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We present a universal coupled-mode-theory treatment of free-space scattering of waves from resonant
objects. The range of applicability of the presented approach is fairly broad: it can be used for almost any linear
wave system, as long as the resonant scatterer has either three-dimensional �3D� spherical or 2D cylindrical
symmetry, or else is sufficiently smaller than the resonant wavelength of the incident wave. The presented
framework, while being intuitive and analytically simple, can nevertheless provide quantitatively very accurate
modeling of scattering cross sections, absorption cross sections, and many other quantities of interest. We
illustrate this approach by showing how it applies to the particular examples of scattering of light from
spherically symmetric resonant objects and atoms, and scattering of neutrons off nuclei.

DOI: 10.1103/PhysRevA.75.053801 PACS number�s�: 42.25.Fx, 03.65.Nk

Coupled-mode theory �1� �CMT� has been tremendously
successful in modeling a wide variety of systems that can
entail any number of resonant objects weakly coupled to
each other and/or to any number of incoming and outgoing
ports. As long as the couplings are weak and the resonances
are well defined, CMT provides an extraordinarily simple
and intuitive, yet very accurate, analytical framework for
modeling resonant behavior of complex systems whose more
exact models can often be quite involved. Some examples of
systems where CMT is being widely and successfully ex-
plored include optical waveguides and cavities, electronic
resonant circuits, and coupled mechanical resonances. In this
work, we show that the resonant scattering of freely propa-
gating waves from resonant objects of two-dimensional �2D�
cylindrical or 3D spherical symmetry can also be very accu-
rately modeled using very simple CMT analytical expres-
sions; the resonant objects can themselves entail more than
one weakly coupled resonance. This technique can also often
be used to analyze scattering from pointlike objects �i.e.,
objects much smaller than the incident wavelength�, even
when their substructure does not strictly obey 2D cylindrical
or 3D spherical symmetry. Our approach can be applied to
almost any free-space wave system. We illustrate it by mod-
eling three well-known resonant scattering systems: scatter-
ing of light from spherically symmetric resonant objects,
scattering of light from atoms �resonance fluorescence�, and
quantum-mechanical scattering of neutrons off nuclei.

Briefly, the general outline of our approach is as follows.
First, one exploits the spherical �cylindrical� symmetry of the
problem by placing the resonant scatterer at the origin, and
decomposing the incoming wave into a discrete set of spheri-
cal �cylindrical� modes. Only a subset of these free-space
modes will have the same angular symmetry as the dominant
radiating modes of the scatterer, thus being able to couple
with them. Second, we identify those free-space spherical
�cylindrical� modes that are capable of coupling to the scat-
terer as the “ports” for the CMT framework: in practice,
there will typically be only very few such modes. Next, the
CMT coupling strength between the ports and the radiating
modes of the scatterer is evaluated using the knowledge of
the lifetimes of the resonances. Finally, the standard CMT
framework is used to calculate powers that are dissipated

and/or scattered between the ports, from which various dis-
sipation and/or scattering cross sections of interest can be
trivially evaluated.

As a first illustrative example, we use the CMT formalism
to analyze the specific case of an electromagnetic plane wave
in air of wavelength �=2�c /� and intensity I0 incident on a
spherically symmetric weakly absorbing resonant object of
outermost radius b. The nature of the resonances in this sys-
tem are long-lived whispering-gallery electromagnetic
modes of the scatterer. Theoretical attempts �2,3� to under-
stand quantitatively the scattering and absorption of light by
small particles started almost a century ago with the Ray-
leigh approximation and the Mie theory. The Rayleigh treat-
ment is limited to nonresonant scattering; the Mie solution to
the problem is exact and applies to spheres of arbitrary size,
but it is mainly a numerical solution that cannot be accom-
plished without resorting to a robust code. An empirical for-
mula for the resonant light scattering from metal nanopar-
ticles has been presented �4,5� based on Mie calculations. In
contrast, we present here an analytical CMT treatment of the
resonant light scattering from any spherically symmetric
resonant object.

