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Abstract

This paper quantifies how variation in real economic activity and inflation
in the U.S. influenced the market prices of level, slope, and curvature risks in
U.S. Treasury markets. To accomplish this we develop a novel arbitrage-free
DTSM in which macroeconomic risks– in particular, real output and inflation
risks– impact bond investment decisions separately from information about
the shape of the yield curve. Estimates of our preferred macro-DTSM over
the twenty-three year period from 1985 through 2007 reveal that unspanned
macro risks explained a substantial proportion of the variation in forward terms
premiums. Unspanned macro risks accounted for nearly 90% of the conditional
variation in short-dated forward term premiums, with unspanned real economic
growth being the key driving factor. Over horizons beyond three years, these
effects were entirely attributable to unspanned inflation. Using our model, we
also reassess some of Chairman Bernanke’s remarks on the interplay between
term premiums, the shape of the yield curve, and macroeconomic activity.
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1 Introduction

The cross-correlations of bond yields are well described by a low-dimensional factor
model in the sense that the first three principal components (PCs) of bond yields
– “level,” “slope,” and “curvature” – explain well over 95% of their variation (e.g.,
Litterman and Scheinkman (1991)). Very similar three-factor representations emerge
from arbitrage-free, dynamic term structure models (DTSMs), at least for a wide
range of maturities.1 Yet in spite of the central role of level, slope, and curvature
factors in both dynamic modeling and investment strategy, little is known about how
macroeconomic shocks affect the market prices of these risks.

This paper quantifies how variation in real economic activity and inflation in the
U.S. influenced the market prices of level, slope, and curvature risks in U.S. Treasury
markets over period from 1985 through 2007. To accomplish this we develop a novel
arbitrage-free DTSM in which macroeconomic risks– in particular, real output and
inflation risks– impact bond investment decisions separately from information about
the shape of the yield curve. This is consistent with the descriptive evidence in
Cooper and Priestley (2008) and Ludvigson and Ng (2009) that the state of the
macroeconomy has predictive content for excess returns over and above the PCs
of bond yields.2 By accommodating macro risks that are theoretically unspanned
by model-implied bond yields we also allow for the possibility that macro risks are
distinct priced risks from yield-curve risks. This feature of our model cannot be
replicated by DTSMs with macro variables that are unambiguously reflected in the
yield curve (enter directly as risk factors), as such formulations imply that the macro
factors are spanned by the model-implied PCs of bond yields.3

We find that unspanned macro risks explain a substantial proportion of the
variation in forward terms premiums in U.S. Treasury markets. The effects are largest
for forward loans initiated in the near future and they decline monotonically with the
inception date of a loan out to about three years. Unspanned macro risks account for

1See, for instance, Dai and Singleton (2000) and Duffee (2002). Dai and Singleton (2002) and
Piazzesi (2005) find that the addition of a fourth factor helps in capturing variation at the very
short end of the yield curve owing (in part) to institutional features of the money markets. Our
subsequent analysis is easily extended to accommodate a wider span of maturities and additional
priced yield-curve risks.

2Complementary supporting evidence comes from DTSMs fit to yields alone where it has been
found that the fourth and fifth PCs of bond yields forecast excess returns, but they contribute
little to explaining the cross-sectional distribution of yields (e.g., Cochrane and Piazzesi (2005) and
Duffee (2009a)). These higher-order PCs are correlated with macro information.

3Studies that enforce theoretical spanning include Ang and Piazzesi (2003), Ang, Dong, and
Piazzesi (2007), Rudebusch and Wu (2008), Ravenna and Seppala (2007a), Smith and Taylor (2009),
Bikbov and Chernov (2010), and Chernov and Mueller (2009).
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nearly 90% of the conditional variation in short-dated forward term premiums and
this effect asymptotes to about 20% for three-year horizons and beyond. Unspanned
real economic growth is the key factor at short horizons while these effects are entirely
attributable to unspanned inflation over horizons longer than three years. Using
our model, we also reassess some of Chairman Bernanke’s remarks on the interplay
between term premiums, the shape of the yield curve, and macroeconomic activity.

Forward term premiums were large during the depths of recessions, consistent with
a counter-cyclical pattern. But during much of the 1990’s forward term premiums
were procyclical with economic growth. In addition, the precipitous decline in long-
dated forward term premiums during the period of Greenspan’s conundrum is largely
explained by economic forces that were orthogonal to our measures of economic
growth and inflation, raising the possibility that economic mechanisms other than
those captured in standard neo-Keynesian models of bond yields were important
determinants of risk premiums in Treasury markets. Finally, shocks to long-dated
forward term premiums affect real economic growth virtually entirely through their
effects on its unspanned component. All of these results on unspanned macro risks
and risk premiums are absent (by construction) from extant models that enforce
theoretical spanning of Mt by bond yields.

Like the large empirical literature on DTSMs that precedes us, in implementing
our model, we face the practical problem of having a large number of free parameters.
To achieve parsimony researchers have arbitrarily set some parameters to zero or
set those parameters to zero that have insignificant individual t-statistics based on
a first-round analysis of a more flexible DTSM .4 We propose a more systematic
approach that uses likelihood-based model selection criteria to search over 219 models
for the “best” parsimonious parameterization of the risk premiums on exposures to the
level, slope, and curvature risks. By design, our model selection exercise also addresses
the near-cointegration of bond yields and macro factors, and the well-documented
small-sample bias in estimated risk premiums in unconstrained Markov models.

While the literature on DTSMs is vast, we are unaware of any prior research
that explores the relationship between unspanned macro shocks and risk premiums
in bond markets within arbitrage-free pricing models. Independently, Duffee (2009a)
proposes a latent factor (yields-only) model for accommodating unspanned risks in
bond markets. However he does not explore the econometric identification of such
a model, nor does he empirically implement a DTSM with unspanned risks. We

4The first strategy is prevalent in the literature on macro-DTSMs, because of the large numbers
of parameters governing market prices of risk and the Q distribution of the pricing factors in
high-dimensional factor models; see, for example, Ang, Dong, and Piazzesi (2007). Dai and Singleton
(2000) and Bikbov and Chernov (2010) are examples of papers that follow the second strategy.
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formally derive a canonical form for Gaussian DTSMs with unspanned information
that affects expected excess returns, and provide a convenient normalization that
ensures econometric identification. Moreover, as we illustrate, the global optimum
of the associated likelihood function is achieved extremely quickly. Wright (2009)
and Barillas (2010) use our framework to explore the effects of inflation uncertainty
on bond market risk premiums using international data, and optimal bond portfolio
choice in the presence of macro-dependent market prices of risk, respectively.

2 A Canonical Gaussian Macro-DTSM with Un-

spanned Macro Risks

Figure 1 plots the zero-coupon yield curves at the end of February, 1988 and February,
1991 (see Section 2.3 for details on our data.) Although the yield curves are similar,
these dates represent distinctly different stages of the business cycle. February 1988
marked a period of high growth (in the top 10% of our sample based on our measure
of economic growth), while February, 1991 marked a period of very low growth (the
second lowest growth during our sample). The differences between the corresponding,
one-year ahead realizations of the yield curves (lines with markers) seem large if in
fact agents base forecasts solely on information about the current shape of the yield
curve. On the other hand, if the state of the macroeconomy incrementally drives
premiums that investors demand for bearing yield-curve risks, then large opposing
changes from the current curve become more plausible. Indeed, the directions of the
changes in Figure 1 are consistent with a model in which the level of the yield curve
rises and the slope falls when real economic growth is high, and vice-versa when it is
low. With these observations in mind, we proceed to develop a macro-DTSM that
attempts to capture these effects of macro information on risk premiums in bond
markets over and above the PCs of bond yields.

Consider a standard (discrete-time) R-factor Gaussian DTSM in which the
R-dimensional vector of pricing factors Pt and the short-rate rt satisfy:

ArQ : rt = ρ0 + ρP · Pt, for scalar ρ0 and R-vector ρP ; and

APQ : there is a pricing measure Q under which Pt follows the process

Pt = KQ
0P +KQ

PPPt−1 +
√

ΣPPε
Q
Pt, (1)

where εQPt ∼ N(0, IR), the price of a τ -period zero coupon bond isEQ
t [e−

∑τ−1
s=0 rt+s ],

and for any price process, Pt, {e−
∑t−1
s=0 rt+sPt} is a Q-martingale.
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Figure 1: Yield Curves at the end of February, 1988 and February, 1991. The lines
with markers show the corresponding yields curves one-year ahead.

Assumptions ArQ and APQ ensure affine pricing so yields on zero-coupon bonds are
affine functions of the pricing factors P as in Duffie and Kan (1996). The m-year
zero coupon yield takes the form

yt,m = Am +Bm · Pt, (2)

where (Am, Bm) satisfy well-known Riccati difference equations (see Appendix A for
a summary). We also suppose that Pt is chosen to be of minimal dimension to fully
explain the cross-section of bond yields.5

Together, ArQ and APQ give rise to a bond pricing model that subsumes most
of the extant R-factor, Gaussian DTSMs in the literature. Regardless of the mix of
latent, macroeconomic, or yield variables that enter the R-vector P of risk factors, the
model-implied bond yields (2) are identical. Put differently, the pricing implications
of canonical latent-factor DTSMs and macro-finance models in which macro variables
enter as pricing factors are equivalent. What typically differentiates these DTSMs
are the assumptions made about historical distribution of risks in the underlying
macroeconomy.

