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Abstract

This paper develops a simple no-arbitrage model of foreign exchange rates and
interest rates that can easily be applied to an arbitrary number of foreign currencies.
The model has the appealing feature that it reduces to a standard two or three factor
model for pricing yields in each currency, yet it can still accommodate a small number
of globally priced risk factors. We use the model to analyze the joint dynamics of
exchange rates and the term structures of swap rates for the G10 currencies. Using
both in- and out-of-sample measures of fit we conclude that there is one priced risk
factor in G10 swap rates. We estimate the risk premium for exposure to this single
factor and show that a U.S. fixed income investor can more than triple the Sharpe ratio
of her portfolio if she is willing/able to invest in any yield in any G10 currency.
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1 Introduction

This paper develops a simple no-arbitrage model of foreign exchange rates and interest rates
that can easily be applied to an arbitrary number of foreign currencies and term structures.
The model we develop has two particularly appealing features. First, it reduces to a standard
two or three factor affine term structure model for pricing yields with different maturities
in each currency. Second, although the number factors in the model can grow large with
the number of foreign currencies and term structures, the number of priced risk factors can
remain small.

We use weekly data from 1993 to 2001 to estimate our multi-currency model of the joint
dynamics of exchange rates and the term structures of swap rates for the G10 currencies.
Using the period from 2002 until March 2009 as an out-of-sample test, we find that our ten
currency model with a single priced risk factor is better able to predict changes in yields
compared with ten single-currency models that are each solely designed to explain changes
in that currency’s yields. Our empirical estimates illustrate that the information in global
swap markets can be used in a parsimonious manner to improve our predictions of changes
in the yield curves of individual the countries.

We also use the model to examine the risk/reward tradeoff that is available to global
fixed income investors who are able to invest in any zero-coupon bond in any of the G10
currencies. An investor who only holds U.S. zero-coupon bonds (but can use the yields on
zero-coupon bonds in the other nine currencies to help predict changes in U.S. interest rates)
can more than triple her expected excess return for a given level of volatility if she is able
to hold foreign currencies and zero-coupon bonds in her portfolio.

Our paper provides a significant extension to the growing literature on two-currency term
structure models.1 To our knowledge, Hodrick and Vassalou (2002) was the first paper to
empirically analyze a multi-currency term structure model. They examine whether short-
term interest rates in the U.S., Germany, Japan, and Britain can help to predict changes in
the exchange rates and short-term interest rates (up to one year). Our paper differs along
a couple of important dimensions. Most importantly, Hodrick and Vassalou (2002) assume
that exchanges rates and interest rates are both driven by the same sources of variation.2

However, Brandt and Santa-Clara (2002), Graveline (2006), and Leippold and Wu (2007)
all emphasize that changes in exchange rates are largely independent of changes in interest
rates, and our model accommodates this well-documented feature of the data. Second, we
consider the full term structure of interest rates out to ten years in maturity so that our
model must simultaneously account for risk premia on both long-term bonds and currencies.

Our model uses an affine framework (e.g., see Dai and Singleton (2000)) which differs
slightly from the multi-currency quadratic term structure model developed Leippold and Wu

1Recent examples of two-currency term structure models include Backus et al. (2001), Brandt and Santa-
Clara (2002), Ahn (2004), and Graveline (2006). Bansal (1997) and Brennan and Xia (2006) discuss multi-
currency and two-currency term structure models respectively, but empirically they analyze single-currency
models and do not consider the joint dynamics of interest rates in different currencies.

2Bansal (1997), Backus et al. (2001), and Brennan and Xia (2006) also assume that exchange rates and
interest rates are both driven by the same sources of variation so that currencies are spanned by bonds.
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(2007).3 Again, our paper differs along a couple of more important dimensions. First, we
draw a clear distinction between the total number of risk factors (sources of uncertainty) and
the number of linear combinations of those factors that are priced. This distinction is quite
relevant because the number of sources of uncertainty must necessarily grow large when the
model is used to analyze the joint dynamics of many currencies and yield curves, however
basic economic intuition suggests that each risk factor should not be independently priced.
The second important distinction in our paper is that the model remains tractable so that
we are able to empirically analyze the joint dynamics of the G10 currencies and yields curves
in a no-arbitrage framework. By contrast, Leippold and Wu (2007) empirically implement a
two-currency version of their model to analyze the U.S. and Japan.

More recently, Diebold et al. (2008) and Jotikasthir et al. (2010) have also analyzed
the joint dynamics of yield curves in multiple currencies. Diebold et al. (2008) provide a
statistical analysis of the joint dynamics of yield curves in Germany, Japan, the U.K. and
the U.S., and use a Nelson and Siegel (1987) approach to parameterize the cross-section of
yields. They do not model the relevant exchange rates and do not use a pricing kernel (i.e.
they do not enforce no-arbitrage). Jotikasthir et al. (2010) also model the joint dynamics of
yields in the U.S., the U.K., and Germany. They do not explicitly analyze exchange rates,
but implicitly their model assumes that exchanges rates and interest rates are both driven
by the same sources of variation (i.e. exchange rates are spanned by bonds).

Finally, our paper is related to papers such as Ang and Chen (2010) and Lustig et al.
(2011) who analyze the returns to portfolios of currencies. Lustig et al. (2011) form currency
portfolios based on the difference in short-term interest rates across currencies, while Ang and
Chen (2010) form currency portfolio based on changes in interest rates and term spreads.
We use our model to analyze the optimal growth portfolio when investors can invest in
both currencies and swaps (bonds) with different maturities across the G10. Moreover, our
framework imposes a small number of priced portfolios with time-varying prices of risk across
both currencies and swaps. Our analysis of the optimal growth portfolio also relates to work
by Glen and Jorion (1993), Campbell et al. (2003), and Campbell et al. (2010) who analyze
the diversification benefits of currencies of foreign bonds.

The remainder of the paper is organized as follows. Section (2) develops our arbitrage-
free econometric model, Section (3) discusses our estimation method and empirical results,
and Section (4) concludes.

2 Econometric Model

Our econometric model for exchange rates and interest rates in multiple currencies draws
heavily on the insights from single-currency affine term structure models, so we begin with a
review of these models in a continuous-time diffusion setting as described in Duffie and Kan
(1996) and Dai and Singleton (2000).

3Bakshi et al. (2008) also develop and analyze a dynamic multi-currency model but they do not model
interest rate dynamics.
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2.1 Single-Currency Affine Term Structure Models

Let Mt be the minimum variance pricing kernel and rt be the (instantaneous) risk-free short
interest rate. The standard single-currency affine term structure model described by Duffie
and Kan (1996) is

rt = ρ0 + ρ1 ·Xt, (1a)

d
〈
X,X>

〉
t

= (H0 +H1 ·Xt) dt, (1b)

Et [dXt] + d 〈X, logM〉t︸ ︷︷ ︸
EQ
t [dXt]

= (θ +KXt) dt, (1c)

where d 〈·, ·〉t denotes quadratic variation (i.e. instantaneous covariance) and H0 + H1 · Xt

is symmetric and positive semi-definite. Let Pt (T ) = Et
[
MT

Mt
· 1
]

be the price at time t of

a zero-coupon bond that pays 1 at time T and let Yt (T ) = − [logPt (T )] / (T − t) be its
continuously-compounded yield. Yields are affine (and prices are exponential affine) in the
state vector Xt since

Pt (T ) = eAT−t+BT−t·Xt ⇔ Yt (T ) = −AT−t/ (T − t)︸ ︷︷ ︸
ÃT−t

− [BT−t/ (T − t)]︸ ︷︷ ︸
B̃T−t

·Xt, (2a)

where

Bτ = −
∫ τ

0

[
ρ1 −K>Bu −

1

2
B>uH1 ·Bu

]
du, (2b)

Aτ = −
∫ τ

0

[
ρ0 − θ ·Bu −

1

2
B>uH0Bu

]
du, (2c)

Let Pt be a vector of zero-coupon bond prices with different maturities and let A and
B be the model-implied vector and matrix from equation (2) such that logPt = A + BXt.
Then expected returns on zero-coupon bonds are

Et [dPt] = Pt [rt dt− d 〈logP, logM〉t] dt = Pt [rt dt−B d 〈X, logM〉t] . (3)

Researchers typically model the risk premium, or quadratic variation of the state vector with
the pricing kernel, as also being affine in the state vector

− d 〈X, logM〉t = (Λ0 + Λ1Xt) dt.
4 (4)

4This specification uses an extended affine price of risk from Cheridito et al. (2007) which is an extension
of the essentially affine price of risk in Duffee (2002) and the completely affine price of risk in Dai and
Singleton (2000). With this specification, the true drift (and not just the risk-neutral drift in equation (1c))
is affine since

Et [dXt] = Et [dXt] + d 〈X, logM〉t − d 〈X, logM〉t .

