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Bloch surface eigenstates within the radiation continuum

Chia Wei Hsu1,2, Bo Zhen1, Song-Liang Chua1, Steven G Johnson1,3, John D Joannopoulos1 and Marin Soljačić1

From detailed numerical calculations, we demonstrate that in simple photonic crystal structures, a discrete number of Bloch

surface-localized eigenstates can exist inside the continuum of free-space modes. Coupling to the free space causes the surface

modes to leak, but the forward and back-reflected leakage may interfere destructively to create a perfectly bound surface state with zero

leakage. We perform analytical temporal coupled-mode theory analysis to show the generality of such phenomenon and its robustness

from variations of system parameters. Periodicity, time-reversal invariance, two-fold rotational symmetry and a perfectly reflecting

boundary are necessary for these unique states.
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INTRODUCTION

Soon after the discovery of photonic bandgap materials, it became

known that electromagnetic modes could be localized on the sur-

face of a photonic crystal (PhC).1,2 Such a state may exist if it

cannot couple to any bulk state in the PhC or to any free-space

mode in air; the bandgap of the PhC prohibits propagation, serving

the same role as metals and negative-index materials in surface

plasmon modes.3 These PhC surface states have been observed

experimentally,4,5 and their localized properties have been applied

to enhance light collimation6,7 and to manipulate photons on

defects of the surface.5 It is often thought that bona fide photonic

surface states can only exist below the light cone of the ambient air

(i.e., below the continuum of radiation modes in air), where they

are confined by total internal reflection. We show that, under

appropriate but general conditions, photonic surface states may

also exist inside the radiation continuum. Although coupling to

radiation modes is allowed, such a state can have an infinite lifetime

because different leakage channels interfere destructively to com-

pletely cancel each other.

To explain the physical origin of perfect cancellation among

different leakage channels, we carry out rigorous analysis using

temporal coupled-mode theory, which provides a generic descrip-

tion for coupling between the localized and propagating modes. We

find that in addition to periodicity along the surface and a photonic

bandgap that perfectly reflects light, the existence of these embed-

ded Bloch surface eigenstates also requires unbroken time-reversal

symmetry and a C2 rotational symmetry about the surface normal.

The analysis applies to general wave systems, suggesting that this

phenomenon may exist beyond optical systems. Such states offer

new possibilities that may find use in the design of narrow-band

waveguiding structures or in applications where strongly localized

fields are desired.

We also note that, a lossless Bloch surface mode inside the radia-

tion continuum falls within a rare class of states known as ‘‘embedded

eigenvalues’’.8–38 Shortly after the emergence of quantum mechanics,

von Neumann and Wigner proposed that the single-particle

Schrödinger equation may possess spatially localized states lying above

the asymptotic limit of the potential and embedded in the continuum

of extended states.8 Unlike non-embedded eigenvalues, embedded

eigenvalues are typically difficult to find and generally disappear

(become resonances) when slightly perturbed. Moreover, the

impractical nature of the original proposed artificial Hamiltonians

has made experimental verification difficult. For this reason, an

embedded eigenvalue in quantum systems has never been demon-

strated. The only known attempt concerns an electron bound state

lying above the quantum-well potentials of a superlattice heterostruc-

ture, but within the bandgap of its mini bands,39 i.e., not an embedded

eigenvalue. Thus, theoretical explorations to discover simpler, easily

realizable, and more robust systems that can contain embedded eigen-

values are of great interest. Embedded eigenvalues have also been

explored in Maxwell’s equations17–29 and in the acoustic and water

wave equations.30–38 One occasion is when the spectrum of the prob-

lem can be separated by space group symmetry and when an odd-

symmetry bound state lies in the continuum spectrum of the even

states.17–23,30–34 Embedded states that do not rely on symmetry sepa-

rability have received much attention,10–16,24–29,35–38 but have never

been experimentally verified, primarily because they are fragile to

perturbations. In this work, we identify theoretically a new realization

of an embedded eigenvalue in a PhC system that does not rely on

symmetry, yet should be easily realizable. Moreover, we find that

unlike most known embedded eigenvalues, the one described here is

robust from changes of system parameters; the eigenvalue simply

shifts to another wavevector without fading into a resonance (as is

characteristic in other embedded eigenvalue systems). The possibility
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of an embedded eigenvalue in a very similar structure was previously

suggested by numerical investigations,40 but without proof or

explanation of how such a state might arise.