5We take up the issue of measurement errors on bond yields in Sections 2.2 and 2.3.
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Our interest is in how macro risk affects the risk premiums associated the changing
shape of the yield curve. Accordingly, following Joslin, Singleton, and Zhu (2010)
(hereafter JSZ), we rotate P so that it becomes the first R PCs of bond yields.6

Then, letting Mt denote the set of macro variables of interest, we assume that the
reduced-form of the N -vector Z ′t = (P ′t,M ′

t) implied by the macroeconomy is:

AZP : Under the historical distribution P, Zt follows the V AR[
Pt

Mt

]
=

[
KP

0P
KP

0M

]
+

[
KP
PP KP

PM
KP

MP KP
MM

] [
Pt−1
Mt−1

]
+
√

ΣZε
P
Zt, (3)

where εPZt ∼ N(0, IN), the N × N matrix ΣZ is nonsingular, and ΣPP is the
upper R×R block of ΣZ .

Underlying AZP is the presumption that there are at least N aggregate risks impinging
on bond yields, that these risks are reflected in the innovation vector εPZ , and that
the resulting (reduced-form) data-generating process for Zt is (3). Assumption AZP
allows for general feedback between Pt and Mt.

7 Additionally, it implies that Mt is
unspanned by Pt: knowledge of the shape the yield curve is not, by itself, sufficient to
describe the effects of the aggregate shocks embodied in Mt on bond risk premiums.8

Notationally, we let UMAR
0 (N) denote the family of Gaussian DTSMs with R

pricing factors and N −R unspanned macro conditioning variables, analogous to the
notation of Dai and Singleton (2000).

2.1 A Canonical Form for UMAR
0 (N)

Having constructed a macro-DTSM with unspanned macro risks, we now show that
our formulation is canonical in that all N -factor, Gaussian DTSMs with unspanned
macro risks are observationally equivalent to a DTSM with our proposed structure.

6An equivalent pricing model is obtained with Pt equal to any R linearly independent combinations
of yt. For instance, once could select R distinct zero-coupon yields.

7In this respect, (3) is very similar to the descriptive six-factor model studied by Diebold,
Rudebusch, and Aruoba (2006). As in their analysis,we emphasize the joint determination of the
macro and yield variables (potential two-way feedback). We add the structure of a no-arbitrage
pricing model so that it is possible to explore the properties of risk premiums in bond markets.

8More precisely, σ(Mit) ( σ(Bt ∪M (−i)
t ), where Bt be the information in fixed income security

prices and M
(−i)
t is the vector of macro variables excluding the ith variable Mit. Here we use the

notation σ(·) for a σ-field or information set. We define the information in fixed income prices at
time t to be the σ-field generated by the prices of the payoffs g(rt+t1 , rt+t2 , . . . , rt+tn); that is, by
{P (Zt) = EQ

t [g(rt+t1 , rt+t2 , . . . , rt+tn)] : g ∈ C0}.
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Moreover, there is a convenient, minimal set of normalizations for identification of
our model with unspanned macro risks that facilitates finding the global optimum to
the associated likelihood function.

Let yt denote the J-vector of bond yields (J > N) to be used in assessing the
fit of a macro-DTSM . The rotation that sets P to the first R PCs of these yields
has the property that the parameters governing (ρ0, ρP , K

Q
0P , K

Q
PP)– those governing

the pricing distribution for bond yields– are fully determined by the parameter set
(ΣPP , λ

Q, rQ∞), where λQ denotes the R-vector of ordered non-zero Q-eigenvalues of
KQ
PP ,9 and rQ∞ denotes the long-run mean of the short rate under Q. The matrix ΣPP

depends, of course, on the portfolio of yields comprising P. (λQ, rQ∞) are rotation-
invariant (that is, independent of the choice of pricing factors) and, hence, are
economically interpretable parameters. Appendix B gives the explicit construction of
(ρ0, ρP , K

Q
0P , K

Q
PP) from (ΣPP , λ

Q, rQ∞) for our choice of PCs as pricing factors.
The following proposition, proved in Appendix B, characterizes our canonical

form for the family UMAR
0 (N):10

Proposition 1 Every canonical model for the family UMAR
0 (N) is observationally

equivalent to the following canonical Gaussian macro-DTSM: the state vector is
Z ′t = (P ′t,M ′

t), where Pt are the first R principal components of yt; rt = ρ0 + ρP · Pt;
the P representation of Zt is given by (3); and the Q representation of P is given
by (1). Moreover, there is a unique mapping between the parameters governing
(ρ0, ρP , K

Q
0P , K

Q
PP) and the parameter set (ΣPP , λ

Q, rQ∞). Thus, the parameter vector
for the full model is (KP

0 , K
P
1 ,ΣZ , λ

Q, rQ∞).

2.2 What Do We Mean by Unspanned Macro Risks?

Both Pt and Mt subsume information about the primitive shocks impinging on the
macroeconomy. Under AZP, the residual OMt in the linear projection

Mt = γ0 + γ′1Pt +OMt (4)

is also informative about these shocks. That is, the unspanned OMt – the macro
risks that cannot be replicated by portfolios of yields yt or yield-PCs Pt– embodies
priced economic risks, so investors’ pricing kernel cannot be represented in terms of

9As in JSZ, we can accommodate repeated and complex eigenvalues. As they show, a minor
modification allows us to consider zero eigenvalues in the canonical form.

10This proposition is easily extended to the case where the first-order Markov specification in (3)
is relaxed to allow Zt to follow a higher-order V AR under P. As we will see, this extension is not
needed for our dataset and sample period.
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Pt alone. Therefore, OMt may materially affect risk premiums and it potentially has
predictive power for future bond yields.

In contrast, following Ang and Piazzesi (2003), the vast majority of reduced-form
macro-DTSMs adopt variants of the assumptions ArQ and APQ, include Mt in the
set of R risk factors, say PM

t . Then, in place of AZP, it is assumed that the R-vector
PM

t follows a Gaussian V AR under P. This formulation is observationally equivalent
to one in which the risk factors are Pt (the first R PCs of bond yields), Pt follows a
V AR under P, and Mt is spanned by model-implied bond yields:11

Mt = γ0 + γ′1Pt. (5)

Economic environments that maintain (5) have the property that all aggregate risk
impinging on the future shape of the yield curve can be fully summarized by the
yield PCs Pt. In particular, (5) implies that the past history of Mt is irrelevant
for forecasting both future M and y, once one has conditioned on Pt; and that the
premiums that bond investors demand for bearing output growth and inflation risks
(and any other factors in Mt) can be expressed as functions of Pt alone.

We stress that whether or not a macro-DTSM embodies the spanning property
(5) is wholly independent of the issue of errors in measuring either bond yields or
macro factors. As typically parameterized in the literature, measurement errors
are independent of economic agents’ decision problems and, hence, of the economic
mechanisms that determine bond prices.

Interestingly, the framework of Kim and Wright (2005), the model cited by
Chairman Bernanke when discussing the impact of the macro economy on bond
market risk premiums, breaks the perfect spanning condition (5) in a different way.
Kim and Wright assume that Mt is inflation, and they arrive at their version of (4)
by assuming that expected inflation is spanned by the pricing factors in the bond
market. They additionally assume that P follows an autonomous Gaussian process
under Q so their model and ours imply exactly the same bond prices. However, the
P-distribution of Zt implied by their assumptions is:[

Pt

Mt

]
=

[
KP

0P
γ0

]
+

[
KP
PP 0

γ′1K
P
PP 0

] [
Pt−1
Mt−1

]
+
√

ΣZ

[
εPPt
ηt

]
, (6)

where ηt = (νt + γ′1
√

ΣPPε
P
Pt). Thus, the Kim-Wright formulation leads to a con-

strained special case of (3) (Assumption AZP) under which the history of Mt has no

11See Joslin, Le, and Singleton (2010) for a proof of this equivalence. It holds unless there exists
eigenvector of KQ

1P which is orthogonal to ρ1 but not orthogonal to the column span of γ1 (Joslin
(2006)), which violates our assumption the Pt is minimal. Also, though we focus on first-order
Markov processes under both P and Q, an analogous spanning condition holds in extant models
that allow for higher-order lags in the V AR representations of the risk factors.
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forecasting power for futures values of M or P , once one conditions on the history of
P . As we will see, the zero restrictions in (6) are strongly rejected in our data.

2.3 How Large Are Unspanned Macro Risks?

Some insight into the relative empirical plausibility of the relationships (4) and (5)
comes from linear projections of observed values of the candidate macro factors M o

t

onto the PCs of observed bond yields, Po
t . The results will depend on the choice of

Mt and the presumed number of pricing factors (dim(Pt) = R).
For our subsequent empirical analysis we include measures of real economic activity

(GRO) and inflation (INF ) in Mt. INF is measured as the first PC of the monthly
log difference of seasonally adjusted CPI (all items) and the personal consumption
deflator.12 This choice reflects the emphasis given to these aggregate price indices by
the Federal Reserve in setting monetary policy. GRO is measured by the Chicago
Fed National Activity Index, a measure of current real economic conditions.13 We
make the parsimonious choice of M ′

t = (GROt, INFt) to encompass the two macro
risks– measures of real economic growth and of inflation– that have received the most
attention in prior studies. Ang et al. (2006) and Jardet, Monfort, and Pegoraro (2010)
focus on models with R = 3 with output growth being the sole macro risk. Similarly,
Kim and Wright (2005) explore DTSMs with R = 3 and expected inflation being
the sole macro risk. Bikbov and Chernov (2010) and Chernov and Mueller (2009)
examine models with R = 4 and with both output and inflation as macro risks. All
of these prior studies enforce versions of the spanning condition (5).