Only the risk-neutral drift is required to be an affine function of the states for the yields to also be affine in
the states.
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Together, equations (1) and (4) constitute a single-currency term structure model. Any
affine transformation of the state vector produces a model of the same form, so all of the
parameters are not uniquely identified. Dai and Singleton (2000) provide a canonical repre-
sentation (affine transformation) of single-currency affine term strucuture models and also
discuss the parameter restrictions that are required to ensure that the elements of the state
vector that govern stochastic volatility (i.e. those elements of Xt with non-zero weights in
H1) remain positive. Our empirical implementation uses a Gaussian model (i.e. H1 = 0)
so we do not discuss the necessary parameter restrictions for specifications with stochastic
volatility. Also, we do not discuss the various canonical representations because we follow
Duffie and Kan (1996) and fix the affine transformation of the model so that the factors are
specific linear combinations of zero-coupon yields.

To be specific, let Yt be a K-dimensional vector of zero-coupon yields with different
maturities and define the state vector as Xt = L0 +L1Yt, where L0 is N ×1 and L1 is N ×K
for N ≤ K. We can write Yt = Ã+ B̃Xt, where Ã and B̃ are K×1 and K×N matrices that
are determined by the model parameters (ρ0, ρ1, θ, K, H0, and H1) according to equation
(2). No arbitrage provides N × (N + 1) parameter restrictions since

Xt = L0 + L1Yt = L0 + L1

(
Ã+ B̃Xt

)
⇒ L0 + L1Ã = 0 and L1B̃ = I. (5)

In the empirical implementation it is important to choose the state vector to be a linear
combination of yields that can account for much of the cross-sectional variation in yields.
We know from previous literature (e.g., Litterman and Scheinkman (1991)) that the first
3 principal components of changes in each country’s yield curve account for most of the
variation along the yield curve. Therefore, in our estimations we choose the state vector to
be the first 2 or 3 principal components (depending upon data availability) of yields in each
currency.5For the yield curves of the G10 countries that we model in this paper, the first
3 principal components of changes in each country’s yield curve are very closely related to
changes in the level, slope, and curvature of yields in that currency.

We make a small but important modification to the standard model to reflect the empir-
ical work of Cochrane and Piazzesi (2005). They find that one linear combination of yields
(equivalently, forward rates) does a good job of predicting excess returns of bonds with differ-
ent maturities. Moreover, this linear combination is not well-spanned by the first 3 principal
components of yields. We incorporate this finding into the risk premia specification as follows

− d 〈X, logM〉t = (Λ0 + Λ1Yt) dt, such that rank ([Λ0,Λ1]) = 1.6 (6)

The rank restriction in equation (6) means that

Λ0 + Λ1Yt = Λ
(
L̃0 + L̃1 · Yt

)
(7)

5A common approach to estimating term structure models is to follow Chen and Scott (1993) and assume
that the model prices a subset of yields exactly and the remaining yields are priced with error. With this
estimation approach, the state vector is an affine function of the yields that are assumed to be priced exactly.
Our approach is a slight generalization of this technique in that we effectively assume that the model correctly
prices an affine function of yields rather than a specific subset of yields. See also Joslin et al. (2010b) for a
discussion of this approach.

6Joslin et al. (2010a) also use a rank restriction on risk premia.
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for some N × 1 vector Λ, constant L̃0, and K × 1 vector L̃1.

In theory, if our model was perfect then it would correctly price all of the yields and
there would be no new information in L̃0 + L̃1 ·Yt that was not already contained in the state
vector Xt,

L̃0 + L̃1 · Yt = L̃0 + L̃1

(
Ã+ B̃Xt

)
=
(
L̃0 + L̃1Ã

)
+ L̃1B̃Xt. (8)

In practice, the model is not perfect and only prices the state vector Xt = L0 +L1Yt without
error. Therefore all of the yields outside of this span, including L̃0 + L̃1 · Yt, will be priced
with error,

Yt = Ã+ B̃Xt + εt ⇒ L̃0 + L̃1 · Yt =
(
L̃0 + L̃1Ã

)
+ L̃1B̃Xt + L̃1εt. (9)

Although the model does not perfectly price the entire cross-section Yt of yields with different
maturities, they are still observable at time t and therefore we can include them in the model.
Intuitively, it is convenient to reduce the state space to XT−Xt when constructing the model-
implied distribution of changes yields YT −Yt at a future dates T > t. However, at time t we
observe the contemporaneous cross-section Yt of yields so there no benefit to conditioning
down the state space to Xt and ignoring the information in the model’s cross-sectional pricing
errors.

To conclude, the multi-currency model that we develop in the next section draws heavily
on the following single-currency model,

rt = ρ0 + ρ1 ·Xt, (10a)

d
〈
X,X>

〉
t

= H0 dt, (10b)

Et [dXt] + d 〈X, logM〉t = (θ +KXt) dt, (10c)

where
Xt = L0 + L1Yt, (10d)

and L0 and L1 are the weights from the first 2 or 3 principal components of changes in yields.
Also, in our single-currency model risk premia are governed by

− d 〈X, logM〉t = (Λ0 + Λ1Yt) dt, such that rank ([Λ0,Λ1]) = 1, (11a)

= ΛX̃tdt, (11b)

where
X̃t = L̃0 + L̃1 · Yt (11c)

and L̃0 is a constant and L̃1 is a vector with the same length as the vector of yields Yt.

We apply this same style of single-currency model to the term structure of interest rates
in foreign currencies. Let S

(i)
t be country i’s exchange rate expressed in units of domestic

currency per unit of foreign currency i and let r
(i)
t be the risk-free short interest rate in that

currency. If Y
(i)
t is a K(i)-dimensional vector of zero-coupon yields in foreign currency i then
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the equivalent term structure model is

r
(i)
t = ρ

(i)
0 + ρ

(i)
1 ·X

(i)
t , (12a)

d
〈
X(i), X(i)>〉

t
= H

(i)
0 dt, (12b)

Et
[
dX

(i)
t

]
+ d

〈
X(i), logMS(i)

〉
t

=
(
θ(i) +K(i)X

(i)
t

)
dt, 7 (12c)

where
X

(i)
t = L

(i)
0 + L

(i)
1 Y

(i)
t , (12d)

and L
(i)
0 and L

(i)
1 are the weights from the first 2 or 3 principal components of changes in

yields in foreign currency i. Similarly, risk premia are governed by

− d
〈
X(i), logMS(i)

〉
t

=
(

Λ
(i)
0 + Λ

(i)
1 Y

(i)
t

)
dt, rank

([
Λ

(i)
0 ,Λ

(i)
1

])
= 1, (15a)

= Λ(i)X̃
(i)
t dt, (15b)

where
X̃

(i)
t = L̃

(i)
0 + L̃

(i)
1 · Y

(i)
t (15c)

and L̃
(i)
0 is a constant and L̃

(i)
1 is a vector with the same length as the vector of yields Y

(i)
t .