SURFACE EIGENSTATE IN THE CONTINUUM

For comparison, we begin with a known example of a PhC surface-

mode band structure,1,4 given in Figure 1a, where the PhC is a two-

dimensional square lattice of dielectric cylinders. By terminating the

surface rods in half on the (100) surface, one creates surface modes in

the lowest photonic bandgap of TM modes (where electric field is

normal to the plane,~EE~Ez ẑz). These states are on the lowest-frequency

band of the surface rods; they lie below the light cone, and do not

interact with the continuum of free-space modes. In comparison,

higher-frequency bands of the surface rods can be brought into the

photonic bandgap of the same bulk PhC by increasing the radii of the

surface rods; this band structure is shown in Figure 1b. Here, the

second band enters the light cone, where it couples to the radiation

modes and becomes leaky. From finite-difference time-domain

(FDTD) simulations,41 we excite these resonances with point sources

on the surface, and perform harmonic analysis to obtain the lifetime t

and quality factor Q5vt/2 of these resonant modes. As shown in

Figure 1c, there is a sharp increase of lifetime that approaches infinity

when the surface-parallel wavevector is near ky<0.2832p/a, with a

being the period of the PhC. In other words, there is a discrete point of

wavevector where the resonant mode decouples from radiation and

becomes an eigenstate. Figure 1d–1f show the field profiles Ez of the

surface modes at and away from the peak. There is no leakage to air at

the particular wavevector (Figure 1e), in contrast to nearby resonant

modes (Figure 1d and 1f) where radiation leakage is clearly visible.

This phenomenon can be understood as an interference effect. The

surface rods support a localized mode, which leaks to the right into the

air (channel one), and to the left into the bulk PhC. Since the frequency

of the state is inside the bandgap of the bulk PhC, all the left-going light

is reflected, and part of that is transmitted through the surface rods

into the air (channel two), interfering with channel one. When waves

in these two channels have the same magnitude and differ in phase by

p, destructive interference eliminates the radiation loss.

Periodicity is an important ingredient to these unique embedded

states. If the structure is uniform in the surface-parallel direction (such

as a plain uniform slab next to a uniform bulk structure), then any

state within the radiation continuum must be leaky because fields in

the air consist of propagating planewaves only. On the other hand,

when the structure has periodicity in the surface-parallel direction (y-

direction), fields in the air can consist of evanescent fields with any

wavevector ky in the reciprocal lattice (i.e., ky’s that differ by integer

multiples of 2p/a), so an infinite-lifetime resonance may exist. In the

present case, periodicity also gives rise to band folding, which creates

the resonant modes we study.

Given periodicity, it still remains to be answered if a perfect cancel-

lation between the forward leakage and the back-reflected leakage can

occur at all, and if so, what the other required conditions are.

Furthermore, for experimental demonstrations, it is also critical to

know whether the occurrence of such unique states is robust from

small differences between the theoretical structure and the fabricated
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Figure 1 Properties of surface modes lying within the radiation continuum. (a and b) Projected band structures for a square lattice (period a) of cylindrical dielectric

rods (e58.9, r50.2a) in air, with terminations as shown in the insets. In a, the surface rods are cut in half, while in b, the surface rods have increased radii, rs50.33a.

Gray shaded regions represent the light cone where there is a continuum of radiation modes. The light and dark khaki regions are the projected bulk bands of the

photonic crystal. Surface modes that do not couple to radiation are shown as blue lines (these are the well known states) and a blue cross (this is an embedded

eigenstate); those that do couple to radiation are shown as a red line. (c) Quality factor Q for the leaky surface modes along the red line in b. At ky50.276832p/a, the

lifetime goes to infinity, and the leaky mode becomes an eigenmode. (d–f) Ez field patterns of the surface modes at the specified wavevectors, where kya/2p50.260,

0.2768 and 0.290, respectively.
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structure. In the next section, we carry out an analysis using temporal

coupled-mode theory to answer these questions and to explain

why such states do indeed exist and should be readily observable

experimentally.