Following the literature, we tie the choice of R to the cross-sectional factor
structure of yields on bonds over the range of maturities being studied. Our sample
extends from January, 1985 through December, 2007. There is substantial evidence
that the Federal Reserve changed its policy rule during the early 1980’s, following

12Price level indices evidence large transitory shocks, one source of which may be measurement
error. To filter out this noise, we construct an exponentially decaying weighted average of past
inflation, in the spirit of a hidden components model whereby true inflation follows an AR(1) process
and observed inflation is equal to true inflation plus an i.i.d. measurement error. Wachter (2006)
and Kim (2008) apply similar filters.

13 The Chicago Federal Reserve constructs the CFNAI from economic indicators from the categories:
production and income (23 series), employment and hours (24 series), personal consumption and
housing (15 series), and sales, orders, and inventories (23 series). The data is inflation adjusted.
The methodology used is similar to that used by Stock and Watson (1999) to construct their index
of real economic acvitivity, and it is also related to the PCs of economic activity used by Ludvigson
and Ng (2009) to forecast excess returns in bond markets. We also set GRO to an exponentially
weighted average of past values of the CFNAI, in the spirit of the Chicago Fed’s use of three-month
moving averages of CFNAI when assessing the state of real economic activity.
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Figure 2: Term Structure and Macro Variables This figure plots the time series
of (PC1, PC2, PC3) of US Treasury-implied zero yields and smoothed GRO and
INF . The vertical bars mark NBER recessions.

a significant policy experiment (Clarida, Gali, and Gertler (2000), Taylor (1999),
and Woodford (2003)). Our starting date is well after the implementation of new
operating procedures, and covers the Greenspan and early Bernanke regimes. The
U.S. Treasury nominal zero-coupon bond yields comprising yt have maturities six
months and one through five, seven, and ten years (J = 8).14 Over 99% of the
variation in these bond yields is explained by their first three PCs, so we set R = 3
and (invoking Proposition 1) normalize Pt to be the first three PCs of bond yields.
The components of the state Z ′t = (P ′t, GROt, INFt) are displayed in Figure 2.15

14The zero curves for U.S. Treasury series were provided to us by Anh Lee of the University of
North Carolina. He constructed these zero curves using the same bond selection criteria as in the
Fama-Bliss data used in many previous studies. Importantly, we are using a consistent series out to
ten years to maturity and throughout our sample period.

15Letting `j,i denote the loading on yield i in the construction of PCj, the PCs have been rescaled

so that (1)
∑8

i=1 `1,i/8 = 1, (2) `2,10y − `2,6m = 1, and (3) `3,10y − 2`3,2y + `3,6m = 1. This puts all
the PCs on similar scales. We then convert INF and GRO to an annual scale. Now all variables
take on values in [−5%, 10%].
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For our data and sample period, the projection of GRO onto the first three PCs
of yields gives an (adjusted) R2 of 16%. Thus over 80% of the variation in GRO arises
from risks distinct from (PC1, PC2, PC3). Adding PC4 and PC5 as regressors only
raises the R2 for GRO to 34%. The comparable R2s for INF are 55% (PC1− PC3)
and 57% (PC1− PC5). Additionally, when projecting changes in GRO and INF
onto changes in (PC1−PC5) the R2s are even smaller at 2.8% and 4.8%, respectively.
We are confident that any errors in measuring bond prices are inconsequential for
these projections, since the fitted PCs are virtually identical whether one assumes
that these PCs are priced perfectly or are measured with errors within our DTSMs.
We follow the extant literature on macro-DTSMs and assume that Mt = M o

t , but
even if one acknowledges some error in measuring Mt it does not seem plausible that
such errors could explain the very low R2 for say GRO.

Equally importantly, not only is OMt large, but it has considerable predictive
power for excess returns, over and above Pt. For instance, for one-year holding
period returns on two-year Treasury bonds in our data, the adjusted R2 from the
projection of excess returns onto Pt was 0.22, while onto {Pt, GROt, INFt} it was
0.49. Consistent with this evidence, our canonical macro-DTSM accommodates large
unspanned components of GRO and INF that embody economically meaningful
risks that impact expected excess returns on bonds separately from the yield PCs.

2.4 What Do Macro-DTSMs Reveal About the Relationship
Between Unspanned-Macro and Yield-Curve Risks?

The no-arbitrage structure of a canonical macro-DTSM reveals the market prices of
the yield-curve risks Pt and their dependence on both spanned and unspanned macro
risks, and allows maximum likelihood (ML) estimation of the parameters governing
the Q distribution of Pt. The P distribution of (Pt,Mt), on the other hand, can be
studied within the structure of a macro-DTSM or using an unconstrained V AR. Of
interest then is whether a macro-DTSM can shed new light on the effects of OMt on
risk premiums, beyond what is learned from a V AR. To help motivate our subsequent
empirical analysis, this section briefly addresses these issues.

We start from the premise that the pricing kernel for the payoff space of all
portfolios of zero-coupon bonds with weights that lie in the information set generated
by {Zt} is fully characterized by the canonical form of Proposition 1.16 The market
price of the Pt risks is constructed from the drift µP

P(Zt) of Pt under P (obtained

16That a pricing kernel exists for this payoff space under value additivity and other standard
regularity conditions is established in Hansen and Richard (1987).
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from (3)) and the drift µQ
P(Pt) of Pt under Q (obtained from (1)) as follows:

ΛP(Zt) = Σ
−1/2
PP

(
µP
P(Zt)− µQ

P(Pt)
)
. (7)

Using (7) we will quantitatively explore the effects of shocks to unspanned macro
risks on expected excess returns and term premiums. Additionally, the market prices
of the spanned macro risks are also identified in our model as they are computable
linear combinations of the the market prices of the PC risks, ΛP(Zt).

On the other hand, the market prices of the total– spanned plus unspanned– macro
risks are not econometrically identified, because nominal bond prices are not sensitive
to the risk premiums that investors demand for bearing the unspanned macro risks.17

This is a generic feature of all reduced-form macro-DTSMs constructed to price
nominal zero-coupon bonds.

Thus, what we potentially gain from the construction and estimation of models
in UMAR

0 (N) are quantitative assessments of the effects of unspanned macro risks on
ΛP(Zt), and more reliable empirical characterizations of the market prices of spanned
macro risks. To the extent that unspanned macro risks are quantitatively important,
models that assume that Mt can be replicated by a linear combination of Pt have
misspecified both the market prices of spanned and unspanned macro risks.

Our macro-DTSM with pricing factors P (N = 3) and state Z ′t = (P ′t,M ′
t)

(N = 5) is nested within a canonical macro-DTSM in which the pricing factors are
the state Zt (N = R = 5). We do not explore this five-factor pricing model, because
including Mt as pricing factors implies that Mt is spanned by the first five PCs of
bond yields. We have already seen that this spanning condition is not supported by
our data. Moreover, we know from JSZ and Duffee (2009b) that over-specifying the
dimension of P is not innocuous. They found that estimated five-factor yield-only
models of Treasury yields imply wholly implausible Sharpe ratios for certain portfolios
of bonds. Estimation of a macro-DTSM with Zt as pricing factors (R = 5) would
likely lead to similarly unreliable assessments of bond portfolio risk.18

Finally, can a macro-DTSM yield insights about the P distribution of Zt that
cannot otherwise be discerned from studying a V AR model for Zt? The answer is

17The market prices of unspanned inflation risk are potentially identified from TIPS yields, as
in D’Amico, Kim, and Wei (2008) and Campbell, Sunderam, and Viceira (2009). However, the
introduction of TIPS raises new issues related to illiquidity and data availability, so we follow most
of the extant literature and focus on bond yields alone.

18Recall that a macro-DTSM with pricing factors Zt is observationally equivalent to one with
the first five PCs as pricing factors and the spanning condition (5) enforced. Why the small-sample
ML estimates of DTSMs with over-parameterized pricing distributions (extraneous pricing factors)
give unreliable assessments of the risks of bond portfolios is an interesting question that we hope to
take up in future research.
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revealed by the form of the likelihood function for our canonical model. In specifying
our model we adopt a first-order P− V AR model for Z ′t = (P ′t,M ′

t), because all three
of the Akaike (1973) (AIC), Hannan and Quinn (1979) (HQIC), and Schwarz (1978)
Bayesian information (SBIC) criteria point to a first-order process among V ARs with
one through twelve lags (to capture possible seasonal and annual effects).19 Suppose,
in addition, that Zt is measured without error and that PCe′ ≡ (PC4, PC5, . . . , PC8)
is priced with i.i.d. N(0,Σe) errors. Then the conditional density of (Zt, PC

e
t ) is:

`(Zt, PC
e
t |Zt−1; Θ) = `(PCe

t |Zt, Zt−1; Θ)× `(Zt|Zt−1; Θ)

= `(PCe
t |Zt, Zt−1;λ

Q, rQ∞, LZ , Le)× `(Zt|Zt−1;K
P
Z , K

P
0 , LZ), (8)

where LZ and Le are the Cholesky factorizations of ΣZ and Σe, respectively.
Absent any restrictions on Θ, the conditional density `(Zt|Zt−1; Θ) depends on

(KP
0 , K

P
Z , LZ), but not on (λQ, rQ∞); whereas the density of PCe

t depends only on
the risk-neutral parameters and Σe. This separation of the parameter space implies,
analogously to the results in JSZ, that ML estimates of the conditional mean (optimal
forecasts) of Zt are identical to those obtained from an unconstrained factor-V AR.20

Furthermore, based on the analysis in Joslin, Le, and Singleton (2010), ML estimates
of the entire P distribution of Zt are likely to be nearly invariant to the imposition of
no-arbitrage restrictions within any canonical model for the family UMAR

0 (N).
What breaks this irrelevance of no-arbitrage restrictions in our subsequent empiri-

cal work are the restrictions across the P and Q distributions of Zt that we are led to
impose by our comprehensive model-selection exercise. Specifically, as we next explain,
the likelihood criterion exploits the precision with which the cross-sectional distribu-
tion of bond yields pins down the parameters of the pricing distribution of Zt to gain
precision in estimating its historical distribution. The resulting macro-DTSM gives
a different and, we believe, more reliable characterization of the risk characteristics
of bond portfolios than what is implied by an unconstrained factor-V AR.