2.2 Multi-Currency Extension

The most general multi-currency affine model with I foreign currencies and term structures
has the same form as the single-currency model in equations (1) and (4),

rt = ρ0 + ρ1 ·Xt, (16a)

r
(i)
t = ρ

(i)
0 + ρ

(i)
1 ·Xt, i = 1, . . . , I, (16b)

d

〈[
X
logS

]
,

[
X
logS

]>〉
t

= H0 +H1 ·Xt, (16c)

Et [dXt] + d 〈X, logM〉t = (θ +KXt) dt,
8 (16d)

−d
〈[

X
logS

]
, logM

〉
t

= Λ0 + Λ1

[
X
logS

]
t

, (16e)

7If M is the pricing kernel denominated in the domestic currency then

MtZt = Et [MTZT ] , (13)

for any asset price Z in the domestic currency. If S(i) is country i’s exchange rate expressed in units of
domestic currency per unit of foreign currency i then Z/S(i) is the asset’s price in foreign currency i and
MS(i) is the associated pricing kernel since

MtS
(i)
t Zt/S

(i)
t = MtZt = Et [MTZT ] = Et

[
MTS

(i)
T ZT /S

(i)
T

]
. (14)
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where logSt =
[
logS(1), . . . , logS(I)

]>
t

is a vector of the log exchange rates. From a practical
standpoint, the dimension of the state vector must grow with the number of exchange rates
and term structures the model is designed to capture. The size of the parameter space of
the most general multi-currency term structure model is proportional to the cubed length
of the state vector (without stochastic volatility it’s proportional to the squared length of
the state vector). Therefore, as the number of currencies and term structures in a multi-
currency model grows, the most general model can quickly become impractical to estimate.
We develop a simple and tractable multi-currency model that draws on two key insights.
First, single-currency term structure models typically have low cross-sectional pricing errors
and multi-currency models should inherit this feature. Second, the number of priced risk
factors in the model does not need to grow with the size of the state vector.

Our empirical implemenation works with a domestic term structure plus nine foreign
currencies and term structures, but the approach is easy to generalize to an arbitrary number.
Let Xt = L0 + L1Yt be the affine function of yields that serves as the state vector for the
domestic single-currency term structure model. Similarily, let X

(i)
t = L

(i)
0 + L

(i)
1 Y

(i)
t be the

state vectors for the single-currency term structure models in foreign currencies i = 1, . . . , I.
Again, S

(i)
t is foreign currency i’s exchange rate expressed as units of domestic currency per

unit of foreign currency i.

The state vector in our multi-currency model consists of Xt, X
(1)
t , . . ., X

(I)
t and logS

(1)
t ,

. . ., logS
(I)
t . We model the second moments (quadratic variation) of this state vector as

constants (Gaussian) so that

d

〈


X
X(1)

...
X(I)

logS(1)

...
logS(I)


,



X
X(1)

...
X(I)

logS(1)

...
logS(I)



>

〉

t

=



H0 · · · · · · · · · ·
· H

(1)
0 · · · · C

(1)
0 · · · ...

...
...

. . .
...

...
. . . ·

· · · · · H
(I)
0 · · · · C

(I)
0

· C
(1)>
0 · · · · · · · · ·

...
...

. . .
...

...
. . .

...

· · · · · C
(I)>
0 · · · · ·


dt, (17a)

The single-currency models also requireH0 := d
〈
X,X>

〉
t
/dt andH

(i)
0 := d

〈
X(i), X(i)>〉

t
/dt.

To conserve notation, we have used a simple dot to denote most of the other parameters
of the matrix of second moments. As we’ll see shortly, these parameters do not affect the
cross-section of yields in our model so they are free to capture co-variation in the elements
of the state vector. Although it does not restrict the cross-section of yields, we have ex-
plicitly labeled C

(i)
0 = d

〈
X(i), logS(i)

〉
t
/dt because it is relevant below when changing from

the risk-neutral measure in foreign currency i to the risk-neutral measure in the domestic
currency.

8The risk-neutral drift of foreign currency i’s exchange rate must be Et

[
dS

(i)
t

]
= S

(i)
t

[
rt − r(i)

t

]
dt.

Therefore one can model either the short-interest rate in foreign currency i or the risk-neutral drift of that
currency’s exchange rate, but not both.
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To complete the cross-sectional pricing implications for the model, we also need to specify
the dependence of the short interest rates on the state vector,

r
r(1)

...
r(I)


t

=


ρ0

ρ
(1)
0

...

ρ
(I)
0

+


ρ1 0 · · · 0

0 ρ
(1)
1

. . .
...

...
. . . . . . 0

0 · · · 0 ρ
(I)
1


> 

X
X(1)

...
X(I)


t

, (17b)

as well as the risk-neutral drift of the state vector

Et

d

X
X(1)

...
X(I)


t

+ d

〈
X
X(1)

...
X(I)

 , logM

〉
t

=




θ

θ(1) − C(1)
0

...

θ(I) − C(I)
0

+


K 0 · · · 0

0 K(1) . . .
...

...
. . . . . . 0

0 · · · 0 K(I)



X
X(1)

...
X(I)


t

 dt.

(17c)

Our simple restricted setup in equation (17) has the appealing feature that the cross-section
of zero-coupon yields in each currency are the same as the individual single-currency models
which typically capture the cross-section of yields with different maturities very well. More-
over, the only new parameters in equation (17) are the additional elements of the matrix of
second moments that capture co-variation in the combined state vector.

We have chosen Xt as an affine function of domestic yields and each X
(i)
t as an affine

function of yields in foreign currency i. For the domestic currency and seven of the foreign
currencies we choose the state vector to be the first three principal components of changes
in yields. Due to data restrictions, the state vectors for the remaining two foreign currencies
are the first two principal components of changes in yields. Therefore, when we include the
no-arbitrage restrictions from equation (5), our restricted model has 8×3×4+2×2×3 = 108
free parameters in equations (17b) and (17c).

One could instead use the most general model and allow each element of the state vector
(excluding the log exchange rates) to be an affine function of yields in all of the currencies
rather than just a single currency. This approach would allow greater flexibility in matching
the cross-section of yields in each currency at the expense of adding many more parameters.
For example, if we relaxed the zero restrictions in equations (17b) and (17c) but maintained
a 28-dimensional state vector (excluding the log exchange rates) then the unrestricted model
would have 28 × 29 = 812 free parameters in equations (17b) and (17c). Single-currency
models typically capture the cross-section of yields with different maturities very well, so
there is little room for benefit from the large number of additional parameters. One could
also use the unrestricted model with a lower dimensional state vector. For example, if we
chose the state vector (excluding the log exchange rates) to be the first ten PCs of changes in
yields of all currencies then the unrestricted model would have 10×11 = 110 free parameters
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in equations (17b) and (17c).9 The clear benefit of our approach is that all of the parameters
in equations (17b) and (17c) have direct counterparts in the single-currency term structure
models, so they are very easy to estimate. Secondly, it is very easy to add additional
currencies and term structures to the model because we simply expand the state vector to
include affine functions of yields in those currencies.

To complete the model, we need to specify risk premia, or equivalently, the quadratic
variation of the state vector with the pricing kernel. The second key insight of our model
is that the size of the state vector can grow large as the model incorporates more foreign
currencies and term structures, but the number of priced risk factors does not need to
increase. We use the same approach as the single-currency models and restrict the number
of priced risk factors in the model by constraining the rank of the risk premia parameters,

− d

〈


X
X(1)

...
X(I)

logS(1)

...
logS(I)


, logM

〉

t

=

Λ0 + Λ1


X̃

X̃(1)

...

