Abstract

Risks of rare economic disasters can have large impact on asset prices. At the same time, difficulty in inference regarding both the likelihood and severity of disasters as well as agency problems can effectively lead to significant disagreements among investors about disaster risk. We show that such disagreements generate strong risk sharing motives, such that just a small amount of optimists in the economy can significantly reduce the disaster risk premium. Our model highlights the “latent” nature of disaster risk: the disaster risk premium will likely be low and smooth during normal times, but can increase dramatically when the risk sharing capacity of the optimists is reduced, for example, following a disaster. The model also helps reconcile the difference in the amount of disaster risk implied by financial markets and international macro data, and provides caution to the approach of extracting disaster probabilities from asset prices, which can disproportionately reflect the beliefs of a small group of optimists. Finally, our model predicts a novel relation between the equity premium and the size of the disaster insurance market.
1 Introduction

Recent research by Barro (2006), Gabaix (2009) and others have shown that a model of rare disasters calibrated to international macroeconomic data can explain the equity premium and a wide range of other macro and asset pricing puzzles.\(^1\) At the same time, almost by definition, it is difficult to accurately estimate the likelihood of disasters or their impact, which naturally leads to disagreements among investors about disaster risk. In this paper, we show that the relation between the disaster risk premium and the amount of disagreements about disaster risk is highly nonlinear. In particular, just a small amount of optimistic investors can greatly attenuate the impact of disaster risk on asset prices. Our paper highlights the “latent” nature of disaster risk in financial markets. It helps reconcile the differences in the estimates of disaster risk from financial and macro data, and also predicts a novel relation between the equity premium and the size of the disaster insurance market.

We study an exchange economy with two types of agents who disagree about disaster risk. A technical contribution of our model is that it can capture very general forms of disagreements in a tractable way. For example, the agents can disagree about the intensity of disasters as well as the distribution of disaster size, and both the perceived disaster intensities and the amount of disagreements are allowed to fluctuate over time. We assume markets are complete, so that the agents can trade contingent claims and achieve optimal risk sharing.

Heterogeneous beliefs about disaster risk arise naturally due to the difficulty in estimating the frequency and size of disasters with limited data. For example, a frequentist would not reject the hypothesis of a disaster intensity of 3% per year at the 5% significance level even after observing a 100 year sample without a single disaster. Another source of heterogeneous beliefs is agency problems for fund managers and large financial institutions. Limited

\(^1\)Earlier contributions on disaster risk include Rietz (1988), Longstaff and Piazzesi (2004), and Liu, Pan, and Wang (2005). Among the more recent work are Weitzman (2007), Barro (2009), Wachter (2009), Farhi and Gabaix (2009), Gourio (2010), and many others.
liability, lack of transparency, compensation contracts that reward short term performance, and government guarantees can all motivate excessive tail-risk taking, often referred to as “picking up nickels in front of a steamroller.”2 These agents will effectively act as optimists in our model.

We show that having a new group of agents with different beliefs about disasters can cause the equity premium to drop substantially, even when the new agents only have a small amount of wealth. This result holds whether the disagreement is about the intensity or impact of disasters. We analytically characterize the sensitivity of risk premiums to the wealth distribution and derive its limit as the amount of disagreement increases. When we calibrate the beliefs of one agent using international macro data (from Barro (2006)) and the other using only consumption data from the US (where disasters have been relatively mild), raising the fraction of total wealth for the second agent from 0 to 10\% lowers the equity premium from 4.4\% to 2.0\%. The decline in the equity premium becomes faster when the disagreement is larger, or when the new agents also have lower risk aversion.

Why is the disaster risk premium so sensitive to heterogeneous beliefs? First, the equity premium grows exponentially in the size of individual consumption losses during a disaster. Thus, removing just the “tail of the tail” from consumption losses can dramatically bring down the premium. For example, in a representative agent economy (with relative risk aversion $\gamma = 4$), if the consumption loss in a disaster is reduced from 40\% to 35\%, the equity premium will fall by 40\%. This non-linearity is an intrinsic property of disaster risk models, which generate high premium from rare events by making marginal utility in the disaster states rise substantially with the size of the consumption losses.

Second, in our economy, as is typical in models with moderate risk aversion and low volatility of consumption growth, the equity premium derives primarily from disaster risk,

2It is well-documented that shorting out-of-the-money S&P put options can generate superior returns in short samples. See, e.g., Lo (2001). Malliaris and Yan (2010) show that reputation concerns can cause fund managers to favor strategies with negative skewness. Makarov and Plantin (2011) show that convex compensation contracts can lead to risk shifting in the form of selling deep out-of-the-money puts.
and the compensation for bearing disaster risk must be high. For example, if the equity premium due to disaster risk is 4% per year, and the market falls by 40% in a disaster, then a disaster insurance contract that pays $1 when a disaster strikes within a year must cost at least 10 cents, regardless of the actual chance of payoff. Such a high premium provides strong incentive for investors with optimistic beliefs about disasters to provide the insurance.

In a benchmark example of our model, the pessimists are willing to pay up to 13 cents per $1 of disaster insurance, even though the payoff probability is only 1.7% under their own beliefs. The optimists, who believe the payoff probability is just 0.1%, underwrite insurance contracts with notional value up to 40% of their total wealth, despite the risk of losing 70% of their consumption if a disaster strikes.

Our model provides new insights on how disaster risk affects the dynamics of asset prices. The disaster risk premium crucially depends on the wealth distribution among investors with different beliefs. During normal times (when the wealth distribution among heterogeneous investors is relatively disperse), the disaster risk premium will remain low and smooth despite the fluctuations in the average belief of disaster risk in the market. This makes disaster risk “latent” and hard to detect in financial markets. When the wealth share of the pessimists rises (e.g., following a disaster), the disaster risk premium will increase dramatically and become more sensitive to fluctuations in disaster risk going forward. Such changes in the wealth distribution can also occur for other reasons. For example, the optimists’ beliefs about big disasters can converge to those of the pessimists after observing a relatively small market crash. Fund managers and financial institutions that are acting as optimists can also lose their risk sharing capacity when they face tighter capital constraints.

The model also helps reconcile the tension between the amount of disaster risk indicated by macroeconomic data and asset prices. For example, Backus, Chernov, and Martin (2010) and Collin-Dufresne, Goldstein, and Yang (2010) find that the prices of index options and credit derivatives imply significantly smaller probabilities of extreme outcomes than those estimated from macroeconomic data. Mehra and Prescott (1988) also make the observation
that financial markets appear to have little reaction to events such as the Cuban Missile Crisis, when the risk of a disaster should have risen significantly. We show that, in the presence of heterogeneous beliefs about disasters, asset prices tend to disproportionately reflect the beliefs of those optimistic agents in the economy, which could make the assets appear little affected by the disaster risks in the macroeconomy.

The above results also provide caution for extracting disaster probabilities from asset prices. The link between the risk neutral and actual probabilities of disasters is simple and stable in a model with homogeneous agents, which makes it straightforward to estimate the actual disaster probabilities from option prices. However, our model shows that, if we ignore the potential effects of risk sharing and directly extracting disaster probabilities from financial data, we could substantially underestimate disaster probabilities. Moreover, changes in the wealth distribution among heterogeneous investors can lead to substantial changes in the risk neutral probabilities of disasters in the absence of any variation in the actual disaster probabilities, which could cause us to overestimate the variations in the actual disaster probabilities over time.

Finally, our model predicts a novel relation between the equity premium and the size of the disaster insurance market. There are two distinct scenarios under which there will be little trading of the disaster insurance contracts: (i) when the market perceived disaster risk is low, or (ii) when investors all agree that disaster risk is high, so that no one is willing to provide the insurance. The disaster risk premium will be low in the first case, but high in the second case. Large amount of trading in disaster insurance markets not only indicates strong demand for disaster insurance, but also significant heterogeneity across investors, which will keep the disaster risk premium at low levels. It is when the risk-sharing capacity in the economy dries up (when the optimists have little wealth) that the disaster risk premium becomes the highest.

Our paper builds on the literature of heterogeneous beliefs and preferences. The two pa-

\(^3\text{See Basak (2005) for a survey on heterogeneous beliefs and asset pricing. Recent developments include}\)
papers closest to ours are Bates (2008) and Dieckmann (2010). Bates (2008) studies investors with heterogeneous attitudes towards crash risk, which is isomorphic to heterogeneous beliefs of disaster risk. He focuses on small but frequent crashes and does not model intermediate consumption, and he shows that investor heterogeneity helps explain various option pricing anomalies. Dieckmann considers only log utility. In such a setting, risk sharing has limited effects on the equity premium and indeed many of the asset pricing puzzles that disasters are able to solve remain. Our model considers power utility and captures more general disagreements about disasters, time-varying disaster intensities, and time-varying disagreement.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3 analyzes the effect of risk sharing in a setting with disagreement about disaster intensity. Section 4 compares our results to other forms heterogeneity. Section 5 discusses the robustness of the model, and Section 6 concludes.