First, the scatterer is placed at the origin, and is
described by a dielectric permittivity function ��r�
and a magnetic permeability ��r�, both spherically
symmetric. The resonant modes of the scatterer,

M� o,n�m, M� e,n�m, N� o,n�m, and N� e,n�m, are generated from the
solutions �o,n�m=R��knr�P�

m�cos ��sin�m�� and �e,n�m

=R��knr�P�
m�cos ��cos�m�� of the scalar wave equation in

spherical coordinates, as follows: M� n�m=�� 	 �r��n�m� and

N� n�m= ��� 	M� n�m� /kn, P�
m�cos �� being the associated

Legendre function of the first kind, and kn being the wave
vector of the resonant mode. In the limit r
b, the radial part
R��knr� of the generating function �n�m behaves as the
Hankel function of the first kind, h�

�1��knr�. Next, we expand
the incident plane wave in terms of the free-space multipoles

of radiation �2� E� inc=E� 0ei�kz−�t�=E0e−i�t���=1
� i���2��

+1� / ������+1���M� o,��1
� − iN� e,��1

� �, where M� o,��1
� and N� e,��1

� are
vector spherical harmonics obtained from the generating
function �

e
o,��1
� = j���kr�P��

1 �cos ���cos �
sin � �. Note that the major
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difference between the generating function � of the resonant
modes and the generating function �� of the free-space mul-
tipoles lies in that the radial part of the latter is the spherical
Bessel function j���kr�, whereas the radial part of the former
is some function R��knr� that depends on the specific com-
position of the scatterer, and behaves as h�

�1��knr� far from the
scatterer’s outermost radius b. The intensity I0 of the incident
plane wave is related to its electric field amplitude by I0
= �c�0 /2� �E0�2 where �0 is the permittivity of free space. The

power P���� incident onto the scatterer, and carried by the ��
component of the plane wave, is obtained by integrating the
Poynting vector corresponding to the incident part of that
component ��h

��
�2��kr�� over any closed surface enclosing the

spherically symmetric resonant object; it is easiest to evalu-
ate the surface integral over a very large sphere centered at
the origin. The result is

P���� = 	 S� · da� =
1

4

�2

2�
I0�2�� + 1� . �1�

If the incident wave has angular frequency �=ck that is
close to the resonance frequency �res of the scatterer in the

TE mode M�o,n�1, then this wave will excite the mode M�o,n�1
with an amplitude proportional to �, say. The scattered
power Pscat is precisely the leaky power of this mode; it can
be obtained by integrating the Poynting vector of this mode
over any large spherical surface enclosing the scatterer. This
results in Pscat� ���2. Only the component proportional to

M��o,�1 in the plane wave, with ��=�, couples to the scatterer.
Thus, we identify this mode with the s+� port of our CMT
diagram shown in Fig. 1, and we associate the power �s+��2
incident through this port with P���: �s+��2
 P���.

Let a represent the scatterer’s resonant mode amplitude,
normalized such that �a�2 is equal to the energy in the reso-
nant object. Let 1 /�rad and 1/�abs denote the decay rates due
to radiation and absorption, respectively. The corresponding
quality factors are

Qrad =
�res�rad

2
=

�res�a�2

Pscat
�2�

and

Qabs =
�res�abs

2
=

�res�a�2

Pabs
. �3�

As long as Qrad and Qabs are sufficiently large, the CMT
equation �1� satisfying energy conservation and time-reversal
symmetry is

da

dt
= − i�resa − � 1

�rad
+

1

�abs
�a + 2

�rad
s+� �4�

⇒ �a�2 =

2

�rad
�s+��2

�� − �res�2 + � 1

�rad
+

1

�abs
�2 �5�

But, according to Eqs. �2� and �3�, Pscat= �2/�rad� �a�2 and
Pabs= �2/�abs� �a�2; therefore, using Eq. �1�, the scattering and
dissipation cross sections are given by

�scat 

Pscat

I0
=

� 1

�rad
�2

��res − ��2 + � 1

�rad
+

1

�abs
�2 �2 � + 1�

�2

2�
,

�6�

�abs 

Pabs

I0
=

� 1

�rad
�� 1

�abs
�

��res − ��2 + � 1

�rad
+

1

�abs
�2 �2 � + 1�

�2

2�
.