X̃(I)


t

 dt, rank ([Λ0,Λ1]) = R. (18)

X̃t = L̃0 + L̃1 ·Yt is from the specification in equation (11) of the single-currency risk premia

for the domestic currency and X̃
(i)
t = L̃

(i)
0 + L̃

(i)
1 · Y

(i)
t is from the specification in equation

(15) of the single-currency risk premia for foreign currency i. Intuitively, risk premia in our
multi-currency model depend on the individual affine functions of yields in each currency
that best predict excess bond returns in that currency. In our empirical analysis, we examine
the performance of the model both in- and out-of-sample with different numbers of priced
risk factors. The rank restrictions in equation (18) have both an economic and statistical
role. From an economics standpoint, it is logical to work with a relatively small number
of priced risk factors. Intuitively, although one may need to model the joint dynamics of
hundreds of prices, it makes little economic sense to all each of the source of uncertainty to
be priced.

From a statistical standpoint, risk premia are notoriously difficult to estimate so again
it is instructive to examine the number of free parameters under different specifications.
When we model the G10 currencies and term structures, the state vector on the left hand
side of equation (18) is 37-dimensional and the state vector on the right hand side is 10-
dimensional. If there is one priced risk factor (i.e. R = 1) then there are 37 + 10 = 47 free
parameters in equation (18). If there are two priced risk factors (i.e. R = 2) then there

9Note that the number of free parameters in equation (17a) would be reduced from 37 × 38/2 = 703 to
19×20/2 = 190 if we reduced the dimension of the state vector (including the log exchange rates of the nine
foreign currencies) from 37 to 19. However, this reduction in free parameters can be misleading because one
still has to estimate the full matrix of second moments in order to determine the state vector. For example,
if we were to choose the state vector to be the first ten PCs of changes in yields of all currencies then we
would still need to estimate the full matrix of second moments of yields in order to determine the PC weights
on each yield.
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are 2 × (37 + 9) = 92 free parameters. If there are three priced risk factors then there are
3 × (37 + 8) = 135 free parameters, and so on. If we used the same 37-dimensional state
vector on the right hand side of (18) then with one priced risk factor there are 37 + 37 = 74
free parameters. With two priced risk factors there are 2× (37 + 36) = 146 free parameters,
with three are 3× (37 + 35) = 216 free parameters, and so on. With no restrictions on the
number of priced risk factors there are 37 × 38 = 1406 free parameters! We could again
consider the possibility of reducing the dimension of the state vector. For instance, if we
chose an unrestricted model with a 12-dimensional state vector (excluding the log exchange
rates) then there would be 12 × 13 = 156 free parameters in equations (17b) and (17c)
but with three priced risk factors there would be only 3× (21 + 8) = 87 free parameters in
equation (18) for a total of 156+87 = 243. The number of free parameters in these equations
is the same as our restricted model with a 28-dimensional state vector (excluding the log
exchange rates) which has 108 + 135 = 243. Regardless of the dimension of the chosen state
vector, it is clear from both an economic and statistical standpoint that one needs to restrict
the number of priced risk factors in the model.

3 Data and Estimation Results

Our empirical implementation uses swap and exchange rate data from Bloomberg on the
G10 currencies which are the U.S. dollar (USD), British pound (GBP), Japanese yen (JPY),
Australian dollar (AUD), Euro (EUR), Canadian dollar (CAD), Swiss franc (CHF), New
Zealand dollar (NZD), Swedish krona (SEK), and Norwegian krone (NOK). We use weekly
(Wednesday) data from January 6, 1993 until March 28, 2009 and use data on the German
mark (DEM) before the Euro was introduced. We use 3- and 6-month Libor rates and 2-, 3-,
5-, 7-, and 10-year swap rates in each currency to bootstrap a zero-coupon yield curve under
the assumption that forward rates are constant between observations. For the early part of
our sample we are missing data on 7- and 10-year Norwegian swap rates and 6-month Libor
and 7- and 10-year New Zealand swaps rates.

We begin by estimating the single-currency term structure model in equations (10) and
(11) for the U.S. dollar and the model equations (12) and (15) for the remaining nine cur-
rencies in the G10. Table 1 provides the yield loadings for the first two (NZD and NOK) or
three (the remaining eight currencies) principal components of changes in each currency’s
yield. We use these principal component loadings to construct the state vectors Xt = L1Yt
for the U.S. dollar and X

(i)
t = L

(i)
1 Y

(i)
t for the other nine currencies. L1 is equal to the three

rows in Table 1 for the USD, L
(1)
1 is the three rows for GBP, L

(2)
1 is the three rows for JPY,

and so on. We set the constant terms in equations (10d) and (12d) to zero for each currency

(i.e. L0 = L
(i)
0 = 0).

We use maximum likelihood to estimate the domestic single-currency model parameters
ρ0, ρ1, K, θ, H0, Λ0, and Λ1 from equations (10) and (11). Let Ã and B̃ be the yield
weightings for these parameters calculated from equation (2) so that Yt = Ã + B̃Xt. The
parameters must satisfy the no-arbitrage restrictions from equation (5) that Xt = L1Yt ⇒
L1Ã = 0 and L1B̃ = I. We also add the additional restriction from equation (4) that
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Principal Loadings on Yields
Currency Component 3M 6M 2Y 3Y 5Y 7Y 10Y

USD 1 -0.15 -0.21 -0.42 -0.44 -0.44 -0.44 -0.42
2 0.67 0.63 0.09 -0.01 -0.14 -0.23 -0.26
3 -0.30 -0.09 0.55 0.42 0.01 -0.25 -0.60

GBP 1 0.14 0.20 0.42 0.45 0.45 0.45 0.40
2 0.55 0.55 0.29 0.14 -0.14 -0.32 -0.42
3 0.54 0.27 -0.44 -0.45 -0.04 0.22 0.44

JPY 1 -0.11 -0.15 -0.39 -0.46 -0.49 -0.45 -0.41
2 -0.51 -0.48 -0.35 -0.25 0.09 0.35 0.44
3 0.59 0.36 -0.36 -0.43 -0.09 0.23 0.39

AUD 1 -0.16 -0.21 -0.43 -0.43 -0.43 -0.44 -0.43
2 -0.60 -0.63 -0.10 -0.09 0.07 0.25 0.39
3 0.26 0.31 -0.42 -0.43 -0.28 0.34 0.53

EUR 1 0.16 0.20 0.43 0.45 0.45 0.43 0.40
2 0.64 0.56 0.21 0.06 -0.16 -0.28 -0.35
3 0.44 0.17 -0.47 -0.43 -0.09 0.27 0.54

CAD 1 0.35 0.41 0.44 0.41 0.38 0.35 0.29
2 -0.62 -0.52 0.07 0.17 0.28 0.33 0.36
3 0.26 0.09 -0.55 -0.47 0.11 0.28 0.56

CHF 1 -0.35 -0.36 -0.45 -0.44 -0.38 -0.35 -0.31
2 -0.66 -0.48 0.02 0.12 0.27 0.33 0.38
3 -0.40 0.01 0.52 0.41 0.00 -0.34 -0.53

NZD 1 0.61 0.51 0.47 0.40
2 0.78 -0.25 -0.36 -0.45

SEK 1 -0.21 -0.25 -0.40 -0.43 -0.44 -0.42 -0.42
2 -0.63 -0.60 -0.12 0.00 0.18 0.25 0.36
3 -0.32 -0.18 0.52 0.44 0.11 -0.20 -0.59