COUPLED-MODE THEORY ANALYSIS

In our intuitive understanding of cancellation, the coupling between

the surface mode and the radiating modes is an essential element.

Therefore, we apply temporal coupled-mode theory,1,42 which pro-

vides a simple analytical description for resonant objects weakly

coupled to incoming and outgoing ports. Temporal coupled-mode

theory has been widely used in a variety of resonator systems ranging

from optical waveguides and cavities, electronic circuits, to mecha-

nical and acoustic resonators. It works well in the weak-coupling

regime (when Q5v0t0/2..p); in practice, it is nearly exact when

Q.30, which is the case for all examples considered in this work. In

our system, v0 is the frequency of the localized mode, and t0 is its

lifetime when coupled to planewave modes in air (without considering

the back-reflection). Inside the bandgap, the bulk PhC reflects all

incoming waves. Thus, we treat the bulk PhC as a perfectly reflecting

mirror, as illustrated in Figure 2. The amplitude A of the localized

mode evolves as dA/dt5(2iv021/t0)A in the absence of input

powers. When incoming planewaves are included, the temporal

coupled-mode theory equation can be written in Dirac notation as

Refs. 1, 42 and 43:

dA

dt
~ {iv0{

1

t0

� �
AzSk� j szT ð1aÞ

s{j T~C szj TzA dj T ð1bÞ

where szj T and s{j T are column vectors whose components s11, s21

and s12, s22, respectively, are amplitudes of the incoming and out-

going planewave modes as illustrated schematically in Figure 2, and

kj T and dj T are coupling coefficients between the localized mode and

the planewave modes. The matrix C is a scattering matrix that

describes the direct coupling between the planewave modes on both

sides of the rods. We choose the normalizations such that Aj j2 is the

energy inside the rods, and that smzj j2 and sm{j j2 are the incoming

and outgoing powers in the mth planewave mode. The coupling coef-

ficients kj T, dj T and the direct scattering matrix C are not indepen-

dent; energy conservation and time-reversal symmetry require these

coefficients to be related by

kj T~ dj T ð2aÞ

Sd j dT~
2

t0

ð2bÞ

C d�j Tz dj T~0 ð2cÞ

as has been shown in Ref. 43.

The localized mode couples to one planewave mode on each side of

the rods, with the surface-normal wavevector of the planewave given

by kx~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v=cð Þ2{ky

2
q

. In the frequency range of interest, higher order

diffractions (with ky differ by integer multiples of 2p/a) correspond to

evanescent modes with imaginary kx that do not carry outgoing power,

so they can be neglected. The reflection from the bulk PhC imposes

s2z~eiys2{ ð3Þ

with y being a phase shift. For reflection from the bulk PhC, there is no

explicit expression of this phase shift. But for a closely related system

where the PhC is replaced with a perfect metal distance l away from the

rods, the phase shift is simply y52kxl2p. Also, we write the direct

scattering matrix as C~
r ’ t

t ’ r

� �
where r [r9] and t [t9] are the complex

reflection and transmission coefficients on the left [right] side of the

rods. In the absence of input power (s1150), a stationary state with no

leakage (s1250) occurs when

e{iy~r{
d2

d1

t ð4Þ

This equation is a mathematical translation of the intuitive state-

ment that the forward leakage d1A and the back-reflected leakage

teiys22 cancel each other.

The question remains whether such cancellation can occur gen-

erally, and if so, what are the requirements. Assume time-reversal

symmetry in the system is unbroken (i.e., negligible absorption, and

no magneto-optic effect imposed). Then, the complex conjugate

of fields in the direct scattering process s{j T~C szj T is a solution

of the Maxwell’s equations with opposite wavevector,1 namely,

szj T�~C’ s{j T� where C 9 is the scattering matrix of wavevector

{k==. Further, assume that the structure has twofold rotational sym-

metry C2 about the surface normal, so that C5C 9; in the present

example where the z dimension is uniform, mirror symmetry sy is

sufficient. These results combine to s{j T~CC� s{j T, and so CC�~ÎI ,

which gives the Stokes relations rj j2zt ’t�~1 and r ’t�zr�t~0. The

same procedure on the process s{j T~C szj TzA dj T leads to equation

(2c), which reduces to t d2j j2{t ’ d1j j2zr ’d1
�d2{rd1d2

�~0. Com-

bining this and the Stokes relations, we get r{d2t=d1j j2~1. In other

words, in the presence of time-reversal symmetry and a C2 rotational

symmetry about the surface normal, the right-hand side of equation

(4) always has unit magnitude.