�7�

On resonance, the scattering and absorption cross sections
are, respectively,

�scat
res =

�1/�rad�2

�1/�rad + 1/�abs�2 �2 � + 1�
�2

2�
, �8�

�abs
res =

�1/�rad��1/�abs�
�1/�rad + 1/�abs�2 �2 � + 1�

�2

2�
. �9�

The half widths at half maximum �HWHMs� of �scat and
�abs are equal, and are given by

�scat
HWHM = �abs

HWHM = 1/�rad + 1/�abs. �10�

Note that �abs is independent of the scatterer’s outermost
radius b; when b��, the geometrical cross section �b2 of
the spherical object is much smaller than �abs ���2�. This
reproduces the known fact �6� that a small resonant object
can absorb much more than the light incident on it:
�abs��b2.

To test the validity of our analytical formalism, we com-
pare our CMT predictions to numerical results, in the special
case of a homogeneous nonpermeable dielectric sphere of

(a)

(b)

FIG. 1. Resonant scattering of a plane wave from a spherically
symmetric scatterer. The top panel shows a schematic, and the bot-
tom panel shows a coupled-mode-theory diagram. The resonant-
mode amplitude is a, while s+� is the amplitude of the component of
the incident wave that has the right symmetry to couple to the
resonant mode of interest.
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radius b. In this case, the resonance frequency �res is given
approximately by �5� �c /b�z� /nreal for N� e,n�1 modes, and by

�c /b�z�−1 /nreal for M� o,n�1 modes, z� being a zero of the
Ricatti-Bessel function u��z�
zj��z�. The quality factor for
absorption is Qabs=Re��� /� Im����nreal /2�nim�1 �7�, as-
suming nreal�nim, where � is the dielectric function of the
sphere, � is the fraction of modal energy inside it, and nreal,im
are, respectively, the sphere’s real and imaginary indices of
refraction. In the limit of small nonpermeable spheres and
large refractive index, the quality factor Qrad for radiation is
given analytically in Ref. �5�. When Qrad�1 and Qabs�1,
the CMT approximation is valid.

Indeed, for a nonabsorptive sphere �1/�abs=0�, our ana-
lytical formula Eq. �9� reproduces the result �scat

res

= �2� +1��2 /2� obtained numerically by van de Hulst �3�
for homogeneous dielectric spheres in the case �b /c�1.
Furthermore, we checked our analytical expressions against
exact numerical results obtained from MIEPLOT �8� for the
case nreal=9 and different ratios of Qrad /Qabs. As an illustra-
tion, the n=2 TE mode with �resb /c=0.4971 has Qrad
=3193 and �=0.99. The scattering cross sections are shown
in Fig. 2�a� for the two cases Qrad /Qabs=1 and Qrad /Qabs
=2, whereas the dissipation cross sections are shown in Fig.
2�b�. In addition, a comparison between the analytical and
numerical values of �scat

res , �abs
res , �scat

HWHM, and �abs
HWHM is pre-

sented in Table I, together with the relative errors, which are
indeed very small, thus justifying the validity of the CMT
approach. Lastly, we also verified our analytical expressions
for homogeneous dielectric spheres with radius b both equal
to and larger than �, and obtained good agreement. However,
in these cases, the nonresonant background contribution
���b2� to the cross section dominates over the resonant part
���2 /2��; thus, the resonant phenomenon, although well
modeled, is not very pronounced.

In the above treatment of scattering from a spherically
symmetric resonant object, the angular symmetry of the scat-
terer’s resonant modes was exactly the same as that of the
electric and magnetic multipoles of radiation, irrespective of
the scatterer’s size or radial composition. Hence, only one
multipole component of the incident plane wave was scat-
tered at resonance. Now, if we consider an arbitrary resonant
scatterer �not necessarily of spherical or cylindrical symme-
try�, such that its size is much smaller than the wavelength of
light illuminating it, then the far field of the resonant mode
can be expanded in terms of electric and magnetic multi-
poles. However, given the small size of the resonant object,
high-order multipoles contribute only a little to the far field,
since those modes of large angular momentum are highly
delocalized from the small region of space occupied by the
object. Hence, the far field of the resonant mode can be well
approximated in terms of the lowest few multipoles of radia-
tion. Typically, for small enough objects, only one of these
multipoles will be the dominant mode of radiation. Most
often, this mode will be an electric dipole ��=1�; if that one
turns out to be prohibited, the dominant mode will be a mag-
netic dipole ��=1� or electric quadrupole ��=2�, etc. In this
case, our CMT formalism can also be applied, and the reso-
nant cross sections are still given by Eq. �6� and Eq. �7�,
provided that they are multiplied by the squared modulus of