NOK 1 -0.55 -0.52 -0.40 -0.38 -0.35
2 -0.56 -0.34 0.35 0.42 0.52

Table 1: Principal Component Loadings on Yields
This table provides the first two or three principal components weights for weekly changes
in zero-coupon yields of each currency ranging from 3 months to 10 years. The data period
used for calculation was January 6, 1993 to December 26, 2001.
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rank ([Λ0,Λ0]) = 1 so that there is only one linear combination of yields that is priced. From
equations (10) and (11),

Et
[
d

[
X

Λ0 + Λ1Y

]
t

]
=

[
I

Λ1B̃

](
θ +

[
K I

] [ X
Λ0 + Λ1Y

]
t

)
dt, (19)

d

〈[
X

Λ0 + Λ1Y

]
,

[
X

Λ0 + Λ1Y

]>〉
=

[
I

Λ1B̃

]
H0

[
I

Λ1B̃

]>
dt. (20)

Since the quadratic variation is constant, changes in the state vectorXt+∆t−Xt = L1 (Yt+∆t − Yt)
over a discrete time interval ∆t (in our case, 1 week) have a multivariate Gaussian distribu-
tion. Appendix A shows that the conditional mean is

µX
t = Et [Xt+∆t −Xt] =

(
e∆t(K+Λ1B̃) − I

)(
K + Λ1B̃

)−1
(
θ +

[
K I

] [ X
Λ0 + Λ1Y

]
t

)
, (21a)

= L1Et [Yt+∆t − Yt] =
(
e∆t(K+Λ1B̃) − I

)(
K + Λ1B̃

)−1
(
θ +

[
K I

] [ L1Y
Λ0 + Λ1Y

]
t

)
,(21b)

and the conditional variance is

VX = Et
[
(Xt+∆t − Et [Xt+∆t]) (Xt+∆t − Et [Xt+∆t])

>
]
, (22a)

=

∫ ∆t

0

eu(K+Λ1B̃)H0e
u(K+Λ1B̃)

>

du = PΩ (∆t)P>, (22b)

where PK̃P> = K + Λ1B̃ is the eigenvalue decomposition of K + Λ1B̃ (i.e. K̃ is a diagonal
matrix with elements K̃j) and

Ωjk (∆t) = Σjk
e(K̃j+K̃k)∆t − 1

K̃j + K̃k
, (22c)

Σ = P−1H0

(
P−1

)>
. (22d)

The likelihood of changes in the state vector is,

LX =
1

N

N∑
n=1

`tn , (23a)

where

`Xt = −3

2
ln (2π)− 1

2
ln |VX | −

1

2

(
Yt+∆t − Yt − µXt

)>
L>1 V

−1
X L1

(
Yt+∆t − Yt − µXt

)
. (23b)

We assume that the cross-sectional pricing errors for yields with different maturities are
independent with mean zero and a Gaussian distribution. The K-dimensional vector of
pricing errors is

εt = Yt −
[
Ã+ B̃Xt

]
= Yt −

[
Ã+ B̃L1Yt

]
, (24a)
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and let εk = [εk (t1) , . . . , εk (tN+1)]> be the N + 1-dimensional time-series of pricing errors
for the kth element of ε (i.e. the kth yield). The log-likelihood of the pricing errors is

LY =
K∑
k=1

{
−1

2
ln (2π)− 1

2
lnσ2

k −
1

2

1

N + 1

ε>k εk
σ2
k

}
, (24b)

=
K∑
k=1

{
− 1

2
ln (2π)− 1

2
ln

(
ε>k εk
N + 1

)
− 1

2

N + 1

N + 1

ε>k εk
ε>k εk︸ ︷︷ ︸

1

}
. (24c)

We choose the single-currency domestic term-structure model parameters ρ0, ρ1, K, θ, H0,
Λ0, and Λ1 to maximize the log-likelihood of the changes in the state vector plus the cross-
sectional pricing errors for yields with different maturities, LX + LY , subject to the no-
arbitrage restrictions in equation (5) and the risk premia rank restriction rank ([Λ0,Λ0]) = 1.

We use the same maximum likelihood approach to estimate the parameters ρ
(i)
0 , ρ

(i)
1 , K(i),

θ(i), H
(i)
0 , Λ

(i)
0 , and Λ

(i)
1 for the single-currency term structure model in equations (12) and

(15) for the remaining nine currencies in the G10. For each of the ten single-currency term
structure models we use the period from January 6, 1993 to December 26, 2001 to estimate
the model parameters and the period from January 2, 2002 to March 28, 2009 for out-of-
sample testing. As our measure of model fit to the cross-section of yields we compute the

square root of the mean squared pricing errors
√

1
N+1

∑N+1
n=1 εk (tn) for each yield maturity

and each currency.

Table 2 provides the in- and out-of-sample pricing errors for each currency’s single-
currency term structure model. In general, the in- and out-of-sample fits are comparable in
magnitude. We use two factor models for New Zealand and Norway because we are missing
longer dated swap rates for much of our sample and the pricing errors are larger for these
currencies. The out-of-sample pricing errors are actually smaller for the Australian currency
which we think reflects relatively noisy data for this currency over the period that we used
for estimation.

For the domestic single-currency term structure model we have an estimate of the 7× 1
vectorΛ0 and the 7 × 3 matrix Λ1 such that rank ([Λ0,Λ1]) = 1. From these estimates we
can compute the singular value decomposition [Λ0,Λ1] = U ∗ S ∗ V where U is 3 × 1 with
‖U‖2 = U>U = 1, S is 1× 1, and V is 1× 8 with ‖V ‖2 = V >V = 1. From equation (11) we
define Λ = U ∗ S, L̃0 = V1, and L̃1 = V2→8 so that we can write our estimates of risk premia
in the single-currency domestic term structure model as

− d 〈X, logM〉t = (Λ0 + Λ1Yt) dt = Λ
(
L̃0 + L̃1Yt︸ ︷︷ ︸

X̃t

)
dt. (25)

Similarly, for each of the other nine single-currency term structures models we can compute

the singular value decomposition
[
Λ

(i)
0 ,Λ

(i)
1

]
= U (i) ∗ S(i) ∗ V (i). Again, from (15) we can

define Λ(i) = U (i) ∗ S(i), L̃
(i)
0 = V

(i)
1 , and L̃

(i)
1 = V

(i)
2→8 so that we can write our estimates of
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Zero-Coupon Maturity
Currency 3M 6M 2Y 3Y 5Y 7Y 10Y

USD In 4.2 4.6 2.2 1.9 2.3 1.9 2.5
Out 7.2 8.3 3.9 1.8 3.6 1.7 3.2

GBP In 4.1 4.3 4.4 3.3 5.3 3.0 5.2
Out 4.5 6.1 4.6 1.7 3.6 1.7 3.2

JPY In 1.7 2.0 2.2 1.5 3.0 2.3 3.0
Out 1.7 2.4 3.0 0.4 3.6 2.3 4.1

AUD In 10.9 10.6 13.9 9.8 6.7 2.8 2.9
Out 6.6 5.9 8.2 4.5 7.5 4.7 5.0

EUR In 3.0 3.7 2.6 1.9 3.5 1.9 3.0
Out 3.5 4.8 3.8 1.4 3.2 1.9 3.2

CAD In 5.3 5.8 4.1 4.3 4.2 5.3 4.3
Out 7.0 8.0 2.9 2.2 3.6 2.5 3.9

CHF In 3.1 4.5 2.8 2.3 3.4 2.2 3.2
Out 4.1 5.7 4.3 2.2 5.8 3.3 6.6

NZD In 2.1 10.8 8.7 3.2 9.5
Out 2.4 9.4 9.4 3.6 11.4

SEK In 6.1 5.8 6.5 2.4 7.2 5.9 7.2
Out 5.6 5.8 9.6 1.6 10.7 7.8 10.5

NOK In 6.3 6.2 13.0 4.9 14.4
Out 8.4 8.3 17.3 6.1 19.9

Table 2: Root Mean Squared Zero-Coupon Swap Rate Pricing Errors in Basis Points
In-sample pricing errors are from January 6, 1993 to December 26, 2001 and out-of-sample
pricing errors are from January 2, 2002 to March 28, 2009.
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Constant Yield Maturity (L̃1and L̃
(i)
1 )

