieving all three of them concurrently in
the same 3D physical system is not straightforward.

To explore to which extent these ideas can be implemented in
a realistic system, we have carried out a systematic numerical
analysis of the evolution of the corresponding band structures
as a function of the geometrical parameters and the dielectric
constants, defining both the underlying 3D PhC, as well the defect
layer. This numerical study is based on the following three-step
optimization approach. First, we have optimized the geometrical
parameters of the defect layer as if instead of being embedded
as a defect in a 3D PhC, it was in a free-standing configuration
(i.e., surrounded by air regions). The goal of this first step is find-
ing a 2D PhC rod slab, formed by a triangular lattice of finite-
height high-dielectric cylinders, that displays an isolated Dirac
point inside the light cone. Second, we have optimized the geo-
metrical parameters of the 3D PhC in which the defect layer
is embedded (the layered 3D PhC described above, without any
defect). The goal of this second optimization step is to find both
the refractive index and the optimal geometrical parameters of
the considered 3D PhC, so that it displays a large full-photonic
band gap approximately centered at the Dirac frequency found in
the first step of the optimization. Finally, we have used a systema-
tic trial-and-error procedure to determine the optimal way of
inserting the defect layer into the 3D PhC, so that the dispersion
relation of the free-standing 2D PhC rod slab, particularly the
Dirac point, is not significantly perturbed by the interaction of
the defect layer with its surrounding dielectric media. This nu-
merical analysis was performed by means of the plane-wave ex-
pansion method to Maxwell’s equations (18) using a supercell
large enough in the (1 1 1) direction so the properties of an
isolated defect plane in an infinite 3D PhC are accurately repro-
duced. Our calculations show that, for the optimal structure, the

radii of the air holes within the hole layer and the equivalent
cylinders (17) in the rod layer are rh ¼ 0.41a and rc ¼ 0.18a,
respectively (a is the lattice constant of the in-plane triangular
lattice defined within each layer; see Fig. 1a). The thicknesses
of the hole and rod layers are th ¼ 0.32a and tc ¼ 0.50a, respec-
tively, whereas the refractive index of the high-dielectric material
is assumed to be n ¼ 2.5. The low-refractive index of the struc-
ture is taken to be air. On the other hand, the defect layer of this
optimal system features nd ¼ 3.1, rd ¼ 0.32a, and hd ¼ tc. In ad-
dition, from this numerical study we have also obtained that the
optimal configuration is that in which the cylindrical rods of the
defect layer are aligned with the rods forming the two rod layers
located right above and below the defect plane (see Fig. 1A).

Fig. 1B summarizes the dispersion diagram obtained for this
structure. Shaded violet areas in this figure show the projected
band structure for the perfectly periodic 3D PhC (i.e., without
the defect layer). In this case, the dispersion diagram was ob-
tained by plotting the frequencies ω of the extended bulk states
of the system as a function of the in-plane wavevector k‖ in the
irreducible Brillouin zone of the underlying in-plane 2D triangu-
lar lattice. The considered system exhibits a large 3D complete
photonic band gap (shaded yellow area), centered at frequency
ω ¼ 0.497ð2πc∕aÞ (c is the light velocity in vacuum) and featuring
a gap-midgap ratio of approximately 8%. The dispersion relation
of the guided modes of the defect plane are also rendered in
Fig. 1B (red lines). As can be seen, these defect bands indeed
display a Dirac point at ωD ¼ 0.506ð2πc∕aÞ (see Fig. 1B and
the inset of Fig. 1A), fully lying within the omnidirectional photo-
nic band gap of the periodic system (yellow area in Fig. 1B).
Importantly, this Dirac point is completely isolated from all of
the rest of the frequencies of the band structure of the system
within a bandwith Δω ¼ 0.026ð2πc∕aÞ. Finally, the strong out-
of-plane photonic band gap confinement of the electromagnetic
fields at ω ¼ ωD is clearly observed in the inset of Fig. 1A, which
displays the corresponding cross-section along the yz plane of
the electric-field intensity distribution. These results demonstrate
the feasibility of creating a complete photonic analog of graphene
in a realistic 3D physical system. We emphasize that the obtained
results are scalable to many different frequency regimes and
therefore could be used to enhance performance of different
classes of active optical devices.