19Our order-selection results are compatible with the higher-order V ARs adopted by Ang, Dong,
and Piazzesi (2007) and Jardet, Monfort, and Pegoraro (2010) for their macro-DTSMs with spanned
macro factors. They assume that N = R = 3 and, thus, their state vector omits one or more yield
PCs or macro variables relative to our Zt.

20More precisely, the unconstrained factor-V AR that is the natural alternative to macro-DTSM
has the state Zt following the Gaussian V AR of assumption AZP and the PCs of bond yields
satisfying the observation equation

Pe
t = G+HPt + et, et ∼ N(0,Σe),

for conformable matrices G and H.
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3 Model Selection and Risk Premium Accounting

Our canonical model for UMAR
0 (N) has forty-five parameters governing the P distribu-

tion of Z (those comprising KP
0 , KP

Z , and LZ). There are four additional parameters
governing the Q distribution of Z (rQ∞ and λQ). Faced with such a large number
of free parameters, standard practice has been to estimate a maximally flexible
DTSM , set to zero many of the parameters in (KP

0 , K
P
Z) and (KQ

0P , K
Q
PP) that are

statistically insignificant at a conventional significance level, and then to analyze the
constrained model. The approach to model selection taken in our analysis is both
more focused and more systematic in that we use formal model selection criteria to
pick our preferred parsimonious model of risk premiums.

In comparing models we assume that the first three PCs of yields are priced
perfectly by our DTSM . This, or an analogous assumption for individual yields,
is common in the literature (e.g., Dai and Singleton (2000) and Collin-Dufresne,
Goldstein, and Jones (2008)). Others (e.g., Ang, Dong, and Piazzesi (2007), Duffee
(2009a)) have assumed instead that all of the yield PCs are measured with errors.
For unconstrained versions of our canonical macro-DTSM we found that virtually
all of the quantitative properties of our estimated models were robust to inclusion of
measurement errors on the PCs.21 For this reason, and to reduce the computational
burden of model selection, we henceforth focus on the model in which the observed
and model-implied Pt coincide.

3.1 Constraining the Market Prices of PC Risks

The scaled market prices of P risk, Σ
1/2
PPΛP(Zt), depend on the fifteen parameters

of the matrix K ≡ (KP
PZ − [KQ

PP 03×2]) governing state-dependence, where KP
PZ is

the first three rows of KP
Z , and the three intercept terms. We address two distinct

aspects of model specification with our selection exercise. First, we seek the best set
of zero restrictions on these eighteen parameters governing Σ

1/2
PPΛP(Zt), where we

trade off fit against the costs of over-parameterization. Our selection strategy is not
implementable outside of a DTSM as both KP

Z and KQ
Z must be estimable.

We show in Appendix C that, to a first-order approximation, our constraints
on K can be interpreted directly as constraints on the expected excess returns to
pure exposures to the P risks. That is, the constraints on the first row of K can
be interpreted as constraints on excess returns on the portfolio whose value changes

21Similarly, JSZ and Joslin, Le, and Singleton (2010) find that adding measurement errors on the
PC-based pricing factors has negligible effects on the goodness-of-fit of Gaussian yield-only DTSMs
and macro-DTSMs with spanned macro risks, respectively.
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(locally) one-to-one with changes in PC1, but whose value is unresponsive to changes
in PC2 or PC3. Similar interpretations apply to the second and third rows of K
for PC2 and PC3, respectively. By examining the behavior of the expected excess
returns on these PC-mimicking portfolios, xPCjt (j = 1, 2, 3), we gain a new and
informative perspective on the nature of priced risks in Treasury markets. This
economic interpretation of the parameter constraints highlights a benefit of our
canonical form; no such model-free interpretation is possible for similar constraints in
a latent factor model. Moreover, by considering constraints on K rather that ΛP , the
interpretation of our constraints does not rest on an arbitrary factorization of the
innovation covariance matrix.

Second, in applying these selection criteria we are mindful of the near unit-root
behavior of P under both P and Q. There is substantial evidence that bond yields
are nearly cointegrated (e.g., Giese (2008), Jardet, Monfort, and Pegoraro (2010)).
We also find that PC1, PC2, and INF exhibit behavior consistent with a near
cointegrating relationship, whereas PC3 and GRO appear stationary. We do not
believe that (PC1, PC2, INF ) literally embody unit-root components. At the same
time it is desirable to enforce a high degree of persistence under P, since ML estimators
of drift parameters are known to be biased in small samples. This bias tends to be
proportionately larger the closer a process is to a unit root process (Phillips and Yu
(2005), Tang and Chen (2009)).

Moreover, when KP
Z is estimated from a V AR, its largest eigenvalue tends to be

sufficiently below unity to imply that expected future interest rates out ten years or
longer are virtually constant (see below). This is inconsistent with surveys on interest
rate forecasts (Kim and Orphanides (2005)),22 and leads to the attribution of too
much of the variation in forward rates to variation in risk premiums.

To address this persistence bias we exploit two robust features of DTSMs: the
largest eigenvalue of KQ

PP tends to be close to unity, and the cross-section of bond
yields precisely identifies the parameters of the Q distribution (in our case, rQ and λQ).
Any zero restrictions in K called for by our model selection criteria effectively pull
KP

Z closer to KQ
PP , so the former may inherit more of the high degree of persistence

inherent in the latter matrix. In addition, we call upon our model selection criteria
to evaluate whether setting the largest eigenvalues of the feedback matrices KP

Z

and KQ
PP equal to each other improves the fit of our macro-DTSM . Through both

channels we are effectively examining whether the high degree of precision with which
the cross-section of yields pins down λQ is reliably informative about the degree
of persistence in the data-generating process for Zt. Again, this exploration is not

22Similar considerations motivated Cochrane and Piazzesi (2008), among others, to enforce even
more persistent unit-root behavior under P in their models.
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possible absent the structure of a DTSM .

3.2 Selecting Among 219 Parameterizations

Since there are eighteen free parameters governing Σ
1/2
PPΛP(Zt), there are 218 possible

configurations of DTSMs with some of risk-premium parameters set to zero. We
examine each of these models with and without the eigenvalue constraint across KP

Z

and KQ
PP , so a total of 219 specifications. Though 219 is large, the rapid convergence to

the global optimum of the likelihood function obtained using our normalization scheme
makes it feasible to undertake this search using formal model selection criteria. For
each of the 219 specifications examined, we compute full-information ML estimates of
the parameters and then evaluate the AIC, HQIC, and SBIC information criteria.23

The criteria HQIC and SBIC are consistent (i.e., asymptotically they select the correct
configuration of zero restrictions on K), while the AIC criterion may asymptotically
over fit (have too few zero restrictions) with positive probability.24

The resulting frontiers of maximal values of the log-likelihood function achieved for
each choice of the number of zero restrictions on K, with and without the eigenvalue
(“EV”) restriction imposed, are displayed in Figure 3. The tangent points of the
HQIC criterion is at twelve restrictions: eleven zero restrictions on K and the EV
constraint. SBIC calls for exactly the same set of restrictions as the HQIC criterion
plus a zero on the loading for PC2 in the market price of PC1 (level) risk, though
the values of SBIC for the cases of twelve and thirteen restrictions are very close.
Notably, the consistent HQIC and SBIC criteria call for enforcing near-cointegration
through the EV constraint. The AIC criterion’s selection of a much less parsimonious
model, including relaxation of the EV constraint, suggests that in our application it
is selecting too few restrictions. Indeed, when we apply the AIC criterion to select
among all 218 models with the EV constraint enforced, it selects the model with
precisely the same zero restrictions chosen by the HQIC criterion.

Based on these results, we proceed to investigate in more depth the macro-DTSM
that enforces the EV constraint along with the common set of eleven restrictions on
the market prices of the yield-curve risks.

23Bauer (2010) proposes a complementary approach to model selection based on the posterior
odds ratio from Bayesian analysis. Owing to the computational complexity of his approach, an
intermediate step is inserted to narrow down the set of models to be compared. Additionally, Bauer
considers a standard A0(3) DTSM , so there is no macro conditioning information used in estimation
or in specifying his market prices of risks, and he does not address near-cointegration.

24These properties apply both when the true process is stationary and when it contains unit roots,
as is discussed in Lutkepohl (2005), especially Propositions 4.2 and 8.1.
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Figure 3: Frontiers of values of the log-likelihood function over 219 specifications of
our macro-DTSM , along with the tangency points for the AIC, HQIC, and SBIC
information criteria. “EV” refers to the eigenvalue constraint across KP

Z and KQ
PP .