The left-hand side of equation (4) also has unit magnitude because

of the perfectly reflecting boundary. In such case, the magnitude con-

dition is always satisfied, and equation (4) can be reduced to the phase

yzarg r{
d2

d1

t

� �
~2np ð5Þ

with n being an integer. In other words, this phase condition, equation

(5), is the only requirement for achieving perfect cancellation.

Intuitively, it may be understood as a sum of phase shifts, with the

air
PhC

S2–

l

A

S1–

S1+S2+

Figure 2 Schematics for the set-up of temporal coupled-mode theory. Inside the

bandgap, the bulk photonic crystal reflects all incoming light, so in our analysis we

treat the photonic crystal as a reflecting boundary. In temporal coupled-mode

theory, the localized mode has amplitude A, which is coupled to the incoming and

outgoing waves with amplitudes szj T and s{j T, respectively. Dashed lines indi-

cate the reference planes for the phase of s+j T.
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first term y coming from propagation and reflection, and the second

term arg (r2d2t/d1) coming from coupling with the localized mode. A

conceptually similar phase-shift equation has been used in the context

of metallic nanorod cavity, where the second term is replaced with the

phase shift from coupling with surface plasmon.44 Equation (5) comes

down to locating where the phase shift crosses integer multiples of 2p.

Such an intersection may be located by varying the wavevector ky; it

results in discrete states with infinite lifetimes, as we have observed in

Figure 1c. Not all bands in the light cone will produce such crossings;

for example, our previous reasoning indicates that structures without

periodicity cannot support such embedded states, so the phase shift

for such structures should never cross integer multiples of 2p. But once

a crossing is found, the existence of a root will be robust to changes of

system parameters since the perturbation will only shift the intersec-

tion to a slightly different wavevector.

We note a subtle but important difference between the embedded

eigenvalue we study here and that in most known examples. In most

examples, the embedded eigenvalue disappears when the parameters

of the system deviates slightly from the designed structure or potential,

making it very difficult to observe experimentally. In our case, we are

concerned with a family of eigenproblems, with each eigenproblem

defined by the wavevector of the system. When the parameters of the

system change, the embedded eigenvalue disappears from the eigen-

problem of one wavevector, but appears in that of another wavevector.

In experiments, states with all wavevectors can be measured, and

therefore, this shifting does not prevent us from physically observing

such states. Following this reasoning, we can also expect that embed-

ded eigenvalues in other periodic systems such as Refs. 27 and 37

should also be robust to parameter changes.

Lastly, we mention that the lifetime of certain resonant cavities can

be increased by optimizing their geometries to cancel the dominant

component of the far-field radiation.45–48 However, the embedded

eigenstate described here, though not localized in the surface-parallel

direction, achieves complete cancellation, which includes all compo-

nents of the far-field radiation.

VALIDATION OF ANALYSIS

The coupled-mode analysis has translated our intuitive picture of

cancellation into mathematical statements. Furthermore, it showed

that perfect cancellation is possible given time-reversal and C2 sym-

metries in the system. Next, we compare its quantitative predictions

with numerical simulations.

With no input power (s1150), equations (1) and (3) have solution

A(t)5A(0)exp (2ivt2t/t) with decay rate

1

t
~

1

t0

{Re
d2

2

e{iy{r

� �
ð6Þ

This gives the lifetime t and quality factor Q of the mode. At the

perfect-cancellation points discussed in previous section, t is infinite;

away from these points, t is finite.