Currency (L̃0 and L̃
(i)
0 ) 3M 6M 2Y 3Y 5Y 7Y 10Y

USD 0.00 -0.02 -0.02 0.54 -0.67 -0.09 0.46 -0.21
GBP -0.00 -0.42 0.64 -0.51 0.37 -0.01 -0.10 0.05
JPY 0.01 0.15 -0.05 -0.02 -0.03 -0.40 0.78 -0.45
AUD 0.00 -0.17 0.21 -0.09 -0.15 0.57 -0.69 0.30
EUR -0.00 -0.21 0.20 0.20 -0.22 0.34 -0.73 0.43
CAD -0.01 -0.02 -0.07 0.52 -0.04 -0.80 0.13 0.26
CHF -0.00 -0.33 0.37 0.27 -0.46 0.40 -0.50 0.23
NZD 0.00 -0.24 0.80 -0.12 -0.54
SEK 0.00 0.17 -0.36 0.78 -0.46 -0.01 -0.15 -0.01
NOK 0.00 -0.04 0.09 -0.56 0.77 -0.29

Table 3: Single-Currency Risk Premia Factor Weights

This table provides our estimates from equations (25) and (26) of the vector of yields in each cur-

rency that determines risk premia in that currency’s single-currency term structure. The estimates

were obtained using weekly data from January 6, 1993 to December 26, 2001.

risk premia in the single-currency term structure model for foreign currency i as

− d
〈
X(i), logMS(i)

〉
t

=
(

Λ
(i)
0 + Λ

(i)
1 Y

(i)
t

)
dt = Λ(i)

(
L̃

(i)
0 + L̃

(i)
1 Y

(i)
t︸ ︷︷ ︸

X̃
(i)
t

)
dt. (26)

Table 3 provides our estimates of L̃0 and L̃1 for the domestic single-currency model and L̃
(i)
0

and L̃
(i)
1 for each of the nine foreign currency term structure models.

With our estimates of the ten single-currency term structure models in hand, we move to
estimating the multi-currency model in equations (17) and (18). We use the same maximum
likelihood technique described in equations (23) and (24) to estimate the model parameters.
To our knowledge, there is no existing research on the number of priced risk factors so we
vary specification of risk premia in equation (18) to allow anywhere from one to ten priced
risk factors. Regardless of the number of priced risk factors in the multi-currency model,
the root mean squared pricing errors for each country’s zero-coupon swap rates to do not
change by more than one tenth of a basis point from the single-currency results reported in
Table (2), so in the interest of space we do not repeat those results.

Our multi-currency model provides an ideal framework for answering a number of inter-
esting questions about risk premia in global swap markets. How many priced risk factors
are there in global swap (interest rates) markets? Does information in global swap markets
improve our ability to predict changes in the yield curves of individual countries? What is
the risk/reward tradeoff available to global fixed income investors?

To answer these questions, we look at how well different specifications of the model (i.e.
different numbers of priced risk factors) predict changes in zero-coupon swap rates. We
compare the squared prediction errors from the model to the squared prediction errors when
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there are no risk premia and the expectations hypothesis holds (i.e. the expected future
zero-coupon swap rate is today’s forward rate), and compute the following statistics

R2
k = 1−

∑
(Yt+∆t − Et [Yt+∆t])

2
k∑(

Yt+∆t − EQ
t [Yt+∆t]

)2

k

and R
(i)2
k = 1−

∑(
Y

(i)
t+∆t − Et

[
Y

(i)
t+∆t

])2

k∑(
Y

(i)
t+∆t − EQi

t

[
Y

(i)
t+∆t

])2

k

, (27)

where Q is the risk-neutral measure for the domestic currency and Qi is the risk-neutral
measure for currency i (under which the expectations hypothesis holds). Our multi-currency
model is constructed to exactly match the prices of the interest rate factors Xt = L1Yt,
X

(1)
t = L

(1)
1 Y

(1)
t , . . ., and X

(9)
t = L

(9)
1 Y

(9)
t .

As we highlighted earlier, the model correctly prices the factors, but the individual zero-
coupon swap rates in each currency are priced with error. Therefore the measure of fit in
equation (27) depends on both the time-series prediction errors, as well as the cross-sectional
pricing errors. The pricing errors turn out to be virtually the same across all specifications
of the model, but we subtract these pricing errors from (27) so as to not contaminate our
measure of the time-series fit. The resulting statistics that we use to compare the time-series
fit of the different model specifications are
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Tables 6 and 7 in Appendix B provide the in-sample (January 6, 1993 to December 26,
2001) R2 statistics computed from the weekly (overlapping) errors in the predicted change
of the zero-coupon swap rates four weeks ahead. By construction, as we increase the number
of priced risk factors in the model, the in-sample R2 also increases. For comparison, we
also include the R2 statistic for each currency’s single-currency term structure model. We
focus our analysis on changes in longer maturity yields (i.e. two to ten years) where risk
premia play a larger role. For all of the currencies, the in-sample R2 from the ten currency
model with a single priced risk factor is comparable in magnitude to the in-sample R2 from
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the individual single-currency models. In fact, for most of the currencies, the in-sample
R2’s from the ten currency model with only two priced risk factors are higher than those
from the individual single-currency. The two notable exceptions are the U.S. dollar and the
Canadian dollar where the in-sample R2’s from those single-currency models are as high as
the R2’s from the ten currency model with three priced risk factors. We conclude from this
in-sample evidence that there are a relatively small number of priced risk factors in G10 swap
rates. Moreover, the information in global swap markets can be used in a fairly parsimonious
manner (i.e. no more than three priced risk factors) to improve our predictions of changes
in the yield curves of individual the countries.

As a further test of our model, in Tables 4 and 5 we compare the prediction results from
the ten currency model with those from each of the single-currency models over the out-of-
sample period from January 2, 2002 to March 28, 2009. The out-of-sample evidence in these
tables favors the ten currency model with a single priced risk factor. For every currency but
the U.S., the out-of-sample R2’s from the ten currency model with a single priced risk factor
are higher (often much higher) than, or at worst virtually the same as, the R2’s from the
individual single-currency models. The U.S. is the only currency where the single-currency
model out-performed the ten currency model with a single priced risk factor out-of-sample.
Moreover, for every currency but Japan, the out-of-sample R2’s from the ten currency model
actually decrease as the number of priced risk factors in the model increase from one to
three (Japan is the one currency where none of the models is very successful at predicting
out-of-sample changes in yields). Our view is that the out-of-sample evidenc ine Tables 4
and 5 strongly favors the joint ten currency model with a single priced risk factor.10

Next we use our favored ten currency model with a single priced risk factor to compute
the risk/reward tradeoff for a global investor who is free to invest in any combination of
zero-coupon bonds in any of the G10 currencies. Figure (1) plots the maximum Sharpe
ratio implied by this model. For completeness, we also include the Sharpe ratio from the
full-sample estimate. The mean Sharpe ratio using the estimates from January 3, 1993 to
December 26, 2001 is 0.98 and the standard deviation is 0.71. If we use the full sample from
January 3, 1993 to March 28, 2009 to estimate the model parameters then the mean Sharpe
ratio is reduced to 0.56 and the standard deviation is 0.46.11

We can also use the model to examine how much a U.S. investor could improve his or
her risk/reward tradeoff by holding a portfolio of zero-coupon bonds in the G10 currencies
rather than restricting her portfolio to just U.S. zero-coupon bonds. Figure 2 compares the
full sample estimate of the Sharpe ratio shown in Figure 1with the Sharpe ratio (computed
from the same model) for an investor who only holds U.S. zero-coupon bonds (but can use
the yields on zero-coupon bonds in the other nine currencies to help predict changes in U.S.
interest rates). The mean Sharpe ratio is 0.15 (standard deviation is 0.10), which indicates

10Although we do not discuss the results in detail, Table 8 in Appendix B shows that the ten currency
model with a single priced risk factor is also best for predicting changes in the exchange rates.