2 Model Setup

We consider a continuous-time, pure exchange economy. There are two agents (A, B), each being the representative of her own class. Agent A believes that the aggregate endowment is \(C_t = e^{c^a_t + c^d_t} \), where \(c^a_t \) is the diffusion component of log aggregate endowment, which follows

\[
dc^c_t = \bar{g}dt + \sigma_c dW^c_t, \tag{1}
\]

where \(\bar{g} \) and \(\sigma_c \) are the expected growth rate and volatility of consumption without jumps, and \(W^c_t \) is a standard Brownian motion under agent A’s beliefs. The term \(c^d_t \) is a pure jump

process whose jumps arrive with stochastic intensity λ_t under A’s beliefs,

$$d\lambda_t = \kappa(\bar{\lambda}^A - \lambda_t)dt + \sigma_\lambda \sqrt{\lambda_t} dW_t^\lambda, \quad (2)$$

where $\bar{\lambda}^A$ is the long-run average jump intensity under A’s beliefs, and W_t^λ is a standard Brownian motion independent of W_t^c. The jumps Δc_t^d have time-invariant distribution ν^A. We summarize agent A’s beliefs with the probability measure P_A.

Agent B believes that the probability measure is P_B, which we shall suppose is equivalent to P_A.\footnote{More precisely, P_A and P_B are equivalent when restricted to any σ-field $\mathcal{F}_T = \sigma(\{c^d_t, \lambda_t\}_{0 \leq t \leq T})$.} She may disagree about the growth rate of consumption without jumps, the likelihood of disasters or the distribution of the severity of disasters when they occur. We assume that the two agents are aware of each others’ beliefs, but nonetheless “agree to disagree”.\footnote{We do not explicitly model learning about disasters. Given the nature of disasters, Bayesian updating of beliefs about disaster risk using realized consumption growth will likely be very slow, and the disagreements in the priors will persist for a long time. See also Section 5.}

Specifically, as in Chen, Joslin, and Tran (2010), agent B’s beliefs are characterized by the Radon-Nikodym derivative $\eta_t \equiv (dP_B/dP_A)_t$, which satisfies

$$\eta_t = e^{a_t + bc_t^d - I_t}, \quad (3)$$

$$I_t = \int_0^t \left(b\bar{g} + \frac{1}{2} b^2 \sigma_c^2 + \lambda_s \left(\frac{\bar{\lambda}^B}{\bar{\lambda}^A} - 1 \right) \right) ds, \quad (4)$$

for some constants b and $\bar{\lambda}^B > 0$, and a_t is a pure jump process whose jumps are coincident with the jumps in c_t^d and have size

$$\Delta a_t = \log \left(\frac{\bar{\lambda}^B}{\bar{\lambda}^A} \frac{d\nu^B}{d\nu^A} \right), \quad (5)$$

where $\frac{d\nu^B}{d\nu^A}$ is a function of the disaster size and reflects the disagreement about the distribution of disaster size (conditional on a disaster). It will be large (small) for the type of disasters that agent B thinks are relatively more (less) likely than agent A.
Intuitively, \(\eta_t \) expresses the differences in beliefs between the agents by letting agent B assign a higher probability to those states where \(\eta_t \) is large. The terms \(a_t \) and \(b c_t^c \) reflect B’s potential disagreements regarding the likelihood of disasters and the growth rate of consumption, respectively. It follows from (3–5) that, under agent B’s beliefs, the expected growth rate of consumption without jumps is \(\bar{g} + b \sigma^2_c \), a disaster occurs with intensity \(\lambda_t \times \frac{\lambda_B}{\lambda_A} \) (with long run average intensity \(\bar{\lambda}^B \)), and the disaster size distribution is \(\nu^B \) (which is equivalent to \(\nu^A \)). The jumps in \(\eta_t \) specified in (5) are given by the log likelihood ratio for disasters of different sizes under the two agents’ beliefs. Within this setup, agent B not only can disagree with A on the average frequency of disasters, but also the likelihoods for disasters of different magnitude. Moreover, this setup also has the advantage of remaining within the affine family as \((c_t^c, c_t^d, \log \eta_t, \lambda_t)\) follows a jointly affine process, which makes it possible to compute the equilibrium analytically.

We assume that the agents are infinitely lived and have constant relative-risk aversion (CRRA) utility over life time consumption:

\[
U^i(C^i) = E^i_0 \left[\int_0^\infty e^{-\rho^i_t t} \left(\frac{C^i_t}{1-\gamma^i} \right) dt \right], \quad i = A, B, \tag{6}
\]

where \(E^i \) denotes the expectation under agent \(i \)'s beliefs \(P^i \). We also assume that markets are complete and agents are endowed with some fixed share of aggregate consumption \((\theta_A, \theta_B = 1 - \theta_A)\).

The equilibrium allocations can be characterized as the solution of the following planner’s problem, specified under the probability measure \(P_A \),

\[
\max_{C^A_t, C^B_t} E^A_0 \left[\int_0^\infty e^{-\rho^A t} \left(\frac{(C^A_t)^{1-\gamma_A}}{1-\gamma_A} + \tilde{\zeta}_t e^{-\rho^B t} \frac{(C^B_t)^{1-\gamma_B}}{1-\gamma_B} \right) dt \right], \tag{7}
\]

subject to the resource constraint \(C^A_t + C^B_t = C_t \). Here, \(\tilde{\zeta}_t \equiv \zeta \eta_t \) is the belief-adjusted Pareto weight for agent B. From the first order condition and the resource constraint we
obtain the equilibrium consumption allocations: $C_t^A = f^A(\hat{\zeta}_t)C_t$ and $C_t^B = (1 - f^A(\hat{\zeta}_t))C_t$, where $\hat{\zeta}_t = e^{(\rho_A - \rho_B)t}C_t^{\gamma_A - \gamma_B}\bar{\bar{\zeta}}_t$, and f^A is in general an implicit function.

The stochastic discount factor under A’s beliefs, M_t^A, is given by

$$M_t^A = e^{-\rho_A t}(C_t^A)^{-\gamma_A} = e^{-\rho_A t}f^A(\hat{\zeta}_t)^{-\gamma_A}C_t^{-\gamma_A}.$$ \hspace{1cm} (8)

Finally, we can solve for the Pareto weight ζ through the life-time budget constraint for one of the agents (see Cox and Huang (1989)), which is linked to the initial allocation of endowment.

Since our emphasis is on heterogeneous beliefs about disasters, for the remainder of this section we focus on the case where there is no disagreement about the distribution of Brownian shocks, and the two agents have the same preferences. In this case, $b = 0$, $\gamma_A = \gamma_B = \gamma$, $\rho_A = \rho_B = \rho$. The equilibrium consumption share then simplifies to

$$f^A(\hat{\zeta}_t) = \frac{1}{1 + \frac{\bar{\bar{\zeta}}_t^{\frac{\gamma}{\gamma_A}}}{\zeta_t^{\frac{\gamma}{\gamma_A}}}.$$ \hspace{1cm} (9)

When a disaster of size d occurs, $\hat{\zeta}_t$ is multiplied by the likelihood ratio $\frac{\lambda_B}{\lambda_A}\frac{d\lambda_B}{d\lambda_A}(d)$ (see (5)). Thus, if agent B is more pessimistic about a particular type of disaster, she will have a higher weight in the planner’s problem when such a disaster occurs, so that her consumption share increases.

The equilibrium allocations can be implemented through competitive trading in a sequential-trade economy. Extending the analysis of Bates (2008), we can consider three types of traded securities: (i) a risk-free money market account, (ii) a claim to aggregate consumption, and (iii) a series (or continuum) of disaster insurance contracts with 1 year maturity, which pay $1 on the maturity date if a disaster of size d occurs within a year.
The instantaneous risk-free rate can be derived from the stochastic discount factor,
\[
r_t = -\frac{D^A M_t^A}{M_t^A} = \rho + \gamma \bar{g} - \frac{1}{2} \gamma^2 \sigma_c^2 - \lambda_t \left(\frac{E_t^{\Delta A}[(C_t^A)^{-\gamma}]}{(C_t^A)^{-\gamma}} - 1 \right),
\]
(10)
where D^A denotes the infinitesimal generator under Agent A’s beliefs of $X_t = (c^c_t, c^d_t, \lambda_t, \eta_t)$ and we use the short-hand notation $E_t^{\Delta A}$ defined for any function f of X_t as
\[
E_t^{\Delta A}[f(X_t)] \equiv \int f \left(c^c_t, c^d_t + d, \lambda_t, \eta_t \times \frac{\bar{\lambda} B}{\bar{\lambda} A} d\nu_B \right) d\nu_A(d).
\]
(11)
The price of the aggregate endowment claim is
\[
P_t = \int_0^\infty E_t^{\Delta A} \left[\frac{M_{t+\tau}^A}{M_t^A} C_{t+\tau} \right] d\tau = C_t h(\lambda_t, \bar{\zeta}_t),
\]
(12)
where the price/consumption ratio only depends on the disaster intensity λ_t and the stochastic weight $\bar{\zeta}_t$. In the case where λ_t is constant, the price of the consumption claim is obtained in closed form. Similarly, we can compute the wealth of the individual agents as well as the prices of disaster insurance contracts using the stochastic discount factor.