Several reference quantities, the natural frequency v0, lifetime t0

and the left/right ratio of the decay rates which we denote as

j: d2=d1j j2, are measurable and can also be calculated in FDTD simu-

lations. The direct scattering matrix C may be approximated by treat-

ing the surface rods as a slab. With these values known, the coupling

coefficients d1 and d2 can be determined from equation (2), and life-

time of the localized mode and the location of the perfect-cancellation

point can be evaluated from equations (6) and (5) respectively to yield

quantitative predictions. Equation (2c) gives a quadratic equation

with two roots d2=d1~(t ’=2r ’)(1{j)+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t ’=2r ’ð Þ2 1{jð Þ2z(r=r ’)j

q
;

for rods with mirror symmetry in x direction, we have j51 and r5r9,

and these two roots correspond to modes whose Ez are even (d15 d2)

or odd (d152d2) in x direction.

For quantitative validation of these predictions, we consider some

explicit examples. First, we consider a simplifying example where the

PhC is replaced with a perfect-metal boundary at distance l from the

surface rods (Figure 3a inset). In this system, the phase shift at the

reflection boundary is simply p, making evaluation of the coupled-mode

theory equations easy. This perfect-metal boundary also makes the

eigenmodes of this structure equivalent to the asymmetric eigenmodes

of a double-column structure (with separation 2l), which has been

studied in Ref. 27 with a Fabry–Pérot transmission analysis. Figure 3a

shows the band structure for separation l51.6a. The quality factor Q(ky)

of the second band inside the light cone is computed from FDTD

simulations and shown in circles in Figure 3b; two infinite-lifetime states

corresponding to n50 and n51 in equation (5) are observed. Since

y52kxl2p, we expect that qualitatively the surface-normal wavevector
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Figure 3 Comparison between FDTD simulations and temporal coupled-mode

theory predictions, for a simplified structure where the photonic crystal is

replaced with a perfect-metal boundary. Left: data for one column of cylindrical

rods with e54.9. (a) Band structure for TM modes with l51.6a. Shaded region is

the light cone, states that do not couple to radiation are shown in blue, and states

that do are shown in red. The embedded eigenstates are indicated with blue

crosses, labeled with the integer n in equation (5). (b) Quality factor Q for leaky

modes along the red line in a. Circles are from FDTD simulations, and the red solid

line is the prediction from equation (6). The green dashed line shows Q for the

same structure without a mirror. (c) Relation between the surface-normal wave-

vector kx of the embedded eigenstates and the rod-to-mirror distance l. Circles

are from FDTD simulations, and lines are predictions from equation (5). Right:

(d)–(f) show the same plots as in the left column, but with asymmetric rods as

shown in the inset. FDTD, finite-difference time-domain.
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kx of the infinite-Q states should be inversely proportional to the sepa-

ration l, which is confirmed in Figure 3c. We also expect that at larger

separation, there will be more embedded eigenstates that correspond to

phase shifts differing by 2np; this is indeed observed in the numerical

simulations.

For comparison, we evaluate predictions from equations (5) and

(6). We approximate the direct scattering matrix C as the TM scatter-

ing matrix of a uniform slab with thickness equal to the rod diameter

and the dielectric constant equal to a spatial average of the structure.

The natural frequency v0 and lifetime t0 of the localized mode are

calculated from FDTD with only the rods (no mirror). Without the

mirror, Ez profile of the band of interest is even in x, so we choose the

d15d2 root. Predictions of equations (5) and (6) are plotted in

Figure 3c and 3b, respectively as solid lines. Quantitative agreement

between FDTD and the model is observed.

When the separation l is smaller than the rod diameter, we observe

some discrepancy between the FDTD results and the model predic-

tions. This is expected, because when the mirror is less than half a

wavelength away from the rods, it starts to distort symmetry of the

resonance on the rods, and the assumption d15d2 above is no longer

valid. But we note that breaking sx symmetry of the resonance does

not suppress the infinite-lifetime state, which is consistent with our

coupled-mode theory explanations.

The temporal coupled-mode theory analysis applies to localized

modes in arbitrary geometries. To illustrate this point, we consider

one more example, where the rods consist of a flat edge and a circular

edge, as shown in the inset of Figure 3d. Data for this geometry are

shown in Figure 3d–3f. We see that the same features of infinite life-

time occur, demonstrating that the described embedded eigenstates

are not sensitive to geometry. Again we evaluate equations (5) and (6)

to compare with FDTD, with the only difference being that the decay

ratio j is no longer unity because the left–right symmetry is broken.