3.3 Risk Premium Accounting: Model Comparison

To highlight the properties of the selected model we compare the properties of four
Gaussian DTSMs with (R = 3, N = 5): the unconstrained canonical model (CM);
model CM with the constraint EV that sets the largest eigenvalue of KP

Z equal to the
corresponding eigenvalue of KQ

PP (CME); model CM with the eleven zero restrictions
on K (CM0); and our preferred model that imposes both the EV and the eleven zero
restrictions on K (CM0

E).
Maximum likelihood estimates of the parameters governing the Q distribution of

Zt from model CM0
E are displayed in the first column of Table 1.25 The estimates for

the other three models are virtually indistinguishable from these estimates, typically
differing in the fourth decimal place. This says that the parameters of the Q
distribution are determined largely by the cross-sectional restrictions on bond yields,

25Throughout our analysis asymptotic standard errors are computed by numerical approximation
to the Hessian and using the delta method.
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Param CM0
E Param CM CM0 CME CM0

E

rQ∞ 0.0925 |λP1 | 0.9735 0.9904 0.9971 0.9970
(0.0058) (0.0113) (0.0081) (0.0005) (0.0005)

λQ1 0.9970 |λP2 | 0.9532 0.9525 0.9515 0.9514
(0.0005) (0.0170) (0.0107) (0.0185) (0.0107)

λQ2 0.9649 |λP3 | 0.9532 0.9525 0.9515 0.9514
(0.0026) (0.0170) (0.0107) (0.0185) (0.0107)

λQ3 0.8875 |λP4 | 0.9305 0.8803 0.9312 0.8808
(0.0119) (0.0329) (0.0146) (0.0342) (0.0143)

|λP5 | 0.7593 0.8803 0.7600 0.8808
(0.0409) (0.0146) (0.0410) (0.0143)

Table 1: ML estimates of the Q parameters for model CM0
E, and of the moduli of

the eigenvalues of KP
Z for models CM, CM0, CME, and CM0

E. Asymptotic standard
errors are given in parentheses.

and not by their time-series properties under the P distribution. Models CME and
CM0

E exploit this precision to restrict the degree of persistence of Zt under P.
There are two basic features of a DTSM that determine the P distribution of

bond yields: the model-implied loadings of the yields onto the pricing factors Pt in (2),
and the P distribution of Pt. The loadings are fully determined by the Q parameters
(rQ∞, λ

Q,ΣPP) (Appendix A). We have just seen that the parameters (rQ∞, λ
Q) are

nearly identical across models and, as it turns out, so are the ML estimates of ΣPP .
Consequently, the loadings (Am, Bm) are also (essentially) indistinguishable across
the four models examined.

Thus, any differences in the model-implied risk premiums must be attributable to
different estimates of the feedback matrix KP

Z . The eigenvalues of KP
Z are displayed

in the remaining columns Table 1.26 The largest P-eigenvalue in the canonical model
CM is smaller than in the constrained models. The relatively small value implies
that expected future short-term rates beyond ten years are (nearly) constant in model
CM. Equivalently, it implies, counterfactually, that virtually all of the variation in
long-dated forward rates arises from variation in risk premiums.

Comparison of model CM0 to models (CME, CM0
E) sheds light on how the model-

selection criteria use the relative precision in estimating KQ
PP to select constraints

26The fact that there are pairs of equal moduli in all three models means that there are complex
roots in KP

Z . The complex parts were small in absolute value.
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on KP
Z . Enforcing the eleven zero restrictions in model CM0 increases the largest

eigenvalue of KP
Z from 0.973 to 0.990, and thus closes most of the gap between models

CM and CM0
E. Not only does model CM0 lie on the optimal “Without EV” frontier

in Figure 3, it implies that Zt is sufficiently persistent under P for long-dated forecasts
of the short rate to display considerable time variation. A further increase in the
largest eigenvalue comes with the additional EV constraint in model CM0

E, as called
for by the criteria (HQIC, SBIC).

Estimates for models CME and CM0
E of the matrix K and the intercept vector

(KP
0P −K

Q
0P) governing one-month expected excess returns on PC risk exposures are

displayed in Table 2. Recall that the ordering of the variables in Zt, corresponding to
the columns in Table 2, is (PC1, PC2, PC3, GRO, INF ). Focusing first on model
CM0

E (Table 2b), we see that the first and second rows of K have (statistically
significant) non-zero entries, while the last row is chosen to be zero by our model
selection criteria, as are all three entries of (KP

0P −K
Q
0P). It follows that exposures to

PC1 and PC2 risks are priced, but exposure to PC3 risk is not priced, at the one
month horizon and during our sample period.27 The finding that both level and slope
risks are priced differs from Cochrane and Piazzesi (2008) (only level risk is priced),
but agrees with Duffee (2009b). Both of these analyses omit macro information which
we find assists in identifying the prices of these yield-curve risks.

Specifically, the expected excess returns xPC1t and xPC2t both depend in
statistically significant ways on PC1 and GRO. Expected excess returns on PC1
risk in model CM0

E are also influenced by PC2 (slope) and inflation. Note that the
effect of INF on xPC1 in model CM0

E is larger and more precisely estimated than
its counterpart in model CME.

The positive signs on GRO and INF imply that risk premiums on PC1 exposures
are pro-cyclical (positively correlated with GRO and INF ). This can be seen
graphically in Figure 4a for models CME and CM0

E, where the shaded areas represent
the NBER-designated recessions. Exposures to PC1 lose money when rates fall,
which is when investors holding long bond positions make money. This explains the
predominantly negative expected excess returns on the level-mimicking portfolio in
Figure 4a. There is broad agreement across these two models about the (annualized)
expected excess return on a level-mimicking portfolio, xPC1t. These excess returns
take on their largest (absolute) values during the 1990 and 2001 recessions.

27An alternative approach to analyzing risk premiums within a macro-DTSM would have been
to adapt the methods in JSZ to enforce the constraint that risk premiums lie in a two-dimensional
space. This approach would have let us proceed without taking a stand on which of the risks P are
priced. However, this two-dimensional restriction is a much weaker restriction on K than that of the
best model chosen by our selection criteria.
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(a) Excess Return on Level-Mimicking Portfolio
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(b) Excess Return on Slope-Mimicking Portfolio

Figure 4: Expected excess returns on the level- and the slope-mimicking portfolios
implied by models CME and CM0

E.
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P const PC1 PC2 PC3 GRO INF

PC1 −0.0007 −0.0231 −0.0207 0.0525 0.1518 0.0394
(0.0006) (0.0189) (0.0180) (0.0578) (0.0445) (0.0373)

PC2 0.0002 0.0373 0.0064 −0.0712 −0.1782 −0.0416
(0.0008) (0.0120) (0.0171) (0.0501) (0.0377) (0.0309)

PC3 0.0012 −0.0265 −0.0053 −0.0984 −0.0092 0.0492
(0.0007) (0.0132) (0.0111) (0.0433) (0.0329) (0.0223)

(a) Risk premium parameters for model CME

P const PC1 PC2 PC3 GRO INF

PC1 0 −0.0481 −0.0248 0 0.1560 0.0856
(0.0098) (0.0107) (0.0364) (0.0195)

PC2 0 0.0224 0 −0.0803 −0.1641 0
(0.0056) (0.0280) (0.0336)

PC3 0 0 0 0 0 0

(b) Risk premium parameters for model CM0
E

Table 2: ML estimates of the parameters K governing expected excess returns on
the PC mimicking portfolios. Standard errors are given in parentheses. Zeros from
our model selection criteria appear in the CM0

E estimates in the lower panel.

The negative sign on GRO in the second row of K implies that premiums on
exposure to slope risk are counter-cyclical. It is striking that, after searching over 219

specifications of the model-implied xPC2t, our model-selection criteria place most
of the weight on GRO and zero weights on (PC2, INF ) in characterizing expected
excess returns on exposure to slope risk. These risk premiums also depend on the
curvature (PC3) of the Treasury curve.

The premium on PC2 risk achieves its lowest value, and concurrently the premium
on PC1 risk achieves its highest value, during 2004/05. Between June, 2004 and
June, 2006 the Federal Reserve increased its target Federal Funds rate by 4% (from
1.25% to 5.25%). Yields on ten-year Treasuries actually fell during this time, leading
to a pronounced flattening of the yield curve, what Chairman Greenspan referred to
as a conundrum. We revisit these patterns subsequently.

ML estimates of KP
0 and KP

Z governing the P-drift of Zt are displayed in Table 3 for
model CM0

E. The zero entries in rows PC2 and PC3 are implied by the constraints

21



KP
0 KP

Z

Z PC1 PC2 PC3 GRO INF

PC1 0.0002 0.9552 0.0054 −0.0479 0.1560 0.0856
(0.0000) (0.0098) (0.0106) (0.0030) (0.0364) (0.0195)

PC2 −0.0004 0.0040 0.9691 0.0648 −0.1641 0
(0.0001) (0.0055) (0.0017) (0.0277) (0.0336)

PC3 0.0007 0.0150 0.0012 0.8771 0 0
(0.0001) (0.0015) (0.0023) (0.0114)

GRO 0.0005 −0.0014 0.0217 −0.0526 0.9191 −0.0125
(0.0004) (0.0069) (0.0075) (0.0292) (0.0230) (0.0152)

INF −0.0005 0.0232 0.0060 0.0831 0.0705 0.9347
(0.0004) (0.0115) (0.0117) (0.0499) (0.0405) (0.0261)

Table 3: Maximum Likelihood Estimates of KP
0 and KP

Z for Model CM0
E. Standard

errors are reported in parentheses.

on K selected by our model-selection criteria. Note that a zero constraint on the
effect a variable has on an excess returns in Table 2b results in the variable having
the same effect on the P-forecasts as Q-forecasts (i.e., KQ

1P,ij = KP
1P,ij). Since, by

construction, the macro-factors do not incrementally affect the Q-expectations of
the PCs, this means a zero constraint on the excess returns in Table 2b causes the
macro-variable to have no effect on the P-forecasts of the PC.