In order for prices of the aggregate endowment claim to be finite in the heterogeneous-agent economy, it is necessary and sufficient that prices are finite under each agent’s beliefs in a single-agent economy (see the online appendix for a proof). As we show in the appendix, finite prices require that the following two inequalities hold:

\[
0 < \kappa^2 - 2\sigma^2 \phi\left(1 - \gamma\right) - 1,
\]
(13a)
\[
0 > \kappa \lambda^\gamma \frac{K - \sqrt{\kappa^2 + 2\sigma^2 \phi\left(1 - \gamma\right)}}{\sigma^2} - \rho + (1 - \gamma) \bar{g} + \frac{1}{2} (1 - \gamma)^2 \sigma_c^2,
\]
(13b)
where ϕ is the moment generating function for the distribution of jumps in endowment ν^i under measure P_i. The first inequality reflects the fact that the volatility of the disaster intensity cannot be too large relative to the rate of mean reversion. It prevents the convexity
effect induced by the potentially large intensity from dominating the discounting. The second inequality reflects the need for enough discounting to counteract the growth.

Additionally, the stochastic discount factor characterizes the unique risk neutral probability measure Q (see, for example, Duffie (2001)), which facilitates the computation and interpretation of excess returns. The risk-neutral disaster intensity $\lambda^Q_t \equiv E_t^{\Delta,i}[M^i_t]/M^i_t \lambda^i_t$ is determined by the expected jump size of the stochastic discount factor at the time of a disaster. When the riskfree rate and disaster intensity are close to zero, the risk-neutral disaster intensity λ^Q_t has the nice interpretation of (approximately) the value of a one-year disaster insurance contract that pays 1 at $t+1$ when a disaster occurs between t and $t+1$. The risk-neutral distribution of the disaster size is given by $d\nu^Q_t = M^i_t \Delta_t(d) / E_t^{\Delta,i}[M^i_t]$. These risk adjustments are quite intuitive. The more the stochastic discount factor for agent i jumps up during a disaster, the larger is λ^Q_t relative to λ^i_t, i.e. disasters occur more frequently under the risk-neutral measure. Thus, the ratio λ^Q_t/λ^i_t is often referred to as the jump risk premium. Moreover, the risk-adjusted distribution of jump size conditional on a disaster slants the probabilities towards the types of disasters that lead to a bigger jump in the stochastic discount factor, which generally makes severe disasters more likely under Q.

Finally, the risk premium for any security under agent i’s beliefs is the difference between the expected return under P_i and under the risk-neutral measure Q. In the case of the aggregate endowment claim, the conditional equity premium, under agent i’s beliefs, which we denote by $E_t^i[R^e]$, is

$$E_t^i[R^e] = \gamma \sigma^2 + \lambda^i_t E_t^i[\Delta R] - \lambda^Q_t E_t^Q[\Delta R], \quad i = A, B$$

(14)

where $E^m_t[\Delta R] \equiv E_t^{\Delta,m}[P_t]/P_t - 1$ is the expected return on the endowment claim in a disaster under measure m.\(^6\) The difference between the last two terms in (14) is the premium for

\(^6\)To be concrete, we define the risk premium under measure i for any price process $P(X_t, t)$ which pays dividends $D(X_t, t)$ to be $D^t P_t / P_t + D_t / P_t - r_t$. 10
bearing disaster risk. This premium is large if the jump risk premium is large, and/or the expected loss in return in a disaster is large (especially under the risk-neutral measure).

It follows that the difference in equity premium under the two agents' beliefs is

$$E_t^A[R] - E_t^B[R] = \lambda_t^A E_t^A[\Delta R] - \lambda_t^B E_t^B[\Delta R].$$

(15)

This difference will be small relative to the size of the equity premium when the disaster intensity and expected loss under the risk-neutral measure are large relative to their values under actual beliefs. In the remainder of the paper, unless stated otherwise, we will report the equity premium relative to agent A’s beliefs, P_A. One interpretation for picking P_A as the reference measure is that A has the correct beliefs, and we are studying the impact of the incorrect beliefs of agent B on asset prices.

3 Heterogeneous Beliefs and Risk Sharing

We start with a special case of the model where agents only disagree about the frequency of disasters. First, we analyze the impact of heterogeneous beliefs on asset prices and their implications for survival when the risk of disasters is constant, i.e., $\lambda_t = \bar{\lambda}_A$ (denoted as λ^A for simplicity). We then extend the analysis to the case of time-varying disaster risk.

3.1 Disagreement about the Frequency of Disasters

In the benchmark case of our model, the disaster size is deterministic, $\Delta c^d_t = \bar{d}$, and the two agents only disagree about the frequency of disasters (λ). We set $\bar{d} = -0.51$ so that the moment generating function (MGF) $\phi^A(-\gamma)$ in this model matches the calibration of Barro (2006) for $\gamma = 4$. It implies that aggregate consumption falls by 40% when a disaster occurs. Agent A (pessimist) believes that disasters occur with intensity $\lambda^A = 1.7\%$ (once every 60 years), which is also taken from Barro (2006). Agent B (optimist) believes that disasters
Figure 1: **Disagreement about the frequency of disasters.** Panel A plots the equity premium under both agents’ beliefs as a function of the wealth share of the optimist. Panel B plots the jump risk premium $\lambda^\alpha_Q/\lambda^A$ for the pessimist.

are much less likely, $\lambda^B = 0.1\%$ (once every 1000 years), but she agrees with A on the size of disasters as well as the Brownian risk in consumption. She also has the same preferences as agent A. The remaining parameters are the expected consumption growth $\bar{g} = 2.5\%$, diffusive consumption volatility $\sigma_c = 2\%$, and the subjective discount rate $\rho = 3\%$.

Figure 1 Panel A shows the conditional equity premium under the beliefs of both the pessimist and the optimist. From (15), we obtain the difference in equity premium under the two agents’ beliefs in the case of constant disaster risk:

$$E_t^A[R^e] - E_t^B[R^e] = (\lambda^A - \lambda^B)E_t[\Delta R],$$

where the expected return conditional on a disaster occurring, $E_t[\Delta R]$, is the same under the two agents’ beliefs since there is a single disaster type. Intuitively, disasters and the resulting losses of value in the stock are less likely under the optimist’s beliefs, hence the optimist’s perceived equity premium will be higher than that of the pessimist. Compared to (14), we see that the difference in equity premium under the two agents’ beliefs will be small.
relative to the size of the equity premium when the disaster intensity is significantly higher under the risk neutral measure than under the agents’ beliefs, that is, when the disaster risk premium is large. For this reason, we obtain similar results for the equity premium under either beliefs.

If all the wealth is owned by the pessimist, the equity premium under her belief is 4.7% (or 5.3% under the optimist’s beliefs), and the riskfree rate is also at a reasonable value (1.3%). If the optimist has all the wealth, the equity premium is only −0.21% under the pessimist’s beliefs\(^7\) (or 0.43% under the optimist’s beliefs), which reflects the low compensation the optimist requires for bearing disaster risk. Thus, it is not surprising to see the premium falling when the optimist owns more wealth. However, the speed at which the premium declines in Panel A is impressive. When the optimistic agent owns 10% of the total wealth, the equity premium under the pessimist’s beliefs falls from 4.7% to 2.7%. When the wealth of the optimist reaches 20%, the equity premium falls to just 1.7%.

We can derive the conditional equity premium as a special case of (14) using the assumption of constant disaster size,

\[
E_t^A[R^e] = \gamma \sigma^2 c - \lambda^A \left(\frac{\lambda^Q}{\lambda^A} - 1 \right) \left(\frac{h(\tilde{c} \lambda^B) e^d}{h(\zeta_t)} - 1 \right),
\]

where \(h\) is the price-consumption ratio from (12), with \(\lambda_t\) being constant. The first term \(\gamma \sigma^2 c\) is the standard compensation for bearing Brownian risk. Heterogeneity has no effect on this term since the two agents agree about the Brownian risk. Given the value of risk aversion and consumption volatility, this term has negligible effect on the premium. The second term reflects the compensation for disaster risk. It can be further decomposed into three factors: (i) the disaster intensity \(\lambda^A\), (ii) the jump risk premium \(\lambda^Q / \lambda^A\), and (iii) the return of the consumption claim in a disaster.

\(^7\)This negative premium is due to the pessimist acquiring a large amount of insurance against disasters. We discuss this feature in detail later in this section.
How does the wealth distribution affect the jump risk premium? From the definition of the stochastic discount factor M_t^A and the risk-neutral intensity λ_t^Q, it is easy to show

$$
\frac{\lambda_t^Q}{\lambda_t^A} = e^{-\gamma \Delta c_t^A},
$$

where Δc_t^A is the jump size of the equilibrium log consumption for agent A in a disaster. Without trading, the individual loss of consumption in a disaster will be equal to that of the endowment, $\Delta c_t^A = \bar{d}$, which under our parameterization generates a jump risk premium of $\lambda_t^Q/\lambda_t^A = 7.7$. Since λ_t^Q is approximately the premium of a one-year disaster insurance, before any trading the pessimist will be willing to pay an annual premium of about 13 cents for $1 of protection against a disaster event that occurs with probability 1.7%.

The optimist views disasters as very unlikely events and is willing to trade away her claims in the future disaster states in exchange for higher consumption in normal times. Such trades help reduce the pessimist’s consumption loss in a disaster Δc_t^A, which in turn lowers the jump risk premium. However, the optimist’s capacity for underwriting disaster insurance is limited by her wealth, as she needs to ensure that her wealth is positive in all future states, including when a disaster occurs (no matter how unlikely such an event is). Thus, the more wealth the optimist has, the more disaster insurance she is able to sell.