11It is interesting to note that the time-series variation in the Sharpe ratio over the out-of-sample period
for the model that is estimated with data from 1993 to 2001 is very similar to the variation when the model
is estimated using the full sample, but the level of the Sharpe ratio from 2002 to 2009 is essentially shifted
down with the full sample estimates.
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# of Priced Yield Maturity
Currency Factors 3M 6M 2Y 3Y 5Y 7Y 10Y

USD Single-Cur -4.0 4.5 14.5 12.2 7.7 4.6 1.8
1 -2.3 2.2 5.4 4.1 2.7 1.9 1.3
2 -4.7 1.3 4.4 2.2 -0.3 -1.5 -2.4
3 -1.5 4.8 4.9 2.0 -1.0 -2.2 -2.0

GBP Single-Cur -13.0 -7.0 -0.4 -1.7 -2.8 -2.5 -1.8
1 10.5 10.7 5.0 3.8 3.6 3.7 3.7
2 11.4 11.2 2.4 0.6 0.2 0.8 1.6
3 10.8 10.9 2.6 0.8 0.4 0.9 1.6

JPY Single-Cur -25.7 -58.1 -76.3 -52.3 -25.8 -15.1 -9.0
1 -17.2 -49.3 -73.6 -49.4 -22.6 -12.1 -6.3
2 1.2 -19.1 -47.4 -33.0 -15.6 -8.6 -4.8
3 -11.0 -45.2 -73.5 -47.7 -20.2 -10.2 -5.2

AUD Single-Cur 1.9 0.7 -1.3 -1.7 -2.3 -2.7 -3.0
1 3.9 5.0 3.4 2.7 2.4 2.2 2.1
2 6.9 7.0 2.6 0.6 -2.0 -3.7 -4.9
3 4.4 2.9 -4.5 -6.8 -9.3 -10.3 -10.8

EUR Single-Cur 13.3 13.8 7.5 6.2 5.4 4.9 4.2
1 16.6 16.7 7.5 6.1 5.4 4.9 4.2
2 21.5 19.3 5.6 3.7 2.4 1.7 0.9
3 26.6 22.7 5.7 3.6 2.0 0.9 -0.4

Table 4: Out-of-Sample Weekly Overlapping 4 Week Prediction Errors R2 in %

This table provides our estimates of the in-sample R2 statistic from equations (28) and (29). We use

weekly (overlapping) errors in the predicted change of the zero-coupon swap rates four weeks ahead.

The first row for each currency are the prediction results using the estimates of the single-currency

term structure model in that currency. The next three rows are the prediction results from the

multi-currency model with one, two, or three priced risk factors across all currencies (i.e. R = 1, 2, 3

in equation (18)). The model parameters were estimated using weekly data from January 6, 1993

to December 26, 2001. The out-of-sample period is from January 2, 2002 to March 28, 2009.
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# of Priced Yield Maturity
Currency Factors 3M 6M 2Y 3Y 5Y 7Y 10Y

CAD Single-Cur -29.1 -18.7 -2.5 -1.2 0.1 0.9 1.5
1 -92.0 -45.1 5.4 7.7 9.2 9.4 8.7
2 -77.9 -34.7 5.7 6.5 6.4 5.8 4.7
3 -66.7 -31.2 2.3 3.0 3.2 3.1 2.6

CHF Single-Cur 30.3 26.2 -1.0 -1.6 1.9 4.1 4.9
1 28.6 25.7 10.9 8.6 6.9 5.9 5.1
2 33.7 27.3 5.5 2.8 1.3 0.9 0.8
3 34.8 28.2 5.7 2.9 1.1 0.5 0.2

NZD Single-Cur 6.0 -32.0 -34.4 -34.7
1 4.7 1.5 0.2 -1.0
2 4.8 -2.3 -4.9 -7.0
3 -39.1 -31.5 -28.3 -25.6

SEK Single-Cur 45.8 43.7 12.8 6.4 5.4 7.4 9.4
1 35.5 34.6 14.8 9.7 7.1 6.9 7.1
2 36.0 34.8 9.5 3.1 0.0 0.5 2.0
3 40.5 37.9 4.9 -2.4 -4.7 -3.0 0.0

NOK Single-Cur -74.4 -87.6 -103.5 -91.3 -74.9
1 12.0 13.0 10.8 8.2 5.5
2 8.3 8.0 1.8 -0.7 -2.7
3 6.5 4.7 -6.9 -9.6 -11.0

Table 5: Out-of-Sample Weekly Overlapping 4 Week Prediction Errors R2 in %

This table provides our estimates of the in-sample R2 statistic from equations (28) and (29). We use

weekly (overlapping) errors in the predicted change of the zero-coupon swap rates four weeks ahead.

The first row for each currency are the prediction results using the estimates of the single-currency

term structure model in that currency. The next three rows are the prediction results from the

multi-currency model with one, two, or three priced risk factors across all currencies (i.e. R = 1, 2, 3

in equation (18)). The model parameters were estimated using weekly data from January 6, 1993

to December 26, 2001. The out-of-sample period is from January 2, 2002 to March 28, 2009.
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Figure 1: Maximum Sharpe Ratio for G10 Term Structure Model
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This figure plots the maximum Sharpe ratio from the ten currency model in equations (17) and (18). For the

line labeled “1993 to 2001 estimates”, the model parameters were estimated using weekly data from January

6, 1993 to December 26, 2001. For the line labeled “1993 to 2009 estimates”, the parameters were estimated

using weekly data from January 6, 1993 to March 28, 2009.

that an investor can more than tripe her expected excess return for a given level of volatility
if she is willing/able to hold foreign zero-coupon bonds and currencies in her portfolio.

Finally, we examine how our estimates of risk premia change when we move from a single-
currency model to a multi-currency model that must predict the changes in more than one
currency’s yields. Figure (3) plots the the maximum Sharpe ratio estimated from the single-
currency model for the U.S. term structure of interest rates versus the estimate of the same
quantity from the ten currency model with a single priced risk factor. The mean Sharpe ratio
for the single-currency model is 0.38 and the standard deviation is 0.54 as compared to a
mean of 0.15 and standard deviation of 0.10 in the multi-currency model. The take away from
this plot is that the estimated maximum Sharpe ratio (equivalently, the estimated market
prices of risk) in the multi-currency model is in general lower, less volatile, and arguably
more econonomically plausible than the estimate from the single-currency model.

4 Conclusions

We develop a simple no-arbitrage model of foreign exchange rates and interest rates that
can easily be applied to an arbitrary number of foreign currencies. The model has the
appealing feature that it reduces to a standard two or three factor model for pricing yields
in each currency, yet still maintains a small number of globally priced risk factors. We
use the model to analyze the joint dynamics of exchange rates and the term structures of
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Figure 2: Maximum Sharpe Ratio for a U.S Investor vs. a Global Investor
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The line labeled “G10” is the maximum Sharpe ratio from the ten currency model in equations (17) and

(18)with a single priced risk factor where the investor is free to invest in any combination of zero-coupon

bonds in any of the G10 currencies. The line labeled “US” is the maximum Sharpe ratio using the same

model applied to an investor who is restricted to invest in U.S. zero-coupon bonds but can use the yields

on zero-coupon bonds in the other nine currencies to help predict changes in U.S. interest rates. The model

was estimated with weekly data from January 6, 1993 to March 28, 2009.