The non-zero coefficients on (GROt−1, INFt−1) in the rows for (PC1, PC2) are
all statistically different from zero at conventional significance levels, confirming our
earlier findings outside of a DTSM that macro information is incrementally useful for
forecasting future bond yields after conditioning on {PC1, PC2, PC3}. Additionally,
the coefficients on the own lags of GIP and INF are large and significantly different
from zero, as expected given the high degree of persistence in these series. The Kim
and Wright (2005) model implicitly sets all of the coefficients in the last two columns
of Table 3 (under GRO and INF ) to zero, and these restrictions are clearly rejected
by our data.
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4 Forward Term Premiums

Excess holding period returns on portfolios of individual bonds reflect the risk
premiums for every segment of the yield curve up to the maturity of the underlying
bond. A different perspective on market risk premiums comes from inspection of the
forward term premiums, the differences between forward rates for a q-period loan
to be initiated in p periods and the expected yield on a q-period bond purchased p
periods from now. Figure 5 displays the forward term premiums (FTP ) based on
the point estimates of model CM0

E for “in-p-for-1” loans (one-year loans initiated in
p years) for p = 2 and 9. These premiums tend to drift downward during our sample
periods, as the level of rates fell, and are increasing in p.

Within the family UMAR
0 (N) both forward rates and expected future one-year

rates are affine functions of the state Zt: FTP
p,1
t = ςp,10 + ςp,1Z · Zt. Based on this

relationship and the ML estimates of model CM0
E, we compute the 95% confidence

bands for our estimated FTP s. The darker shaded areas in Figure 5 represent
the confidence bands based on the precision of the ML estimates of ςp,1Z , and the
wider, light-shaded bands reflect the sampling variability of the entire parameter
set (ςp,10 , ςp,1Z ). For the case of FTP 2,1

t , the two confidence bands roughly coincide,
implying that most of the imprecision in estimating FTP 2,1

t derives from sampling
variability in ς2,1Z (forward premium dynamics). In contrast, for the longer-horizon
premium FTP 9,1

t , most of the imprecision derives from sampling variability in ς9,10 ,
the level of this premium. In fact, the state-dependent component of FTP 9,1

t is
measured more precisely than its counterpart for FTP 2,1

t over much of our sample
period. Though pinning down the level of these term premiums is challenging, model
CM0

E gives quite precise measures of the dynamic properties of premiums.
The “in-2-for-1” forward term premium implied by model CM0

E exhibits com-
parable high-frequency (i.e., shorter than business cycle frequency) variation as the
“in-2-for-0.25” forward term premium computed by Kim and Orphanides (2005). Their
premium was inferred from a three-factor Gaussian DTSM model estimated using
survey forecasts of future interest rates. Professional forecasters are conditioning (at
least) on similar macro information as that embodied in GRO and INF , and so we
find it reassuring that our implied forward term premiums show similar patterns.

Additional insight into the properties of the term premiums in model CM0
E comes

from Figure 6 which displays standardized FTP s along with standardized versions
of GRO and the PMI index constructed by the Institute for Supply Management.28

28The PMI index is a composite index for the five business cycle indicators new orders, production,
employment, supplier deliveries, and inventories, each with a weight of 20%. It reflects the sentiment
of its membership about future activity in the manufacturing sector of the U.S. economy.

23



‐2%

0%

2%

4%

6%

8%

10%

12%

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

Forward Rate

Expected Yield

Forward Term Premium

(a) In-2-For-1 Forward Term Premium

‐2%

0%

2%

4%

6%

8%

10%

12%

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

Forward Rate

Expected Yield

Forward Term Premium

(b) In-9-For-1 Forward Term Premium

Figure 5: Decomposition of forward rates into expected future spot rates and forward
term premiums for “in-p-for-1” forward contracts, p = 2 and 9, implied by model
CM0

E. The shaded areas are confidence bands for the forward term premiums.
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Figure 6: Standardized forward term premiums for “in-p-for-1” forward contracts,
p = 2 and 9, implied by model CM0

E, plotted against the standardized Purchase Man-
agers’ Index (PMI) and smoothed growth rate in the Confidence Board’s Coincident
Economic Indicators Index. The shaded area is the 95% confidence band on FTP .
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const PC1 PC2 PC3 GRO INF
2-for-1 −0.0078 0.6285 0.0119 0.1636 −1.1025 −0.4183

(0.0092) (0.1435) (0.1868) (0.2992) (0.4388) (0.2361)

5-for-1 −0.0049 0.5713 0.3874 0.1988 −0.0748 −0.3186
(0.0128) (0.0979) (0.1197) (0.1931) (0.2124) (0.1288)

9-for-1 0.0026 0.4546 0.4782 0.4449 −0.2023 −0.2918
(0.0155) (0.0838) (0.1040) (0.1520) (0.1821) (0.1160)

Table 4: Coefficients ςp,10 and ςp,1Z determining the mapping between the forward term
premiums FTP p,1

t and the state Zt in model CM0
E.

Though the PMI is sometimes viewed as a leading indicator, and is followed by the
Federal Reserve in setting monetary policy (Koenig (2002)), during our sample period
the PMI and GRO track each other closely. Two exceptions are the period of the
Asian crisis in the late 1990’s and the 2003–04 period. In the former case managers
expressed a more pessimistic sentiment, while in the latter case they were more
optimistic than what GRO indicated about the economy’s strength.

Consistent with prior studies and many economic theories, forward term premiums
are high during the depths of recessions (see the shaded NBER recession periods in
Figure 6). However, neither FTP 2,1 nor FTP 9,1 follow an unambiguously counter-
cyclical pattern. In fact, during 1993 through 2000, there are subperiods when
the PMI and FTP 9,1 track each other quite closely, suggesting that forward term
premiums were pro-cyclical during these subperiods. Inspection of the coefficients
ςp,1Z relating FTP s and Zt in Table 4 reveals that the negative weights on GIP and
INF induce counter-cyclical movements in FTP s.29 However, all three PCs have
statistically significant, positive effects on FTP 9,1. PC1 in particular followed a
pro-cyclical path during this period (Figure 2), and the FTP s reflect a blending of
the influences of the priced level and slope risks. Together these findings suggest that
there were important economic forces driving term premiums that were orthogonal
to output growth and inflation.

Turning to the post-2000 sample, two periods stand out when there were partic-
ularly large differences between FTP 9,1

t and the business cycle indicators: around
the peak of the dot-com equity market bubble and the period of the bond market
“conundrum” during 2005 – 2006. At the time of the bursting of the dot-com bubble,
the economic indicators showed substantial weakness in the economy, while FTP s

29Complementary evidence that real economic activity affects expected excess returns on short-
dated federal funds futures positions is presented in Piazzesi and Swanson (2008).
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remained high. This counter-cyclical pattern is plausible given the sharp drop-off
in output growth and the associated increased risk related to the debt financing of
corporations at this time. Speculative grade default rates in the U.S. reached their
highest level during 2001/02 since the 1990/91 recession (Moody’s (2009)). So it is
not surprising that forward term premiums were high during both of these recessions.

Several authors have attributed the behavior of long-term rates during the conun-
drum period to sharp declines in forward term premiums.30 The evidence in Figure 6b
is consistent with this view. Note that FTP 2,1 was rising throughout 2004 and
2005, while long-dated forward term premiums (FTP 9,1) were falling. This disparate
pattern raises the question of whether movements in term premiums were driven by
real economic activity or concerns about inflation, or whether other economic forces
were in play. We turn next to a more in depth exploration of the contributions of
spanned and unspanned macro risks to variation in risk premiums.

5 Spanned and Unspanned Macro Risks

To delve more deeply into the effects of macroeconomic information on the shape of
the Treasury curve we explore how new information about the macroeconomy impacts
the conditional variances of the FTP p,1, V art−1[FTP

p,1
t ] = ς

(p,1)′
Z ΣZς

(p,1)
Z . We focus

on the conditional variances of the FTP s because of the near-cointegration of PC1
and inflation. Conditional variances remove the conditional means (and hence the
trend-like components) and, thereby, isolate how surprise changes in the components
of Zt contribute to surprise moves in the forward term premium.