The above mechanism can substantially reduce the disaster risk exposure of the pessimist in equilibrium. Panel B of Figure 1 shows that when the optimist owns 20% of total wealth, the jump risk premium drops from 7.7 to 4.2. According to equation (16), such a drop in the jump risk premium alone will cause the equity premium to fall by about half to 2.2%, which accounts for the majority of the change in the premium (from 4.7% to 1.7%).

Besides the jump risk premium, the equity premium also depends on the return of the consumption claim in a disaster, which in turn is determined by the consumption loss and changes in the price-consumption ratio. Following a disaster, the riskfree rate drops as the wealth share of the pessimist rises. With CRRA utility, the lower interest rate effect can
dominate that of the rise in the risk premium, leading to a higher price-consumption ratio. Since a higher price-consumption ratio partially offsets the drop in aggregate consumption, it makes the return less sensitive to disasters, which will contribute to the drop in equity premium. However, our decomposition above shows that the reduction of the jump risk premium (due to reduced disaster risk exposure) is the main reason behind the fall in premium.

Can we “counteract” the effect of the optimistic agent and restore the high equity premium by making the pessimist even more pessimistic about disasters? We also examine the case when agent A believes that the disaster intensity is 2.5% ($\lambda^A = 2.5\%$) and everything else remain the same. While the equity premium under the pessimist’s beliefs becomes significantly higher (6.8%) when she owns all the wealth, it falls to 4.1% with just 2% of total wealth allocated to the optimist, and is below 1% when the optimist’s wealth share exceeds 8.5%. Again, the decline in the jump risk premium is the main reason behind the decline in equity premium. Thus, as the pessimist becomes more pessimistic, she seeks risk sharing more aggressively, which can quickly reverse the effect of her heightened fear of disasters on the equity premium.

To illustrate the risk sharing mechanism, we compute the agents’ portfolio positions in the aggregate consumption claim, disaster insurance, and the money market account. Calculating these portfolio positions amounts to finding a replicating portfolio that matches the exposure to Brownian shocks and jumps in the individual agents’ wealth processes. The online appendix provides the details. The first thing to notice is that each agent will hold a constant proportion of the consumption claim. This is because they agree on the Brownian risk and share it proportionally. Disagreement over disaster risk is resolved through trading in the disaster insurance market, which is financed by the money market account.

We first plot the notional value of the disaster insurance sold by the optimist as a fraction

8 Wachter (2009) also finds a positive relation between the price-consumption ratio and the equity premium in a representative agent rare disaster model with time-varying disaster probabilities and CRRA utility.

9 The implementation of the equilibrium is not unique. For example, instead of disaster insurance, we can use another contract that has exposure to both Brownian and jump risks, in which case the agents will also trade the consumption claim.
Figure 2: Risk sharing. Panel A and B plot the total notional value of disaster insurance relative to the wealth of the optimist and total wealth in the economy. Panel C plots the consumption share for the optimist in equilibrium. Panel D compares the two agents’ consumption drops in a disaster with that of the aggregate endowment. These results are for the case $\lambda^A = 1.7\%$.

of her total wealth in Panel A of Figure 2. The dashed line is the maximum amount of disaster insurance the optimist can sell (as a fraction of her wealth) subject to her budget constraint. When the optimist has very little wealth, the notional value of the disaster insurance she sells is about 35% of her wealth. This value is initially high and then falls as the optimist gains more wealth. This is because when the optimist has little wealth, the pessimist has great demand for risk sharing and is willing to pay a higher premium, which induces the optimist to sell more insurance relative to her wealth. As the optimist gets more wealth, the premium on the disaster insurance falls, and so does the relative amount of insurance sold.

We can judge how extreme the risk sharing in equilibrium is by comparing the actual amount of trading to the maximum amount imposed by the budget constraint. At its peak,
the amount of disaster insurance sold by the optimist is about half of the maximum amount
that she can underwrite, which might appear reasonable. The caveat is that, in reality,
underwriters of disaster insurance will likely be required to collateralize their promises to
pay in the disaster states, which raises the costs of risk sharing. We will further investigate
the feasibility of risk sharing and discuss an alternative implementation that do not require
disaster insurance in Section 5.

Panel B plots the size of the disaster insurance market (the total notional value normalized
by total wealth). Naturally, the size of this market is zero when either agent has all the
wealth, and the market is bigger when wealth is more evenly distributed. Notice that the
model generates a non-monotonic relation between the size of the disaster insurance market
and the equity premium. The premium is high when there is a lot of demand for disaster
insurance but little supply, and is low when the opposite is true. In either case, the size of
the disaster insurance market will be small.

Panel C plots the equilibrium consumption share for the optimist. The 45-degree line
corresponds to the case of no trading. The optimist’s consumption share is above the 45-
degree line, more so when her wealth share is low. This is because the optimist is giving up
consumption in future disaster states in exchange for higher consumption now.10 Panel D
shows that indeed the optimist does bear much greater losses in the event of a disaster. As
for the pessimist, the less wealth she possesses, the more disaster insurance she is able to buy
relative to her wealth, which lowers her disaster risk exposure and can eventually turn the
disaster insurance into a speculative position — her consumption can jump up in a disaster.

\subsection{The Limiting Case for Risk Sharing}

In the previous section we have numerically demonstrated the effects of risk sharing on asset
prices. To highlight the key ingredients of the risk sharing mechanism, we now analytically
\footnote{This result is also due to the low elasticity of intertemporal substitution implied by the CRRA utility,
which makes the optimists consume now instead of saving the insurance premium for the future.}
characterize the equilibrium when a small fraction of wealth is controlled by an optimist who believes disasters are extremely unlikely.\footnote{We thank Xavier Gabaix for suggesting this analysis.}

The intuition is as follows. Suppose the pessimist (agent A) consumes fraction f_A^t of the aggregate endowment C_{t-} before a disaster at time t. Since the optimist (agent B) feels disasters are quite unlikely, she is willing to sell her entire share of endowment in the disaster state to the pessimist. Thus, when the disaster strikes, aggregate endowment drops to $C_t = e^{\bar{d}}C_{t-}$, but agent A now consumes essentially all the endowment ($f_A^t \approx 1$). This argument implies that the jump in the marginal utility of agent A following a disaster, which is also the jump risk premium she demands, is equal to

$$\frac{\lambda^Q}{\lambda^A} \approx \left(\frac{1 \times e^{\bar{d}}C_{t-}}{(f_A^t C_{t-})^{-\gamma}} \right)^{-\gamma} = (f_A^t)^\gamma e^{-\gamma \bar{d}}.$$ (18)

For example, when the optimist has just 1% of the endowment before a disaster, the jump risk premium will be $(.99)^\gamma e^{-\gamma \bar{d}}$, or approximately a 4% drop from the jump risk premium in the case with only pessimists when $\gamma = 4$.

Formally, we show in the online appendix that the speed at which the jump risk premium changes with the optimist’s consumption share is given by

$$\lim_{\lambda^B \to 0^+} \frac{\partial}{\partial f_B^t} \frac{\lambda^Q}{\lambda^A} \bigg|_{f_B^t=0} = -\gamma e^{-\gamma \bar{d}}.$$ (19)

We see that the effect of risk sharing (in terms of consumption share) becomes stronger with bigger disasters ($|\bar{d}|$) and higher risk aversion (γ).\footnote{We take limits since with $\lambda^B = 0$, the beliefs are not equivalent and there is no complete markets equilibrium.}

The above result only partially reflects the steep slope in the risk premium near $w_B^t = 0$ we see in Figure 1. If the optimist consumes a fraction f_B^t of the endowment at time t, his
fraction of the aggregate wealth, \(w_t^B \), will be less than \(f_t^B \). This is because the optimist has sold his share of endowment in the disaster state in exchange and consumes more in normal times (see Figure 2, Panel C). This effect implies that risk premium will decline even faster as a function of the wealth share of the optimist than the consumption share.

To summarize, the limiting differential effect of optimist on the jump risk premium is given by the following multiplier:

\[
\lim_{\lambda^B \to 0^+} \frac{\partial}{\partial w_t^B} \left. \frac{\partial}{\partial \lambda^A} \right|_{f_t^B = 0} = \left. \frac{\partial}{\partial f_t^B} \frac{\partial}{\partial \lambda^A} \right|_{f_t^B = 0} \times \left. \frac{\partial f_t^B}{\partial w_t^B} \right|_{f_t^B = 0}.
\]

(20)

The second term reflects the relative wealth-consumption ratios of the two agents, which is determined by their endogenous investment-consumption decisions. In the online appendix, we derive the expression for \(\left. \frac{\partial f_t^B}{\partial w_t^B} \right|_{f_t^B = 0} \). We show there under very general conditions that a large equity premium due to disasters implies that this ratio will be large since the claim to consumption after disasters occur is very valuable. In the calibrated example, the multiplier (with \(\lambda^B = 0 \)) equals \(-0.581\). Hence, due to the decline in the jump risk premium alone, allocating only 1% of the endowment to the extreme optimist results in a 58.1 basis points decline in the equity premium. In comparison, the benchmark case with \(\lambda^B = 0.1\% \) generates a multiplier of -0.19. When \(\lambda^A = 2.5\% \) and \(\lambda^B = 0 \), the multiplier is \(-2.94\), which translates into a 2.94% drop in the equity premium when we introduce only 1% of extreme optimist into the economy.