We now turn to demonstrate how the proposed class of photo-
nic systems can enable an unprecedented control of light–matter
interaction over large areas. In order to do that, we apply the
commonly employed procedure to probe the properties of light–
matter interaction in a complex electromagnetic environment:

Fig. 1. An isolated photonic Dirac point in a 3D photonic crystal. (A) Sketch of the considered structure. The basic structure consists of face-centered cubic (fcc)
lattice of overlapping air cylinders embedded in a high-dielectric background (brown regions). This structure can also be seen as an alternating stack of rod and
hole layers (see labels in the figure). A planar defect is introduced in the structure by removing a hole layer and replacing it by a triangular array of finite-height
dielectric cylinders (green cylinders). The geometrical parameters used to define the structure are also displayed. The inset renders the electric-field intensity
corresponding to a guided mode in the defect plane at the Dirac frequency. (B) The dispersion diagram corresponding to the structure shown in A, projected
over the first Brillouin zone of the in-plane triangular lattice characterizing the hole and rod layers of that structure. The inset of B shows an enlarged view of
the dispersion diagram near the Dirac point.
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We study the radiation process of a point quantum emitter em-
bedded in the system under analysis (19, 20). As it was discovered
by Purcell more than 60 years ago, the rate of spontaneous emis-
sion of a quantum light emitter can be strongly enhanced or
suppressed by tailoring the density of electromagnetic states of
the environment in which the emitter is embedded (21). The
emitter is modeled as a two-level system, characterized by a tran-
sition frequency ωs, an emission bandwidth (i.e., a transition
bandwidth) of Δωs, and a dipolar transition moment d ¼ dd̂.
In particular, we analyze the spontaneous emission coupling
efficiency, the so-called β-factor. In a multimode photonic system,
the β-factor quantifies the portion of all spontaneously emitted
photons that couple into a given mode (22). This physical mag-
nitude is of a paramount importance in modern optoelectronics
and quantum information processing since the performance of an
active nanophotonic device, or a single-photon emitter, can often
be greatly enhanced by increasing the value of β (22–24) [recent
examples include ultralow-threshold lasers (25–27) and single-
photon sources (28, 29) based on PhC cavities].

The dependence of the β-factor on the particular electromag-
netic environment in which the considered emitter is embedded
can be elucidated by examining its link with the corresponding
photonic local density of states (LDOS), ρðr; d̂; ωÞ. For a nondis-
sipative system, the LDOS can be written as (19)

ρðr; d̂; ωÞ ¼ ∑
ν

ϵðrÞjEνðrÞ · d̂j2δðω − ωνÞ [1]

where the index ν labels the different source-free normal solu-
tions to Maxwell’s equations obtained for the considered photo-
nic structure; EνðrÞ and ων are their corresponding E-field profile
and frequency, respectively. ϵðrÞ stands for the dielectric constant
distribution.

On the other hand, from Fermi’s golden rule (19–21), one finds
that, in 3D, the spontaneous emission rate of the considered
quantum emitter Γ is proportional to the LDOS accessible to
the emitter Γ ¼ ðπjdj2ωs∕ℏϵ0Þρðrs; d̂; ωsÞ. Thus, assuming the
targeted mode to be a normal mode of the system, EtðrÞ, of fre-
quency ωt, one can write the β factor as (see SI Text),

β ¼ ωtgðωtÞϵðrÞjEtðrÞ · d̂j2R
dωgðωÞωρðrs; d̂; ωÞ

[2]

where gðωÞ is the lineshape of the transition, centered at ωs and
characterized by full-width-half-maximum (FWHM) of Δωs.
Note that the factor gðωtÞ in the numerator accounts for the fact
that β decreases as the emission frequency is detuned from ωt.
Hereafter ωt ¼ ωs is assumed.

Eq. 2 clearly shows that the β factor can be enhanced by intro-
ducing a physical mechanism that minimizes the density of photo-
nic states lying within the transition linewidth. In fact, the large

values for β reached in subwavelength volume photonic resona-
tors (25–29) can be viewed as a particular instance of this physical
picture. Such nanoresonators are designed to have a volume
small enough so that only one resonant mode lies within the tran-
sition linewidth. This makes them to effectively act as single-
mode structures, which as deduced from Eq. 1 leads to values
β ≈ 1 (provided that the coupling with the radiation modes exist-
ing outside the resonator is negligible). Although very relevant in
a number of contexts, this cavity-based approach does not admit a
straightforward extension for large-area control of β. In the rest
of this article, we show how the general class of isolated Dirac
points discussed above do enable such large-area control.

To gain physical insight into the effect of the Dirac cone dis-
persion on the β factor, we evaluate the magnitude of β in the
following three cases (all of them 3D): first, the case of a homo-
geneous material; second, the case in which the dielectric mate-
rial is periodically structured so that ωs lies in the vicinity of the
lower edge of a 3D photonic band gap; and, third, the case of the
structure displayed in Fig. 1—i.e., a system exhibiting simulta-
neously quasi-two-dimensional light propagation and an isolated
Dirac point near ωs. Fig. 2 A–C illustrates each of these disper-
sion relations (for simplicity in the visualization, in Fig. 2 A and B,
only the 2D counterparts of the corresponding cases are ren-
dered). Importantly, in all three cases we also assume that the
EM field in the system is confined in a finite volume V , such that
V ≫ λ3 (the dependence on volume is addressed below).