Our interest is in the proportion of V art−1[FTP
p,1
t ] attributable to innovations in

the unspanned growth (OGROt) and inflation (OINFt). Accordingly, we adopt the
ordering Z ′t = (P ′t,M ′

t) and use the Cholesky factorization of ΣZ to orthogonalize the
shocks to Zt. We also compute the proportion of V art−1[FTP

p,1
t ] attributable to the

component of INFt that is orthogonal to both the yield PCs (Pt) and GROt.
The decompositions of V art−1[FTP

p,1
t ] for p ranging from one to ten years are

displayed in Figure 7. Line OM shows the contribution of the unspanned macro
components (OGROt, OINFt) to the V art−1[FTP

p,1
t ]. Notably, nearly 90% of the

variance of the one-year forward term premium FTP 1,1 is attributable to news about
these unspanned macro risks. Equally striking is how the proportions attributable to
unspanned macro risks decline as the forward initiation date of the loan increases, with

30 Recent papers on this issue, using both reduced-form and structural pricing models, include
Rudebusch, Swanson, and Wu (2006), Cochrane and Piazzesi (2008), Bandholz, Clostermann, and
Seitz (2007), and Backus and Wright (2007).
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(OGROt, OINFt) (OM) and to OINF⊥t (OINF ), respectively, within a V AR with
ordering (Pt,Mt). The solid line (M) is the proportion of V art−1[FTP
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the maturity of the underlying bond, p. All estimates are based on model CM0

E.

OM plateauing at about 20% beyond the four-year horizon. These patterns suggest
that, out to about three years, a majority of the variation in forward term premiums
is attributable to surprise changes in the unspanned macro factors (OGROt, OINFt).
On the other hand, for forward loans far in the future, close to 80% of the innovation
variances of the FTP p,1s are attributable to innovations in the yield factors P .

Using our orthogonalization scheme, line OINF measures the proportion of
V art−1[FTP

p,1
t ] attributable to innovations in INF that are orthogonal to both the

pricing factors P and real economic activity GRO. This measure of inflation risk has
a roughly uniform impact on forward term premiums for loan initiation dates ranging
from one to ten years. From year four onwards the lines OM and OINF in Figure 7
are virtually indistinguishable. This says that, to the extent that unspanned macro
risk is affecting the longer dated forward term premiums, the effects are attributable
entirely to inflation risk.

So far in this discussion we have focused on unspanned macro risks. By reversing
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the ordering in our state vector to (Mt,Pt) we can measure the proportions of the
innovation variances V art−1[FTP

p,1
t ] that are attributable to the macro factors Mt

(the spanned and unspanned components combined). From the line M in Figure 7
we see that the contributions of the macro factors follow a pattern similar to the
contributions of their unspanned components, but that the former lie uniformly below
the latter. That is, combining the spanned and unspanned components of Mt lowers
the explanatory power of the total macro series. This suggests that it is the unspanned
components of output and inflation risks that are most relevant for understanding
surprise changes in forward term premiums, and not total macro risks Mt.

We can also decompose variation in the level of FTP p,1
t into the component SP

associated with variation in Pt (computed from the projection of FTP p,1
t onto Pt)

and the orthogonal component associated with variation in the unspanned Mt. In
this decomposition, the component SP largely recovers the near unit-root component,
analogous to a cointegrating regression.31 This can be seen from the decomposition
of FTP 9,1 in Figure 8, which shows that over 95% of the variation in FTP 9,1

t is
explained by variation in SP9

t (less than 5% is explained by (OGROt, OINFt)).
Nevertheless, it is decompositions like the one in Figure 8 that are perhaps most

relevant for interpreting specific episodes in history, such as Greenspan’s conundrum
during 2004 - 2006. The fall in FTP 9,1 during this period is accounted for (almost)
entirely by the information embodied in P . Taken together, Figures 6b and 8 suggest
that the conundrum is not easily explained by economic weakness as captured by
PMI and GRO. When we project FTP 9,1

t onto (GROt, INFt) during our sample
period the resulting R2 is only 37%.

This number understates the effect of Mt on FTP 9,1
t if, for instance, PC1 reflects in

part variation in the Central Bank’s long-term target inflation rate.32 To conservatively
control for this possibility, we project FTP 9,1

t onto (SGROt, SINFt, OGROt, OINFt),
where (SGROt, SINFt) denotes spanned Mt. While the R2 does in fact increase,
it remains the case that roughly 24% of the variation in FTP 9,1 is due to factors
that are orthogonal to this expanded information set. These calculations reinforce a
message from Figures 7: a substantial percentage of the variation in FTP 9,1

t was due
to economic forces that were orthogonal to the business cycle variables (GROt, INFt).

Yet a different perspective on the contributions of macro information to risk
premiums comes from inspection of the expected excess returns on the portfolios

31By focusing on conditional variances we are removing the conditional means (and hence the trend-
like components) and, thereby, isolating how surprise changes in the components of Zt contribute to
surprise moves in the forward term premium.

32This was suggested to us by some Federal Reserve economists, and this view is reflected in the
interpetation Rudebusch and Wu (2008) give to their latent risk factors.
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Figure 8: Decomposition of FTP 9,1 into the component spanned by Pt (SP) and the
component spanned by orthogonal macro factors (OGROt, OINFt) (OM). Estimates
are based on model CM0

E.

of bonds with payoffs that are perfectly correlated with movements in the spanned
macro risks SGIP and SINF , xSGIPt and xSINFt.

33 xSINF achieved its lowest
levels (largest absolute values) during the 1990 and 2001 recessions (Figures 9). In
this respect there is a parallel with the excess returns to the level-mimicking portfolio
in Figures 4a. xGRO is near zero for most of the sample period, with the exceptions
of the periods of recession.

Inflation risk premiums, as measured by xSINFt, were small, typically ranging
between zero and twenty basis points (in absolute value), outside of recessions. This
finding leaves open the possibility that unspanned macro risks were priced and, hence,
that actual market premiums on inflation and output growth risks were larger. Using
data in inflation-indexed bonds, Hordahl and Tristani (2007) found that inflation risk
premiums were insignificantly different from zero for the Eurozone. Grishchenko and
Huang (2010) study the inflation risk premium in the US using TIPS data for the
period 2000 through 2008. Consistent with our analysis, they find that this premium

33Both SGIP and SINF are affine functions of P . Using this fact and our construction of excess
returns on portfolios representing pure exposures to level, slope, and curvature risks, we computed
model-implied expected excess returns on pure exposures to SGIP and SINF .
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Figure 9: The expected excess returns on bond portfolios whose payoffs are perfectly
correlated with the components of GRO and INF that are spanned by Pt (SGRO
and SINF ). Returns are for monthly holding periods and are expressed on an
annualized scale.

was negative during the first half of their sample, 2000-2004. Moreover, just as in
Figures 9, their premium increased substantially around 2004 and ranged between
fifteen and thirty basis points during the subsequent two years. Without TIPS data,
and using a somewhat different measure of inflation risk premium, we find very similar
results. This raises the interesting question of whether, during this period, most of
the inflation risk premium was associated with spanned inflation risk.34

As Figures 7 demonstrates, most of the variation in shocks to forward term
premiums, particularly for longer horizons, is associated with economic risk that
is orthogonal to our measures of real economic activity and inflation. We now dig
deeper into the impacts of unspanned macro risks on the forward term premiums
by examining the impulse response functions of FTP p,1

t , p = 2, 9, to shocks to the
spanned and unspanned components of GRO and INF . At the two-year horizon,

34Their analysis was outside of an arbitrage-free DTSM . We defer to future research an exploration
of risk premiums on unspanned inflation using TIPS data, as many institutional and measurement
issues complicate the introduction of TIPS into a DTSM .
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Figure 10: Each panel plots the impulse responses of FTP s to shocks to either
(SGIP,OGRO) or (SINF,OINF ).

an innovation in OGRO has a much larger effect on FTP 2,1 than an innovation
in SGRO (Figures 10a). The effects of unspanned output shocks dissipate quickly
(within about one year), while the effects of unspanned inflation shocks persist for
several years (Figures 10c). This difference is no doubt attributable to the near
cointegration of INF with the priced risk factors (PC1, PC2).

For FTP 9,1 the responses to both OGRO and OINF are small, consistent with
the decomposition results in Figures 8. Figures 10d shows a large impact of SINF on
FTP 9,1 suggesting that it is largely spanned inflation risk, and not spanned output
risk, that explains the variation in FTP 9,1 attributable to the macro factors Mt. In
speaking about the conundrum, Chairman Bernanke asserted that “a substantial
portion of the decline in distant-horizon forward rates of recent quarters can be
attributed to a drop in term premiums. ... the decline in the premium since last

32



June 2004 appears to have been associated mainly with a drop in the compensation
for bearing real interest rate risk.”35 The patterns in Figures 8 and 10 are not easily
reconciled, it seems, with Chairman Bernanke’s explanation of the conundrum. More
likely, the decline in long-dated forward term premiums was a consequence of changes
in spanned inflation risks or changes in economic factors that were orthogonal to
(GRO, INF ). Recall that nearly a quarter of the variation in FTP 9,1 during our
sample period was attributable to such orthogonal factors.

Symmetric to this discussion is the interesting question of how changes in term
premiums affect real economic activity. Bernanke, in his 2006 speech, argues that a
higher term premium will depress the portion of spending that depends on long-term
interest rates and thereby will have a dampening economic impact. In linearized
New Keynesian models in which output is determined by a forward-looking IS
equation (such as the model of Bekaert, Cho, and Moreno (2010)), current output
depends only on the expectation of future short rates, leaving no role for a term
premium effect. Time-varying term premiums do arise in models that are linearized
at least to the third order (e.g., Ravenna and Seppala (2007b)). We examine the
response of real economic activity and inflation to innovations in FTP p,1 (p =
2, 9) in the context of model CM0

E, using the model-implied V AR with ordering
(FTP p,1, SGRO, SINF,OGRO,OINF ).