Figure 3 compares the jump risk premium for several cases. First, the dotted line denotes the benchmark case from Section 3.1. We also plot the jump risk premium with the same parameters but for the limiting case where \(\lambda^B \) approaches zero. Additionally, we plot the case where we decrease the disaster size and increase the risk aversion to maintain the same jump risk premium for the single agent economy (\(\gamma = 6, \bar{d} = -0.34 \)). The graph shows that the marginal effect of a small amount of optimist with \(\lambda^B = 0.1\% \) on the jump risk premium is visibly smaller than in the limiting case of extreme optimism. Moreover, when
Figure 3: Limiting Jump Risk Premia. This figure plots the jump risk premium λ_Q^t/λ^A for the pessimist, where $\lambda^A = 1.7\%$. In the benchmark case, $\gamma = 4$, and $\lambda^B = 0.1\%$.

we decrease the disaster size but increase risk aversion, the effects become more severe. This is because the larger risk sharing effect on the jump risk premium in (19) dominates the smaller consumption-wealth share effect.

3.3 Survival

In models with heterogeneous agents, one type of agents often dominates in the long-run (a notable exception is Chan and Kogan (2002); see also Borovička (2010)). Our model also has the property that the agent with correct beliefs will dominate in the long run. For example, let’s assume that agent A has the correct beliefs. The strong law of large numbers implies that $\log \tilde{\zeta}_t \to -\infty$ almost surely. This implies that agent A will take over the economy with probability one. We now show that although agents with incorrect beliefs about disasters may not have permanent effects on asset prices, their effects may be long-lived in the sense that these agents can retain, and even build, wealth over long horizons.

With disaster intensity, λ_t, being constant, we need only consider the distribution of the
Table 1: Survival of Agents who Disagree about the Frequency of Disasters. This table shows the redistribution of wealth over a 50 year horizon in the model of Section 3.1. Future relative wealth only depends on the initial wealth, the time horizon, and the number of disasters that occur. The top panel provides the possible wealth redistributions throughout time. The bottom panel provides the probabilities of various number of disasters (under each agent’s beliefs).

<table>
<thead>
<tr>
<th>Initial Wealth of B</th>
<th>(N_d = 0)</th>
<th>(N_d = 1)</th>
<th>(N_d = 2)</th>
<th>(N_d = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0%</td>
<td>1.2%</td>
<td>0.6%</td>
<td>0.3%</td>
<td>0.1%</td>
</tr>
<tr>
<td>5.0%</td>
<td>6.1%</td>
<td>3.0%</td>
<td>1.5%</td>
<td>0.7%</td>
</tr>
<tr>
<td>10.0%</td>
<td>12.2%</td>
<td>6.0%</td>
<td>2.9%</td>
<td>1.4%</td>
</tr>
<tr>
<td>50.0%</td>
<td>55.7%</td>
<td>35.5%</td>
<td>19.3%</td>
<td>9.6%</td>
</tr>
<tr>
<td>99.0%</td>
<td>99.2%</td>
<td>98.3%</td>
<td>96.7%</td>
<td>93.5%</td>
</tr>
<tr>
<td>Probability under (P^A)</td>
<td>42.7%</td>
<td>36.3%</td>
<td>15.4%</td>
<td>4.4%</td>
</tr>
<tr>
<td>Probability under (P^B)</td>
<td>95.1%</td>
<td>4.8%</td>
<td>0.1%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

stochastic Pareto weight, \(\tilde{\zeta}_t\), to analyze the wealth distribution over time. From (3), we see that \(\tilde{\zeta}_t\) has a stochastic component, whereby the Pareto weight (and thus wealth) of the pessimistic agent will jump up when a disaster occurs. This is because the pessimist receives insurance payments from the optimist in a disaster. However, regardless of the occurrence of disasters, there is also a deterministic component in \(\tilde{\zeta}_t\), whereby the optimist has a deterministic weight increase (and thus her relative wealth increases) which comes from collecting the disaster insurance premium. Thus, even when the pessimist has correct beliefs, her relative wealth will decrease outside of disasters. Since disasters are rare, it will be common to have extended periods without disasters, during which time an optimistic agent will gain relative wealth.

Table 1 presents a summary of the conditional distribution of wealth after 50 years for various initial wealth distributions. We report the results under the assumption that either the pessimist or the optimist has correct beliefs. If the number of disasters is either 0 or 1, the wealth of the agents remain relatively close to the original distribution. We see that the
optimist is likely to retain wealth for long periods of time and will only be wiped out with the occurrence of several disasters, which is unlikely regardless of whose beliefs are correct.

The evolution of the wealth distribution over time also has important implications for the equity premium and other dynamic properties of asset prices. For example, when the initial wealth of agent B is 5% (10%), the equity premium will drop from 3.5%(2.7%) to 3.3% (2.4%) over 50 years if no disasters occurs. If after 120 years there are still no disasters, the equity premium would further drop to 2.9% (2.0%).

There are interesting differences in the survival results between the case of disagreement over disaster risk and the case of disagreement over Brownian risk in consumption growth. As shown by Yan (2008), an agent who has wrong beliefs about the growth rate of aggregate consumption can survive for long periods of time. However, in this case those agents with wrong beliefs very rarely gain wealth over long horizons. For example, when consumption volatility is 2% per year, the probability that an agent who believes the consumption growth is 1% higher (or lower) than its true value will have a higher wealth share after 50 years is only 4×10^{-36}. In contrast, in the case of disagreement about disaster risk, even if the optimist has incorrect beliefs, there is a 42.7% chance that his wealth share increases relative to the agent with correct beliefs after 50 years.

To understand why the wealth dynamics are so different for the two forms of disagreements, we recall that the wealth share is monotonic in the log relative planner weight $\tilde{\zeta}_t$. It follows from equation (3) that, in the case of disagreement about Brownian risk, the log planner weight is $\log(\tilde{\zeta}_t) = \log(\tilde{\zeta}_0) + b\sigma_c W^c_t - \frac{1}{2} b^2 \sigma^2_c t$, where $b\sigma^2_c$ is the amount of disagreement in the growth rate. The wealth share of the agent with wrong beliefs rises only if her relative planner weight goes up. The probability of that is $\Pr(b\sigma_c W^c_t > \frac{1}{2} b^2 \sigma^2_c t)$, which drops rapidly as t increases. In the case of disagreement about disaster intensity, the log relative planner weight is given by $\log(\tilde{\zeta}_t) = \log(\tilde{\zeta}_0) + \log(\lambda^B N_t - (\lambda^B - \lambda^A) t)$. Thus, the condition for agent B to gain wealth share is $N_t < (\lambda^B - \lambda^A) t / \log(\lambda^B / \lambda^A)$. With $\lambda^B < \lambda^A$, this condition is clearly satisfied whenever $N_t = 0$, which, given how rare disasters are, is a likely event even for
relatively large \(t \).

3.4 Time-varying Disaster Risk

Having analyzed in depth the case of heterogeneous beliefs when disaster intensity is constant, now we extend the analysis to allow the risk of disasters to vary over time, which not only makes the model more realistic, but also has important implications for the dynamics of asset prices. As in Gabaix (2009) and Wachter (2009), time-varying disaster intensity serves to drive both asset prices and expected excess returns. We now demonstrate that within our framework, the conditional risk premium could either be very sensitive or insensitive to time variation in disaster risk depending on the wealth distribution among heterogeneous agents. Moreover, when estimating disaster probabilities from asset prices, failing to take into account the effects of risk sharing can lead to significant downward biases in our estimates.

Our calibration of the intensity process \(\lambda_t \) in equation (2) is as follows. First, the long-run mean intensity of disasters under the two agents’ beliefs are \(\bar{\lambda}^A = 1.7\% \) and \(\bar{\lambda}^B = 0.1\% \). Next, following Wachter (2009), we set the speed of mean reversion \(\kappa = 0.142 \) (with a half life of 4.9 years). The volatility parameter is \(\sigma_\lambda = 0.05 \), so that the Feller condition is satisfied.\(^{13}\) For simplicity, we assume that the size of disasters is constant, \(\bar{d} = -0.51 \), as in Section 3.1. The remaining preference parameters are also the same as in the constant disaster risk case.

Figure 4 plots the conditional equity premium and the jump risk premium under agent A’s beliefs as functions of agent B’s wealth share \(w_t^B \) and the disaster intensity \(\lambda_t \). First, in Panel A, holding \(\lambda_t \) fixed, the equity premium drops quickly as the wealth share of the optimistic agent rises from zero, which is consistent with the results from the case with constant disaster risk. Moreover, this decline is particularly fast when \(\lambda_t \) is large, suggesting that the agents engage in more risk sharing when disaster risk is high. Indeed, the jump risk premium in Panel B also declines faster when \(\lambda_t \) is large, which is the result of agent A

\(^{13}\)The Feller condition, \(2\kappa \bar{\lambda}^A > \sigma_\lambda^2 \), ensures that \(\lambda_t \) will remain strictly positive under agent A’s beliefs.
reducing her consumption loss in a disaster more aggressively at such times.