Figure 3: Maximum Sharpe Ratio in Single- versus Multi-Currency Model
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The line labeled “Single Currency Estimate” is the maximum Sharpe ratio estimated from the single-currency

model for the U.S. term structure of interest rates. The line labeled “Multi-Currency Estimate” is the

maximum Sharpe ratio from the ten currency model with a single priced risk factor where the investor is

restricted to invest U.S. zero-coupon bonds but can use the yields on zero-coupon bonds in the other nine

currencies to help predict changes in U.S. interest rates. Both models were estimated with weekly data from

January 6, 1993 to March 28, 2009.
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swap rates for the G10 currencies. Using both in- and out-of-sample measures of fit we
conclude that there is one priced risk factor in G10 swap rates. Our ten currency model
with a single priced risk factor is better able to predict changes in yields compared with ten
single-currency models that are each solely designed to explain changes in that currency’s
yields. These empirical estimates illustrate that the information in global swap markets can
be used in a parsimonious manner to improve our predictions of changes in the yield curves
of individual the countries. We estimate the risk premium for exposure to this single factor
and show that a U.S. fixed income investor can more than triple the Sharpe ratio of her
portfolio if she is willing/able to invest in any yield in any G10 currency.
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A Model Moments

Our model uses a continuous-time affine process with constant quadratic variation so changes
in the state vector over discrete intervals are distributed multivariate Gaussian. Fisher and
Gilles (1996) show how to calculate the mean and covariance of general affine processes over
discrete intervals. Our risk premia specifications in equations (6), (15), and (18) vary slightly
from the standard model, so for completeness we show how to compute the first and second
moments of the Gaussian distribution.
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If we take the eigenvalue decomposition of K+FG = PK̃P−1 where K̃ is a diagonal matrix
with elements K̃i, then the variance in equation (33) is
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B Additional Tables
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# of Priced Yield Maturity
Currency Factors 3M 6M 2Y 3Y 5Y 7Y 10Y

USD Single-Cur 25.0 20.0 5.7 3.5 1.7 0.9 0.3
1 11.7 7.9 1.2 0.7 0.3 0.2 0.2
2 15.1 9.0 1.7 1.7 2.3 2.7 3.0
3 25.0 18.0 5.1 3.9 3.3 3.2 3.2

GBP Single-Cur 16.4 7.9 0.2 0.7 0.8 0.5 0.2
1 13.7 8.6 0.7 0.4 0.5 0.8 1.2
2 14.8 8.8 1.9 2.4 3.3 3.7 3.9
3 15.6 9.2 1.8 2.3 3.3 3.7 3.9

JPY Single-Cur 18.9 21.0 16.1 14.1 11.2 8.9 6.7
1 10.7 13.0 11.7 10.5 8.4 6.6 4.9
2 14.4 17.1 15.1 13.6 11.2 9.0 6.8
3 19.0 22.4 18.6 16.2 12.4 9.5 7.0

AUD Single-Cur 28.4 22.3 7.5 6.1 5.6 5.6 5.4
1 26.3 18.4 3.2 1.9 1.3 1.1 1.1
2 26.9 19.7 6.5 6.5 7.9 8.8 9.3
3 27.6 20.4 6.5 6.3 7.4 8.2 8.7

EUR Single-Cur 10.7 11.7 8.0 6.8 5.4 4.4 3.3
1 2.8 3.9 4.1 3.5 2.6 1.8 1.1
2 4.7 4.1 5.9 6.2 5.8 4.9 3.7
3 5.2 4.4 5.9 6.2 5.8 4.9 3.7

Table 6: In-Sample Weekly Overlapping 4 Week Prediction Errors R2 in %

This table provides our estimates of the in-sample R2 statistic from equations (28) and (29). We use

weekly (overlapping) errors in the predicted change of the zero-coupon swap rates four weeks ahead.

The first row for each currency are the prediction results using the estimates of the single-currency

term structure model in that currency. The next three rows are the prediction results from the

multi-currency model with one, two, or three priced risk factors across all currencies (i.e. R = 1, 2, 3

in equation (18)). The model parameters were estimated using weekly data from January 6, 1993

to December 26, 2001.
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# of Priced Yield Maturity
Currency Factors 3M 6M 2Y 3Y 5Y 7Y 10Y

CAD Single-Cur 17.6 15.3 7.5 6.6 6.6 6.8 6.8
1 16.8 14.0 5.3 3.9 3.0 2.6 2.1
2 17.3 14.9 7.2 6.2 5.8 5.6 5.3
3 20.5 17.7 8.3 6.9 6.2 6.9 5.4

CHF Single-Cur 2.5 4.0 5.4 4.8 3.4 2.2 1.3
1 4.1 3.9 2.6 2.4 2.3 2.2 2.0
2 5.0 4.0 4.7 5.5 6.3 6.4 6.0
3 4.5 3.6 4.7 5.5 6.3 6.4 6.0

NZD Single-Cur -0.1 5.3 7.9 10.1
1 0.4 -0.0 -0.1 -0.0
2 0.6 2.5 3.0 3.3
3 8.3 6.5 5.4 4.5

SEK Single-Cur 17.5 12.3 0.9 0.1 -0.0 0.1 0.2
1 22.3 18.3 4.6 2.7 1.8 1.6 1.7
2 22.0 18.1 9.0 8.3 7.6 7.0 6.1
3 23.0 18.6 8.8 8.1 7.6 7.0 6.2

NOK Single-Cur 14.2 15.1 14.8 12.4 9.3
1 3.2 3.3 2.6 1.9 1.3
2 12.3 13.9 17.8 16.9 14.7
3 12.3 14.0 18.4 17.7 15.7

Table 7: In-Sample Weekly Overlapping 4 Week Prediction Errors R2 in %

This table provides our estimates of the in-sample R2 statistic from equations (28) and (29). We use

weekly (overlapping) errors in the predicted change of the zero-coupon swap rates four weeks ahead.

The first row for each currency are the prediction results using the estimates of the single-currency

term structure model in that currency. The next three rows are the prediction results from the

multi-currency model with one, two, or three priced risk factors across all currencies (i.e. R = 1, 2, 3

in equation (18)). The model parameters were estimated using weekly data from January 6, 1993

to December 26, 2001.
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# of Priced Risk Factors
In-Sample Out-of-Sample

Currency 1 2 3 1 2 3
GBP 0.4 0.4 0.5 -0.7 -0.7 -1.0
JPY 0.1 1.4 1.3 -1.1 -3.7 -3.9
AUD 0.1 0.2 0.4 0.4 0.3 -0.0
EUR 0.4 0.1 1.3 -1.7 -2.6 -2.3
CAD 0.2 0.2 0.3 -0.7 -0.8 -0.8
CHF 0.2 0.1 1.0 -1.3 -1.9 -2.9
NZD 1.0 3.4 3.3 0.7 0.0 0.2
SEK 0.0 0.0 2.6 -0.1 -0.0 -4.8
NOK 0.0 -0.1 0.0 0.2 0.1 -0.1

Table 8: Weekly Overlapping 4 Week Prediction Errors R2 in % for Exchange Rates
The table provides our estimates of the in and out-of-sample R2 statistic

R(i)2 = 1−
∑

(logSt+∆t − Et [logSt+∆t])
2∑(

logSt+∆t − EQ
t [logSt+∆t]

)2 ,

with one, two, or three priced risk factors in the ten currency model. The in-sample period
from January 6, 1993 to December 26, 2001 was used to estimate the model parameters and
the out-of-sample period is from January 2, 2002 to March 28, 2009.
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