Initially, a one standard deviation increase in FTP 2,1 has a large negative impact
on OGRO over a period of about 12 months, and has virtually no effect on SGRO
(Figures 11a). The effects of innovations in FTP 9,1 on both SGRO and OGRO
are small at all horizons. These responses, which are a manifestation of large and
significant coefficients on GRO in the near-horizon forward term premium parameters
in Tables 4, are consistent with the economic linkages set forth by Chairman Bernanke.
However, the effects on economic activity arise from short- to medium-term risk
premiums, not long-dated premiums, and the effects are virtually entirely through
unspanned real economic activity.

The absence of effects on SGRO is consistent with the results in Ang, Piazzesi,
and Wei (2006) that term premiums are insignificant in predicting future GDP growth
within a Gaussian DTSM that enforces the theoretical spanning of GDP growth by
bond yields. What their model, and similar models that enforce spanning, do not
accommodate is our finding that term premium shocks do affect growth through their
effects on unspanned real activity.

Innovations in FTP 2,1 have small effects on both spanned and unspanned inflation.
In contrast, shocks to FTP 9,1 have a large negative effect on OINF and a positive

35 See his speech before the Economic Club of New York on March 20, 2006 titled “Reflections on
the Yield Curve and Monetary Policy.”
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Figure 11: The impulse responses of SGRO and OGRO to a one standard deviation
shock to FTP 2,1, and of SINF and OINF to a one standard deviation shock to
FTP 9,1, based on model CM0

E.

impact effect on SINF (Figures 11b). The effects on OINF die out after about a
year, while the effects on SINF persist for several years.

6 Concluding Observations

This paper develops and estimates an arbitrage-free, Gaussian DTSM in which the
state vector includes macroeconomic variables that are not perfectly spanned by
contemporaneous bond yields, and in which these macro variables have significant
predictive content for excess returns on bonds over and above the information in
bond yields. We show that there is a canonical representation of this model that
lends itself to easy interpretation and for which the global maximum of the likelihood
function can be attained essentially instantaneously.

Perhaps the most striking aspects of our empirical results are that shocks to
unspanned real economic activity and inflation have large effects on term premiums
in US Treasury markets and, symmetrically, shocks to forward term premiums
have substantial effects on real economic activity primarily through their effects on
unspanned real output growth. To our knowledge, ours is the first paper to identify
the important contributions to portfolio risk of unspanned macro risks, largely because
the extant literature on macro-DTSMs rules out, by construction, any role for these
unspanned risks.

Our findings raise several intriguing questions for future research. Unspanned
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macro risks, particularly real economic risks, had large effects on forward term
premiums over short- to intermediate-term horizons. What were the economic sources
of these unspanned risks? We also find that a substantial proportion of the variation
in long-dated forward term premiums is attributable to economic factors that are
orthogonal to both spanned and unspanned output and inflation. It was evidently
these orthogonal risks that largely explained the decline in term premiums during
the period of the conundrum. What is the nature of these macro risks that are so
important in Treasury markets and yet are orthogonal to output growth and inflation?
Since the onset of the financial crisis there has been considerable discussion about the
roles of global imbalances and disruptions in the financial intermediation sectors. Our
modeling framework provides a means of systematically examining these possibilities
within an arbitrage-free DTSM .

More generally, properties of the fitted historical distributions of bonds and
pricing factors in our macro-DTSM are very different than what is implied by
both a factor-V AR model or an unconstrained version of our canonical model. In
particular, our model-selection search led to eleven constraints on the parameters
governing the market prices of risk. A practical consequence of these constraints is
that the persistence properties of bond yields, and hence the relative importance
of expected future spot rates versus forward term premiums, are very different in
our preferred model than in its unconstrained counterpart. This suggests that, when
estimating macro-DTSMs, one should undertake similar model-selection exercises to
systematically reduce the dimension of the parameter space, as this might similarly
mitigate small-sample bias problems.

Our framework (formally developed in Appendix B) can be applied in any Gaussian
pricing setting in which security prices or yields are affine functions of a set of pricing
factors Pt and the relevant state vector embodies information (over and above the
past history of P) that is useful for forecasting Pt under the physical measure P.
Accordingly, it is well suited to addressing a variety of economic questions about
risk premiums in bond and currency markets, as well as in equity markets when the
latter pricing problems maps into an affine pricing model (e.g., Bansal, Kiku, and
Yaron (2009)). Though neither the state variables nor the pricing factors exhibit
time-varying volatility in the settings examined in this paper, our basic framework and
its computational advantages are likely to extend to affine models with time-varying
volatility. Exploration of this extension is deferred to future research.
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Appendices

A Bond Pricing in GDTMs

Under ArQ and APQ, the price of an m-month zero-coupon bond is given by

Dt,m = EQ
t [e−

∑m−1
i=0 rt+i ] = eAm+Bm·Pt , (9)

where (Am,Bm) solve the first-order difference equations

Am+1 −Am =
(
KQ

0

)′ Bm +
1

2
B′mΣPPBm − ρ0 (10)

Bm+1 − Bm =
(
KQ

1

)′ Bm − ρ1 (11)

subject to the initial conditions A0 = 0,B0 = 0. See, for example, Dai and Singleton
(2003). The loadings for the corresponding bond yield are Am = −Am/m and
Bm = −Bm/m.

B Derivation of Results in Sections 2

Proof of Proposition 1: From Joslin, Singleton, and Zhu (2010) we know that,
for any AQ

0 (3) pricing model with distinct, real eigenvalues of the feedback matrix
of the risk factors, there exists a three-dimensional, latent state vector Xt such that
rt = rQ∞ + 1 ·Xt and

∆Xt = diag(λQ)Xt−1 +
√

Σ0
Xε

Q
t

for some 3×3 matrix Σ0
X and vector λQ of eigenvalues of the feedback matrix governing

X, with εQt ∼ N(0, I).
To derive a canonical version of (1), let B0(τ) be the loadings given by ∆B0 =

diag(λQ)B0 − 1, B0(0) = 0. Let B0
PC(i) =

∑
−`iB0(τi)/τi, where PCi has loading

`i on yield maturity τi. Let B be the 3× 3 matrix with ith row given by B0
PC(i). It

follows that the covariance matrix of the innovations to the PCs is BΣ0
XB

′. In order
that (1) is satisfied, it must be that Σ0

X = (B′)−1ΣPB
−1.

Now let A0(t) solve ∆A0 = 1
2
(B0)>Σ0

XB
0 − rQ∞, A

0(0) = 0. Define A0
PC(i) =∑

−`iA0
y(τi)/τi. Let a be the 3×1 vector with i-th entry A0

PC(i). Then Pt = a+BX0
t .

From an invariant affine transformation it follows that: KQ
X = B(diag(λQ)B−1,

KQ
0 = −(KQ

1 )−1a, ρ0 = rQ∞ − 1′B−1a, and ρ1 = (B′)−11.
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Since (1) is an invariant transformation of an identified, canonical model, we know
that (1) is also identified and canonical. The underlying parameters are (rQ∞, λ

Q, LX),
where L is the Cholesky factorization of ΣX .

C Returns on Generalized Mimicking Portfolios

Consider a collection of N yields, {yn1
t , . . . , y

nN
t }, and a given linear combination

yat =
∑N

i=1 aiy
ni
t of these yields (yat could be a principal component, or the projection

of a macro variable onto the yields). Our first goal is to find weights {wi}Ni=1 such that
value Pw

t =
∑N

i=1wiP
ni
t of a portfolio of zero coupon bonds locally tracks changes in

yat ; that is,

dPw
t

dyat
=

N∑
i=1

dPw
t

dynit

dynit
dyat

= 1 (12)

Since, by definition, P ni
t = exp(−niy

ni
t ), we have dP ni

t /dy
ni
t = −niP

ni
t . Therefore,

(12) can be rewritten as

−
N∑
i=1

winiP
ni
t

1

ai
= 1

which will hold for weights

wi = − ai
NniP

ni
t

Next, consider the one-period excess return on portfolio Pw
t :∑

iwi(P
ni−1
t+1 − ertP

ni
t )

|
∑

iwiP
ni
t |

=
−
∑

i ai/ni(P
ni−1
t+1 /P ni

t − ert)
|
∑

i ai/ni|
.

This is a weighted average of the returns on the individual zero coupon bonds. Now,
it follows from Le, Singleton, and Dai (2010) that P ni

t = exp(−Ani − BniZt), and
further that

EP[P ni−1
t+1 /P ni

t ] = exp{Bni−1[(K
Q
0 −KP

0 ) + (KQ
1 −KP

1 )Zt] + rt}.

Therefore, to a first-order approximation, the expected excess return on portfolio Pw
t

is given by ∑
i ai/niBni−1[(K

P
0 −K

Q
0 ) + (KP

1 −K
Q
1 )Zt]

|
∑

i ai/ni|
.
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Since we rotate our model such that the first R elements of Zt correspond to the first
R principal components of yields, and since by definition,

PCjt =
N∑
i=1

`jiy
ni
t =

N∑
i=1

`ji (Ani/ni +Bni/niZt)

it follows that
∑

i `
j
iBni/ni is the selection vector for the jth element, j ∈ {1, . . . ,R}.

Thus, under the further approximation that Bni−1 ≈ Bni , the expected excess return
on the portfolio mimicking PCj, xPCj, is given by the jth row of

(KP
0 −K

Q
0 ) + (KP

1 −K
Q
1 )Zt

scaled by |
∑

i `
j
i/ni|. While an approximation for the one-period expected excess

return in discrete time, this relationship is exact for the instantaneous expected excess
return in the continuous-time limit.
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