Next, we see that the sensitivity of the equity premium to disaster intensity can be very different depending on the wealth distribution. The sensitivity is largest when the pessimist has all the wealth, but it becomes smaller as the wealth of the optimist increases. When the optimist’s wealth share becomes sufficiently high, the equity premium becomes essentially flat as λ_t varies. This result has important implications for the time series properties of the equity premium. It suggests that when λ_t fluctuates over time, the equity premium can either be volatile or smooth, depending on the wealth distribution. For example, Mehra and Prescott (1988) make the observation that there was little response in the financial markets during the Cuban Missile Crisis, when presumably the risk of a severe crisis has risen considerably. Our model provides a potential explanation for this phenomenon.

We can understand the above results through the equity premium formula (14). Variations in the wealth distribution drive λ_t^Q/λ_t and $E_t[\Delta R]$. Due to increased risk sharing, the jump risk premium declines with greater fraction of wealth controlled by the optimistic
agent. As a result, the premium becomes less sensitive to variations in λ_t. Moreover, we see in Panel B of Figure 4 that the effect of wealth on the jump risk premium depends on the disaster intensity. When the disaster intensity is high, the risk sharing motives are very strong, resulting in faster decline of the jump risk premium when the optimistic agent controls just a small amount of wealth. Finally, the returns in disasters also vary somewhat with the wealth distribution as the price-consumption ratio changes after a disaster.

As Figure 4 indicates, a given risk neutral probability of disasters could be associated with a wide range of beliefs depending on the wealth distribution. This result can help reconcile the differences in disaster risk estimated from macro and financial data. For example, Backus, Chernov, and Martin (2010) find that option prices imply smaller probabilities of disasters than those estimated from international macroeconomic data. Collin-Dufresne, Goldstein, and Yang (2010) extract risk neutral probabilities of extreme events from the prices of CDX tranches. They find that the risk neutral probabilities of large losses are less than 1% per year. According to our model, these empirical findings might not necessarily imply that the true probability of disasters is low. Rather, they can be explained by our result that a small group of agents with optimistic beliefs about disasters can dramatically reduce the impact of disaster risk on asset prices. At the same time, these results also suggest that when extracting investors’ perception of the likelihood of disaster from asset prices, we need to take into account the effects of heterogeneous beliefs and risk sharing.

To further investigate the time series properties of the model, we simulate the disaster intensity λ_t and the jump component of aggregate endowment c^d_t under agent A’s beliefs, which jointly determine the evolution of the stochastic Pareto weight $\tilde{\zeta}_t$. Then, along the simulated paths, we compute the equilibrium wealth fraction of agent A, w_t^A, and the conditional equity premium under A’s beliefs, $E_t^A[R^e]$. In each simulation we start with $\lambda_0 = 1.7\%$ and set the initial wealth share of agent A to $w_0^A = 90\%$. The results from two of the simulations are reported in Figure 5.

Panel A plots the paths of λ_t from the simulations. The disaster intensities from both
Figure 5: **Simulation with Time-varying Disaster Risk.** The results are from two simulations of the model with time-varying disaster risk under agent A’s beliefs. Panel A plots the simulated paths of disaster intensity. Panel B and C plot the corresponding wealth share of agent A and the conditional equity premium she demands. Panel D plots the time series of disaster intensity extracted from asset prices as a fraction of the true intensities. The shaded areas denote the timing of disasters in Simulation II. There are no disasters in Simulation I.

Simulations are fairly persistent, and show similar amount of variation over time. In Simulation I, there are no disasters. In Simulation II, disasters occur three times within the first 50 years, around year 13, 18, and 46, indicated by grey bars in the figure.

What determines the evolution of the wealth distribution? When there are no disasters, holding λ_t fixed, agent A is losing wealth share to B as she pays B the premium for disaster insurance. This effect is captured by the negative drift in the Radon-Nikodym derivative η_t (see equation (3)), and is stronger when λ_t^A is larger. In addition, as λ_t falls (rises), the value
of the disaster insurance that agent A owns falls (rises), causing her wealth to fall (rise) relative to agent B, who is short the disaster insurance. As Panel B shows, the second effect appears to be the main force driving the wealth distribution in Simulation I.

When a disaster strikes, the wealth distribution can change dramatically. In Simulation II, the wealth share of agent A jumps up each time a disaster strikes. This is because the disaster insurance that A (pessimist) purchases from B (optimist) pays off at such times, causing the wealth of A to increase relative to B. The size of the jump in w_t^A is bigger in the first two disasters, which is mainly because agent B has relatively more wealth going into the first two disasters, so that he is able to provide more disaster insurance. As a result, he also loses more wealth in these two disasters.

Panel C shows the joint effect of the disaster intensity and wealth distribution on the equity premium. In Simulation I (no disasters), despite the fact that the optimistic agent never owns more than 15% of total wealth and that disaster intensity λ_t shows considerable variation over the period, the equity premium is below 2% nearly 90% of the time. This result confirms our finding in Figure 4 that risk sharing between the agents keeps the premium low and smooth when the wealth share of agent B is not too small.

In contrast, the equity premium in Simulation II shows large variation, ranging from 0.5% to 9.2%. Following the first disaster in year 13, the premium jumps from 2.4% to 7.0%, and becomes significantly more sensitive to fluctuations in λ_t and the wealth distribution afterwards. Since the wealth share of agent B drops in a disaster, her risk sharing capacity is reduced, which drives up both the level and volatility of the equity premium. As shown in Figure 4, this effect is stronger when λ_t is high, which is why the jump in premium is the most visible after the first disaster.

Finally, Panel D highlights the potentially large biases when extracting investors’ beliefs about disaster risk from asset prices. Without considering heterogeneous beliefs, our estimates of disaster probabilities from asset prices can be substantially lower than those of agent A, and also substantially lower than the wealth-weighted average belief of the two
agents. Consider the procedure where one takes the disaster size and relative risk aversion to be known ($\bar{d} = -0.51$ and $\gamma = 4$ here) and then infers the likelihood of disasters based on asset prices assuming (incorrectly) that all agents believe the likelihood of disasters is $\hat{\lambda}_t$. Under Simulation I, the extracted disaster intensities are only 20%-40% of the true intensity λ_t. As Simulation II shows, even when the wealth distribution becomes highly concentrated, the downward bias in the price-based estimates of disaster risk is still quite sizable. The downward biases are due to the fact that asset prices disproportionately reflect the beliefs of a small group of optimists in the economy. Moreover, there can also be “excessive” variation in these extracted beliefs caused by redistribution of wealth (e.g., following a disaster) rather than actual changes in disaster risk.

To avoid such biases, we need to explicitly account for the impact of investor heterogeneity and risk sharing on asset prices. One possible solution is to measure the amount of risk sharing using the amount of trading in the disaster insurance markets (cf. Figure 2, Panel B).

4 Comparison with Other Forms of Heterogeneity

Many studies on heterogeneous beliefs focus on disagreement about Brownian risks as opposed to jump risks. In this section, we compare these two forms of disagreements to highlight their different impacts on asset prices, in particular, the prices of Brownian and jump risk. In addition, we also compare our results to a model of heterogeneous risk aversion.

4.1 Disagreement about Brownian risk versus jump risk

As a special case of the model presented in Section 2, we can remove the jump component in endowment, c_t^d, and assume that agents A and B only disagree about the growth rate of endowment. We assume that agent A thinks the growth rate of endowment is $\bar{g} = 2.5\%$,
Figure 6: Disagreement about Brownian risk versus jump risk. Panel A plots the price of Brownian risk (market Sharpe ratio) under the beliefs of agent A (with perceived consumption growth 2.5%) as a function of her consumption share when agent B believes consumption growth is only 0.5%. Panel B plots the price of jump risk ($\lambda^B_t / \lambda^A_t$) for agent A ($\lambda^A = 1.7\%$) as a function of the consumption share of B ($\lambda^B = 0.1\%$).

while agent B thinks the growth rate is $\bar{g} + b\sigma_c^2 = 0.5\%$. From the stochastic discount factor M_t^A, one can show that the price of Brownian risk (which is also the Sharpe ratio of the market portfolio) under A’s beliefs is a linear function of her consumption share:

$$SR_t^A = \gamma \sigma_c - (1 - f_t^A) b\sigma_c.$$ \hspace{1cm} (21)

Thus, if A has all the wealth in the economy, the price of Brownian risk will be $\gamma \sigma_c$, which is small for moderate risk aversion γ and low consumption volatility σ_c. As we allocate more wealth and hence higher consumption share to a pessimistic agent B, the price of equity will fall and the expected return under agent A’s beliefs will rise, which leads to a higher Sharpe ratio under the correct beliefs.

In the case of disagreement about jump risk, the price of jump risk under agent A’s beliefs
can also be expressed explicitly as a function of her consumption share,

$$\frac{\lambda_t^Q}{\lambda_t^A} = \frac{1}{\lambda_t^A} \left(f_t^A(\lambda_t^A)^{\frac{1}{\gamma}} + (1 - f_t^A)(\lambda_t^B)^{\frac{1}{\gamma}} \right)^\gamma e^{-\gamma d}, \tag{22}$$

which converges to $e^{-\gamma d}$ when A’s consumption share goes to 1. However, unlike the price of Brownian risk, the price of jump risk changes nonlinearly with the consumption share. This difference is clearly illustrated in Figure 6, where the price of jump risk initially declines quickly when agent B consumes a small share of aggregate endowment, but the decline slows down later on.