The homogeneous case is characterized by the following dis-
persion relation: ωðkÞ ¼ ck∕n (where n is the refractive index and
k ¼ jkj, with k ¼ ðk‖; kzÞ). Then, making use of the isotropy of
the medium, one can derive the following simple expression
for the β factor: β ¼ ð1∕V ÞωsgðωsÞ∕FhðωÞ, where FhðωÞ ≡
∫ dωgðωÞω ~ρhðωÞ, with ~ρhðωÞ ¼ ð1∕2πÞðn∕cÞ3ω2. Similarly, for
the case of the photonic band gap, taking ωðkÞ ¼ ωg −Agk2

(ωg being the center of the gap and, see Fig. 1B, and Ag is a
constant which has to be determined from calculations of the
band structure; physically, Ag defines the curvature of the disper-
sion relation close to ωg), one finds that the magnitude of β can be
calculated using the same expression given above for the homo-
geneous case but replacing FhðωÞ by FgðωÞ ≡ ∫ dωgðωÞω ~ρgðωÞ,
with ~ρgðωÞ ¼ ð4π2A3∕2

g Þ−1ðωg − ωÞ1∕2.
For the Dirac case, the calculation of β is more involved that in

the previous two cases. First, we take into account that an excited
dipole embedded in the defect layer displayed in Fig. 1A only
decays via the guided modes confined within the layer; the decay
into any other modes surrounding the layer (e.g., bulk Bloch
modes) is prevented by an omnidirectional photonic band gap.
Then, for small enough values of hd (so only the fundamental
mode guided mode in the z direction is excited), the quasi-2D
light propagation inside the defect layer can be described by
the dispersion relation corresponding to in-plane Bloch states
(i.e., states with kz ¼ 0): ωðk‖Þ ¼ ωD �ADjk‖ − k‖;0j (see details

Fig. 2. Dispersion relations of three representative photonic materials and typical spectrum of a quantum emitter. A and B sketch, respectively, the dispersion
relations of a homogeneous material and a photonic-crystal exhibiting a photonic band gap near the peak of the emission ωs. (C) Same as B but for the case in
which the structure exhibits a Dirac point near ωs. D renders the lineshape of the emission spectrum gðωÞ in the form of a Lorentzian centered at ωs and
featuring a full-width at half-maximum (FWHM) of Δωs. ωg and ωD denote the central frequency of the band-gap and the Dirac point frequency, respectively.
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in SI Text). In this expression, AD is a constant that can be ob-
tained from band-structure calculations and k‖;0 defines the
coordinates in k space of the Dirac cone vertex, whereas the plus
and minus signs correspond to ω > ωD and ω < ωD, respectively.
(Note that, physically, AD corresponds to the slope of the Dirac
cone.) Thus, the total density of states accessible to the emitter
can be written as ~ρDðωÞ ¼ 1∕ð2πA2

DÞjω − ωDj. This, in turn,
yields the following expression for the spontaneous emission
coupling efficiency β ¼ ð1∕AÞωsgðωsÞ∕FDðωÞ, with FDðωÞ ¼
∫ dωgðωÞω ~ρDðωÞ. Here A is the transversal area of the defect
layer (i.e., the total volume of the defect layer is V ¼ A × hd).

We now quantify the values of β for each of the above cases
using realistic parameter values. To allow for a direct comparison
among the three considered class of systems, we introduce a
renormalized spontaneous emission coupling efficiency η. In
the homogeneous and band-edge cases we define this magnitude
as ηh;g ¼ βh;g × V∕a3, whereas for the Dirac case we define
ηD ¼ βD × A∕a2. This normalization allows us, on one hand,
to remove from the discussion the obvious dependence of β on
the size of the system and thus focus exclusively on the photonic
properties. On the other hand, it also removes the geometrical
factor V∕A that enhances the β factor in the Dirac case with
respect to the other two cases. This factor stems from the elec-
tromagnetic confinement in the z direction of the guided modes
in the Dirac structure and therefore cannot be ascribed to the
Dirac spectrum. Furthermore, in our calculations we assume that
the transition lineshape is described by a Lorenztian centered at
ωs ¼ 2.1 × 1015 s−1 (i.e., an emission wavelength of 900 nm) and
featuring a relative FWHM Δωs∕ωs ¼ 10−4; values more than
one magnitude smaller for Δωs∕ωs can be reached using, for
instance, quantum dots at low temperatures. In the homogeneous
case a refractive index n ¼ nd is chosen, whereas for the band-
edge and Dirac cases, the values of the dispersion relation para-
meters Ag and AD are taken from band-structure calculations:
Ag ¼ 1.2 × ca∕ð2πÞ and AD ¼ 0.3 × c (a is lattice constant
defined in Fig. 1A, which for operation at the considered emission
wavelength, takes a value of 450 nm). We note that for a direct
comparison between the band-edge and Dirac cases, the value of
Ag was obtained from the M point of the band-structure results
shown in Fig. 1B.