the overlap between the dominant multipole mode of radia-
tion and the incident plane wave. This takes into account the
dependence of the resonant cross sections on the orientation
of the incident plane wave, which is a consequence of the
lack of spherical �cylindrical� symmetry of the scatterer. Ex-
amples of such objects include photonic microcavities, me-
tallic nanoparticles, resonant radio antennas �whose size is

TABLE I. Cross-section peak values and HWHMs.

Qrad=Qabs

�nim=0.00142�
Qrad=2 Qabs

�nim=0.00284�

MIEPLOT CMT Error MIEPLOT CMT Error

�scat
res /�b2 9.88 10.12 2.4% 4.6 4.5 2.2%

�diss
res /�b2 10.03 10.12 0.9% 8.87 8.99 1.4%

�scat
HWHMb /c 0.000153 0.000156 2.0% 0.000243 0.000233 4.0%

�diss
HWHMb /c 0.000155 0.0001556 0.4% 0.000231 0.000233 0.9%

FIG. 2. �Color online� Comparison between MIEPLOT results and
coupled-mode-theory predictions for a homogeneous nonpermeable
dielectric sphere of radius b, in the cases Qrad=Qabs and Qrad=2
Qabs. �a� Scattering and �b� absorption cross section.
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much smaller than the wavelength of the radio wave they
couple to�, atoms, etc.

As an example of such a system, we now consider the
resonant scattering of radiation from atomic electrons. In this
case, the scattering cross section can be found �9� phenom-
enologically from a simple classical model. The binding of
an electron to its atom is represented by a spherically sym-
metric linear restoring force −melectron�res

2 r�, where r� is the
displacement of the electron from its equilibrium position,
and �res is the resonant frequency of electronic oscillation.

For an incident plane wave E� inc of frequency �, the electric

force on the electron is −eE� inc. Taking into account the small
reactive effects of radiation, one can write an equation of
motion for the electron �in the electric dipole approxima-

tion�, and solve it for r�. A resistive term melectron�2/�abs�r�̇ is
added to the equation of motion in order to account for dis-
sipation. The scattering cross section can then be deduced
from the expression of the radiated electric field of the oscil-
lating dipole. Following this approach, one obtains �9�

�scat =
3�2

2�

�4

�res
2

�2/�rad�2

��res
2 − �2�2 + �2�2/�rad + 2/�abs�2 �11�

where 1/�rad
�res
2 � /2 and �
 2

3e2 /melectronc3. For � close
to �res, this can be expanded to

�scat �
3�2

2�

�1/�rad�2

��res − ��2 + �1/�rad + 1/�abs�2 . �12�

In a similar fashion, one obtains

�abs �
3�2

2�

�1/�rad��1/�abs�
��res − ��2 + �1/�rad + 1/�abs�2 . �13�

Exactly the same expressions for �scat and �abs can alterna-
tively be obtained using our CMT approach, as a special case
of Eqs. �6� and �7�, respectively, corresponding to �=1. The
CMT treatment is still valid in this case, because the scatter-
er’s resonant modes have the same symmetry as before, and
hence the coupling of the incident plane wave to them is the
same. The reason that the approach outlined above predicts
only the �=1 case of the more general CMT result is that it
represents the system by an oscillating electric dipole, and
hence describes only the coupling of the electric dipole mode

N� e,n11, for which �=1.
So far, classical models of atomic transitions have suc-

ceeded in explaining only the electric dipole transition: mag-
netic dipole, electric quadrupole, and higher-order atomic
transitions required a quantum mechanical analysis. In con-
trast, our phenomenological CMT formalism can be used to
excellently reproduce quantum mechanical predictions for
atomic transitions: electric or magnetic, dipole, quadrupole,
or any of the higher-order ones.