Another difference between disagreement about Gaussian risk and disaster risks is the non-linearity with respect to the amount of disagreement. In the case of Gaussian disagreement, the average belief (weighted by consumption share) determines the price of Brownian risk. This is shown in Equation (21), where the average optimism (assuming agent A is exactly correct so their optimism is zero) is $(1 - f_t^A)b$, which is exactly reflected in the Sharpe ratio. In contrast, Equation (22) shows that the jump risk premium is not a function of the consumption weighted average of the beliefs about the disaster intensity. Instead, in determining the jump-risk premium, more weights are given to the beliefs of the optimist due to risk aversion. One implication of the above difference is that fixing the average belief and increasing the amount of disagreement will have little effect on the risk premium in the case of Gaussian disagreement, but will tend to lower the equity premium in the case of disagreement about disaster risks.

The fact that more disagreement (fixing the consumption-weighted average belief) tends to lower the average belief also holds in a dynamic setting. To this end, consider the following simple extension of our basic model. Suppose that there are two states, L and H, and each agent has fixed beliefs about the probability of disasters in a given state. Under the simplifying assumption that transition probabilities between the two states are constant, we show in Appendix A that our main solution method can be extended to such a model. This
Disagreement about λ in state H

Figure 7: Time-varying Disagreement. Panel A plots the equity premium in the case where beliefs converge in the state with higher disaster risk. Panel B plots the premium as a function of the amount of disagreement for given wealth distribution.

regime switching model then allows us to study the case where the amount of disagreement is time-varying.

As an example, consider the case where in state L, the two agents agree about the frequency of disasters, $\lambda^A_L = \lambda^B_L = 1.7\%$. There is disagreement in state H. In order to isolate the effect of disagreement, we consider different combinations of beliefs in state H ($\lambda^A_H > \lambda^B_H$) such that the wealth-weighted average belief for a given wealth distribution is the same as in state L, i.e., $(1 - w^B)\lambda^A_H + w^B\lambda^B_H = 1.7\%$, where w^B is the wealth share of agent B. We measure the amount of disagreement using the wealth-weighted standard deviation in beliefs,

$$\text{Disagreement Measure} = \sqrt{(1 - w^B)(\lambda^A_H - 1.7\%)^2 + w^B(\lambda^B_H - 1.7\%)^2}.$$

Finally, we set the transition probabilities of the Markov chain to be $\delta_L = 0.1$ and $\delta_H = 0.5$.

As Figure 7 shows, holding the average belief constant, the premium can fall substantially
as the amount of disagreement increases. As a benchmark, the dash-dotted line gives the equity premium (under agent A’s beliefs) in state L. Since the agents have the same beliefs in that state, the premium remains at 4.7% as the amount of disagreement increases in state H. The solid line plots the equity premium in state H when the two agents have equal share of total wealth. The premium falls from 4.7% to 0.9% when λ_B^H drops from 1.7% to 0.1% (where the disagreement measure is 1.6%). When agent B has just 20% of total wealth, the premium falls by a smaller amount to 2.9% (when the disagreement measure reaches 0.8%). An interesting implication of this graph is that the premium can actually be decreasing while the average belief of disaster risk increases, provided that there is enough increase in the amount of disagreement at the same time.

4.2 Heterogeneous risk aversion

Intuitively, besides heterogeneous beliefs, heterogeneity in risk aversion should also be able to induce risk sharing among agents and reduce the equity premium in equilibrium. Recall that the jump risk premium is $\lambda^Q_t / \lambda^i_t = e^{-\gamma_i \Delta c^i_t}$, which is not only sensitive to changes in individual consumption loss Δc^i_t, but also to the relative risk aversion γ_i. Thus, we expect that heterogeneous risk aversion can have similar effects on the equity premium as heterogeneous beliefs about disasters.

To check this intuition, we consider the following special case of the model. Agent A is the same as in the example of Section 3.1: $\lambda^A = 1.7\%, \gamma_A = 4$. Agent B has identical beliefs about disasters but is less risk averse: $\lambda^B = 1.7\%, \gamma_B < \gamma_A$. We then solve the model using the technique in Chen and Joslin (2010). Figure 8 plots the equity premium as a function of agent B’s wealth share for $\gamma_B = 2$. The equity premium does decline as agent B’s wealth share rises. However, the decline is slow and closer to being linear. In order for the equity premium to fall below 2%, the wealth share of the less risk-averse agent needs to rise to 60%. The decline in the equity premium becomes faster as we further reduce the risk aversion of
Figure 8: **The effects of heterogeneous risk aversion.** This graph plots the equity premium when the two agents have different risk aversion: $\gamma_A = 4, \gamma_B = 2$. Their beliefs about disasters are specified in the legend. Disaster size is constant.

Agent B (not reported here), but the non-linearity is still less pronounced than in the cases with heterogeneous beliefs.

Combining heterogeneous beliefs about disasters and different risk aversion can amplify risk sharing and accelerate the decline in the equity premium. As shown in the figure, if agent B believes disasters are less likely than does agent A, and she happens to be less risk averse, the equity premium falls faster. Consider the case where agent B believes disasters only occur once every hundred years ($\lambda_B = 1.0\%$). With 20% of total wealth, she drives the equity premium down by almost a half to 2.5%. If $\lambda_B = 0.1\%$, the decline in the equity premium will be even more dramatic.

5 Robustness

We have made a number of simplifying assumptions in this paper, including complete markets and dogmatic beliefs. In this section, we discuss the potential impact of relaxing these...
assumptions for our model.

5.1 The assumption of complete markets

In our main analysis, we consider completing the market with a disaster insurance contract which pays off with certainty exactly when a disaster occurred. The assumption of complete markets greatly simplifies our analysis. However, it also raises some important concerns.

One concern is that a disaster insurance contract might be difficult to implement since the timing of payment can lead to substantial counterparty risk. Within the model, because the marginal utility of the optimist is unbounded as consumption drops to 0, she will never “over-promise” on the amount of disaster insurance she can provide. Hence, there is no counterparty risk in the model. In fact, we can impose the requirement that disaster insurance be fully collateralized (either by stocks or other real assets), in which case the optimist will have more than enough wealth to post collateral, and the equilibrium outcome will not change.

Still, there could be other practical reasons for why disaster insurances might be difficult to implement. Our model suggests that any two securities with differential exposure to the Brownian and jump risks would complete the market. For example, high grade corporate bonds, senior CDX tranches, and put options on the market index can all used to trade disaster risk. Even if none of these contracts exist, investors will still be able to effectively share disaster risks by trading the stock. This is because in our model, the risk of holding the stock is primarily the exposure to disaster risk (which is bundled with a small amount of Brownian risk that has little effect on the premium). Following this intuition, we consider a variation of the benchmark model by turning off Brownian risk. Then markets will be dynamically complete via the trading of the aggregate stock and riskless bonds.

Figure 9 plots the equity premium and portfolio positions for both agents. In Panel A, the equity premium in the model with only disaster risk is nearly identical to the benchmark
case with Brownian risk. The difference between the two equity premiums is tiny (roughly equal to $\gamma \sigma^2_c = 16$ basis points). Panel B shows that the agents now trade disaster risk using the stock market. The pessimist sells part of the stock she owns to the optimist and invests the proceeds in riskless bonds. From the perspective of the optimist, the stock offers a high premium due to disaster risk, which he believes rarely occur. His capacity to share risk with the pessimist is limited by his wealth, which serves as collateral for taking levered positions in the stock. Because of the budget constraint and the Inada condition, his leverage is in fact fairly modest.

It would be interesting to see whether the intuition we get from the above example holds in an incomplete markets setting with both Brownian and disaster risks but only one risky asset (the stock). Provided that disaster risk is the main force behind the equity premium relative to the diffusive risk, we conjecture that the optimist would moderately lever up in equity, in a similar way as in Figure 9 (bearing the cost of taking on additional diffusive risk), and the equity premium will be close to the complete markets case.\footnote{In the case of log utility, Dieckmann (2010) finds that introducing incomplete markets actually raises the risk premium, which would imply a steeper slope on the left side of Panel A of Figure 9.}

Another important concern is that a big part of total wealth is human capital, which may not be tradable. In that case, the amount of insurance that the optimist can provide will be reduced, and so will the effect of heterogeneous beliefs on the disaster risk premium. For example, in Panel D of Figure 2, the optimist loses up to 70% of his consumption in a disaster when his wealth share is low. Such an allocation might no longer be feasible if a big part of his wealth is non-tradable and only tradable wealth can serve as collateral against disaster insurance contracts. In practice, those investors that are selling index put options and buying senior CDX tranches tend to be institutional investors or high wealth individuals, whose wealth are mostly tradable. Still, it is important to study how much the effects of risk sharing can be weakened by non-tradable wealth. We leave this question to future research.

\footnote{In the case of log utility, Dieckmann (2010) finds that introducing incomplete markets actually raises the risk premium, which would imply a steeper slope on the left side of Panel A of Figure 9.}
Figure 9: The relative impact of disaster and Brownian risks. Panel A plots the equity premium under the pessimist’s beliefs as a function of the wealth share of the optimist assuming either that the conditional volatility of consumption is $\sigma_c = 2\%$. Panel B plots the fraction of wealth of the two agents invest in the equity claim when there is only disaster risk.