Thus, using these parameters, from the numerical evaluation
of the expression for β given above, we obtain ηh ¼ 68.2,
ηg ¼ 4.0 × 105, and ηD ¼ 3.6 × 106. As readily deduced from
these values, the Dirac dispersion introduces an enhancement
factor of about four orders of magnitude with respect to the
homogeneous case and about one order of magnitude with re-
spect to the band-edge case. This is an important result, because,
as we show below, it enables reaching values of β ≈ 1 over macro-
scopic areas. Physically, the origin of this dramatic increase of η
(and consequently of β) can be understood in terms of the rapid
decrease of the number of photonic states available to the emitter
as its emission frequency approaches the frequency of the Dirac
point. In particular, in contrast to the homogeneous and band-
edge cases, in the Dirac case when ωs → ωD (i.e., as emission
frequency approaches the Dirac vertex frequency), the number
of modes accessible to the emitter approaches unity, making
the whole structure to effectively behave as a single-mode system,
even if it features a large area. The specific magnitude of the
enhancement factor reported above for the Dirac case with re-
spect to the band-edge case could, in general, be controlled by
the ratio of the slopes at emission frequency of the corresponding
dispersion relations (conical and parabolic, respectively),AD∕Ag.
Note also that the LDOS is strictly zero at ωg and ωD in the band-
edge and Dirac cases, respectively. Therefore, in the calculations
for each case, we have assumed ωs to be slightly detuned (by a
quantity much smaller than ωs and Δωs) from ωg and ωD.

We now focus on analyzing the dependence on size of the en-
hancement of β enabled by isolated photonic Dirac cones. The

physical origin of this dependence stems from the fact that for
values of the area A such that A ≫ λ2 cannot be safely assumed,
it is necessary to account for the discreteness of the eigenmodes
in the system: The only states that will be allowed to exist are
those characterized by a wavevector k ¼ ðkx; kyÞ whose value
coincides with one of the nodes of the rectangular grid defined
by the discrete set of values f2πnx∕L; 2πny∕Lg (with nx and ny
being arbitrary integers, and where the system is assumed to be
square shaped with side length L—i.e., A ¼ L2) (30). Therefore,
the influence of these finite-size effects on β can be computed by
using the discrete version of Eq. 2 (see SI Text).

Fig. 3 shows the computed results for β as a function of the
normalized emission bandwidth Δωs∕ωs for several values of the
lateral size of the system, ranging from L∕a ¼ 10 to L∕a ¼ 103.
As observed, in the considered cases, β tends to 1 when Δωs∕ωs
approaches the lower limit of the interval displayed in the figure
(Δωs∕ωs ¼ 10−5). This is due to the fact that for all the consid-
ered system sizes, a linewidth Δωs∕ωs ≲ 10−5 is smaller than the
frequency interval between the adjacent modes, and therefore the
structure is actually acting as a single-mode system (much in
the same way as occurs in large-β photonic nanocavities). As
Δωs∕ωs is increased, a growing number of modes enter into
the interval where gðωÞ is not negligible, and therefore the value
of β starts decreasing. Because the frequency interval between
adjacent modes is smaller for larger values of A, the decrease of
the β factor with Δωs∕ωs starts sooner for larger values of A.
Finally, we note that if lateral edges of the defect layer are not
perfectly reflecting, the magnitude of the β-factor for the smaller
values of A could be reduced due to the radiation energy leakage
occurring through those lateral edges of the defect layer.

In conclusion, we have demonstrated that a 3D photonic
material can exhibit isolated Dirac cones in its dispersion rela-
tion. The proposed approach is readily accessible experimentally,
both for fabrication and measurement. In addition, we have
shown how the proposed class of systems enables achieving
unprecedentedly large values of β-factor over large areas. We
believe that these results could open new avenues in a variety
of different fields. Thus, the large β factors demonstrated in this
work may lead to the realization of important applications such as
low-threshold large-area lasers, enhanced single-photon sources,
and novel efficient platforms for solar energy harvesting.
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