The same approximation for the direct scattering matrix C is used,

although in this case, there is a small region where no solution of d1

and d2 exists; this is the discontinuity in the red curve of Figure 3f.

Again, we observe very good agreement between temporal coupled-

mode theory and FDTD.

Lastly, we comment that when reflection on the boundary is not

perfect, the lifetime will no longer be infinite but can still be very large.

For the structure in Figure 1b with only four periods of small rods in x

direction, the finite-sized PhC will allow some light in the bandgap to

pass through (intensity reflectance R50.9998 for the four-period PhC

at the wavelength and angle of interest), yet the peak of Q still reaches

63106. For the structure in Figure 3a and 3b with a plain silver mirror

(material ohmic losses included, with complex refractive index from

Ref. 49) and assuming periodicity a5300 nm, the first peak of Q (where

the mirror has R50.996) still reaches 23104, which is 300-times

enhancement compared to the no-mirror case. For the second peak,

the mirror has larger reflectivity R50.999 because it is near grazing

incidence, and the peak of Q reaches 73104 (1300-times enhancement).

CONCLUSIONS

To summarize, we have demonstrated that surface-localized Bloch

eigenstates can exist inside the radiation continuum, without using

the symmetry-separability of the spectrum. This is a new class of

surface modes, and it can be interpreted as the von Neumann-

Wigner states realized in a simple photonic system. Infinite lifetime

is achieved by complete cancellation between the two leakage chan-

nels, and four ingredients enable this cancellation: (i) periodicity; (ii)

time-reversal invariance; (iii) twofold rotational symmetry; and (iv) a

perfectly reflecting boundary. These states may be excited for example

through near-field coupling either with a prism or with a gain medium

in direct contact with the surface. The narrow width of the high-Q

state indicates that it may be useful in the design of narrow-band

waveguiding structures and single-mode lasers.50,51 As compared to

high-Q Fano states at the C point,17–21,23 this state offers two unique

advantages: (i) the angle at which it occurs is tunable; and (ii) the

radiative Q of this state can be tuned to arbitrary values by using a

non-perfect reflector or by weakly breaking one of the symmetry

requirements. The enhanced lifetime, large surface area and strong

localization of these surface states also suggest that they may find

use in fluorescence enhancement,52 spectroscopy,53 sensing54 and

other applications where strong light–matter interaction is desired.

The analysis we perform here with temporal coupled-mode theory

treatment is general, and we believe that states similar to those

reported in this paper may also be observed in more systems, possibly

beyond optics.
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15 Krüger H. On the existence of embedded eigenvalues. J Math Anal Appl 2012; 395:
776.

16 Zhang JM, Braak D, Kollar M. Bound states in the continuum realized in the one-
dimensional two-particle Hubbard model with an impurity. Phys Rev Lett 2012;
109: 116405.

17 Paddon P, Young JF. Two-dimensional vector-coupled-mode theory for textured planar
waveguides. Phys Rev B 2000; 61: 2090–2101.

18 Pacradouni V, Mandeville WJ, Cowan AR, Paddon P, Young JF et al. Photonic band
structure of dielectric membranes periodically textured in two dimensions. Phys Rev B
2000; 62: 4204–4207.

19 Ochiai T, Sakoda K. Dispersion relation and optical transmittance of a hexagonal
photonic crystal slab. Phys Rev B 2001; 63: 125107.

Bloch surface eigenstates in continuum
CW Hsu et al

5

doi:10.1038/lsa.2013.40 Light: Science & Applications



20 Fan S, Joannopoulos JD. Analysis of guided resonances in photonic crystal slabs. Phys
Rev B 2002; 65: 235112.

21 Shipman SP, Venakides S. Resonant transmission near nonrobust periodic slab
modes. Phys Rev E 2005; 71: 026611.

22 Plotnik Y, Peleg O, Dreisow F, Heinrich M, Nolte S et al. Experimental observation of
optical bound states in the continuum. Phys Rev Lett 2011; 107: 183901.

23 Lee J, Zhen B, Chua S, Qiu W, Joannopoulos JD et al. Observation and differentiation
of unique high-Q optical resonances near zero wave vector in macroscopic photonic
crystal slabs. Phys Rev Lett 2012; 109: 067401.
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