Besides their applicability to resonance fluorescence, Eqs.
�6� and �7� are also reminiscent of the Breit-Wigner �BW�
formula for resonant scattering of neutrons from nuclei in
compound nucleus reactions. This is not unexpected since
“CMT-like” equations emerge throughout the derivation of
the Breit-Wigner formula �10,11�. Using CMT formalism,
we present here an alternative derivation of the formula BW

as an example of quantum mechanical resonant scattering.
The nucleus �scatterer� is placed at the origin, and creates a
localized central potential U�r�. The quasistationary states
�n�m�=R��knr�P�

m�cos ��eim�� for a neutron in this potential
have energies En�, with corresponding lifetimes �n�. In the
region outside the localized nucleus’ potential, the radial part
R��knr� of the quasistationary states is given by the Hankel
function of the first kind, R��knr��h�

�1��knr�, since the poten-
tial is zero there. The incident neutron, of mass mn, is as-
sumed to be moving in the z direction, and is represented by
a plane wave function �inc=Aei�kz−�t�, where A is determined
by normalization. The neutron’s wave function �inc can be
expanded in a basis consisting of the vacuum �U�r�=0�
eigenstates in spherical coordinates, as follows: �inc

=A���=0
� i���2��+1�j���kr�P���cos ��. The probability current

density associated with the �� component of �inc, �inc
����, is

J������r� , t�= �� /mn�Im���inc
�����*�� �inc

�����, and the corresponding

probability per unit time is p����= �J����� ·da� = �2��+1�
	��� /mnV��1/k�, where V=1/ �A�2 is the volume of the sys-
tem. If the incident neutron has energy E �=�2k2 /2mn� very
close to the energy En� of the quasistationary state �n�m of a
neutron in the localized nuclear potential, then the only com-
ponent of the incident neutron’s wave function �inc that
couples to the nucleus is �inc

���; this is because ��n�m ��inc� is
nonzero only for �=�� and m=0. Therefore, the probability
per unit time that the neutron interacts with the nucleus is
p���, and we identify p��� with �s+��2 in our CMT formalism:
p���
�s+��2. Once the neutron couples resonantly with the
nucleus, its wave function is given by the quasistationary
state �n�0, with amplitude an� satisfying the following CMT
equation:

dan�

dt
= − i

En�

�
an� −

1

�
an� + 2

�n�

s+�, �14�

where 1/�
� /�=� j� j /� is the total rate of decay in all
possible channels, and 1/�n�
�i /� is the decay rate in the
same initial channel. In analogy with Eq. �5�, we have
�an��2= �2��i / ��E−En��2+�2�� �s+��2. The reaction rate at
which the neutron’s initial state �inc

��� changes to �inc
�f� is

�2/� f� �an��2= �4�i� f / ��E−En��2+�2�� �s+��2. This is also
equal to the product of the flux �1/V���k /mn� of incident
neutrons and the cross section ���inc

��� →channelf� for decay
into channel f . Therefore

��i → f� =
4�

k2 �2 � + 1�
�i� f

�E − En��2 + �2 . �15�

This result reproduces the well-known Breit-Wigner formula
�12� obtained as a solution to a resonant scattering problem
in quantum mechanics.

In conclusion, we have shown how to apply CMT to
model resonant scattering of free-space waves from resonant
objects. We illustrated this approach by applying it to three
particular physical systems. In general, this approach could
be useful for almost any free-space wave system, as long as
the scatterer’s resonances are well defined, and the scatterer
is either sufficiently smaller than the wavelength or else has
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2D cylindrical or 3D spherical symmetry. Moreover, if the
scatterer has a few internal mutually interacting resonant
modes �e.g., as in nonlinear dielectric spheres, or multilevel
molecules with nonradiative coupling between the levels,
etc.�, the interaction between the modes can be easily mod-
eled in the usual CMT way �1�. Incident wave packets that
are localized in time and space could also be modeled, by
decomposing them into their plane-wave components.
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