5.2 Sources of optimistic beliefs

In the simple version of our model (Section 3.1), the optimist believes that the disaster intensity is only 0.1% per year. How reasonable is this belief? Based on a century of U.S. data, aggregate consumption has never fallen more than 15% in a given year. The maximum cumulative consumption drop over any consecutive number of years is 23%, which occurred during the Great Depression.

In Appendix B, we calibrate the beliefs of the optimist to the U.S. aggregate consumption data in the last 120 years, and calibrate the beliefs of the pessimist based on international macroeconomic data in Barro (2006). The U.S. data suggest that smaller jumps in aggregate consumption are relatively more likely, but these jumps have rather limited effect on the equity premium. Under this calibration, we find very similar effects of risk sharing on the equity premium as in the benchmark case. For example, raising the fraction of total wealth for the second agent from 0 to 10% lowers the equity premium from 4.4% to 2.0%.
Another source of optimistic beliefs is individual experience. Malmendier and Nagel (2010) argue that individual experiences of macroeconomic outcomes can have long-term effects on their preferences and beliefs. For example, an investor born in the U.S. who did not experience the Great Depression could assign close to zero probability to a 40% drop of aggregate consumption.

Finally, agency problems could also be an important source of optimistic beliefs in our model. Reputation concerns (see Malliaris and Yan (2010)), convex compensation contracts (see Makarov and Plantin (2011)), and government guarantees can all motivate fund managers and large financial institutions to underwrite insurance against economic disasters. For example, writing deep out-of-money index options has long been a popular strategy among hedge funds to manufacture seemingly superior returns in short samples. The recent financial crisis also provides examples of “too-big-to-fail” financial institutions aggressively underwriting so-called “super senior” credit default swaps, which are essentially disaster insurances. Thus, our model provides a link between shocks to the capital supply of these “institutional optimists” and the disaster risk premium.

5.3 Effects of learning

In this paper, we assume investors have dogmatic beliefs about disaster risk. In reality, investors will update their beliefs about disasters over time, and the beliefs of those who are overly optimistic or pessimistic about disasters might eventually converge to the correct one in the long run. However, due to the nature of disaster risk, learning about either the intensity or size of disasters using realized macro data will be very slow. As we show in this section, the key driver of the conditional equity premium prior to a disaster is risk sharing for the first disaster to come. Even if we assume the belief of the optimist converges fully to that of the pessimist following the first disaster, the risk premium prior to the first disaster will change very little. Thus, learning based on macro data is unlikely to change our results.
Figure 10: Learning through disasters. Panel A plots the equity premium under the pessimist’s beliefs as a function of the wealth share of the optimist assuming that either the optimist holds his beliefs fixed or that the optimist updates his beliefs to agree with the pessimist after a disaster occurs. Panel B plots the jump-risk premium $\frac{\lambda^Q_t}{\lambda^A}$ for the pessimist.

To capture the main effects of learning, we consider the following extension of our model. Suppose that agent A correctly believes that the likelihood of a disaster is $\lambda^A = 1.7\%$ and never changes her belief, while agent B is more optimistic. Rather than fully specifying agent B’s prior belief distribution and modeling the Bayesian updating process, we assume that his belief remains constant at $\lambda^B = 0.1\%$ until the first disaster arrives, at which point he will fully update his belief to the correct one. 15 Thus, the belief of agent B about the disaster intensity follows

$$\lambda^B_t = \lambda^B 1_{\{N_t=0\}} + \lambda^A 1_{\{N_t\geq 1\}}.$$

Figure 10 plots the conditional equity premium and jump risk premium before the first disaster arrives. Both the equity premium and jump risk premium are slightly higher in the

15Such belief dynamics ignore the fact that the optimist’s belief will be reinforced by each year passed without a disaster, which could further reduce the equity premium.
case where beliefs converge after the first disaster, which is consistent with the intuition that learning can reduce risk sharing in the long run. However, the quantitative effect of learning on pricing is very small. As these results show, the majority of the effect of heterogeneous beliefs on asset pricing is due to risk sharing for the first disaster. Thus, any updating of beliefs following the first disaster will only have second order effects on asset prices.

6 Concluding Remarks

We demonstrate the equilibrium effects of heterogeneous beliefs about disasters on risk premia and trading activities. When agents disagree about disaster risk, they will insure each other against the types of disasters they fear most. Because of the highly nonlinear effect of disaster size on risk premia, the risk sharing provided by a small amount of agents with heterogeneous beliefs can significantly attenuate the effect of disasters on the equity premium. The model has important implications for how disaster risks affect the dynamics of asset prices, the potential bias of estimating disaster probabilities from prices, and the link between the size of disaster insurance market and equity premium.

Our results also suggest a few directions for future research on disaster risk. The effectiveness of the risk sharing mechanism has significant impact on how disaster risk affects asset prices in the equilibrium. It would be useful to study what happens to asset prices when we limit the risk sharing among investors with heterogeneous beliefs about disasters, perhaps by imposing transaction costs, borrowing constraints, and short-sales constraints as in Heaton and Lucas (1996). Another interesting consideration is ambiguity aversion. As Hansen (2007) and Hansen and Sargent (2010) show, if investors are ambiguity averse, they deal with model/parameter uncertainty by slanting their beliefs pessimistically. In the case with disaster risk, ambiguity averse investors will behave as if they believe the disaster probabilities are high, even though their actual priors might suggest otherwise. This mechanism could also limit the effects of risk sharing. We leave these questions to future research.
Appendix

A Time-varying Disagreement

The model solution is generally analogous to the case without Markov regime-switching, so we sketch the major differences between the models.

The Radon-Nikodym derivative η_t now reflects the change of state s_t,

$$\eta_t = e^{\sum_{i \in \{L,H\}} \left(\Delta a_i N_i^t - \lambda_i^B T_i^t (e^{a_i} - 1) \right)}, \quad (A.1)$$

where

$$\Delta a_i = \log \left(\frac{\lambda_i^B}{\lambda_i^A} \right), \quad (A.2)$$

$$T_i^t = \int_0^t 1_{\{s_\tau = i\}} d\tau, \quad (A.3)$$

and N_i^t counts the number of disasters that have occurred up to time t while the state is $s_t = i$.

The key expectations to compute are of the form

$$E^A_0 [e^{a T_{L}^t + b N^H + c T_{L}^t + d T^H}] = E^A_0 \left[E^A_0 [e^{a N^L_t + b N^H + c T_{L}^t + d T^H} \mid \{S_{\tau}\}_\tau=0] \right], \quad (A.4)$$

where N_i^t is the number of disasters that occur in state i and T_i^t is the occupation time in state i defined in (A.3). These expectations can be computed by first conditioning on the path of the Markov state and using the conditional independence of the Poisson process in each state:

$$E^A_0 [e^{a N^L_t + b N^H + c T_{L}^t + d T^H}] = E^A_0 \left[E^A_0 [e^{a N^L_t + b N^H + c T_{L}^t + d T^H} \mid \{S_{\tau}\}_\tau=0] \right], \quad (A.5)$$

$$= E^A_0 \left[e^{(\lambda_i^B (e^{a_i} - 1) + c) T_{L}^t + (\lambda_i^A (e^{b_i} - 1) + d) T^H} \right]. \quad (A.6)$$

This reduces the problem to computing the joint moment-generating function of the occupation times (T_{L}^t, T^H). Darroch and Morris (1968) show that this expectation reduces to

$$E^A_0 [e^{\alpha T_{L}^t + \beta T^H}] = \pi_0' \exp (At) \bar{1}, \quad \text{where } A = \Lambda + \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}, \quad (A.7)$$

and π_0 is either $(1, 0)'$ or $(0, 1)'$, as the initial state is L or H.

The price of consumption claims involve sums of integrals of such expectations. These
integral can be computed in closed form by diagonalizing A to deliver closed form expressions for the prices of interest.

B Calibrating Disagreement: Is the US Special?

Having considered a series of special examples of heterogeneous beliefs, we now extend the analysis to a less stylized model of beliefs on disasters. We calibrate the beliefs of the two types of agents as follows. Agent A believes that the US is no different from the rest of the world in its disaster risk exposure. Hence her beliefs are calibrated using cross-country consumption data. Agent B, on the other hand, believes that the US is special. She forms her beliefs on disaster risk using only the US consumption data.

An important contribution of Barro (2006) is to provide detailed accounts of the major consumption declines cross 35 countries in the twentieth century. Rather than directly using the empirical distribution from Barro (2006), we estimate a truncated Gamma distribution for the log jump size from Barro’s data using maximum likelihood (MLE).\(^{16}\) Our estimation is based on the assumption that all the disasters in the sample were independent, and that the consumption declines occurred instantly.\(^{17}\) We also bound the jump size between -5% and -75%. In comparison, the smallest and largest declines in per capital GDP in Barro’s sample are 15\% and 64\%, respectively. Choosing a more negative lower bound than -75% will have little effect on our results, because even though the larger disasters can imply a higher premium in a single-agent economy, they can also raise the risk sharing motives in our model. The disaster intensity under A’s beliefs is still $\lambda^A = 1.7\%$. The remaining parameters are: the mean growth rate and volatility of consumption without a disaster, $\bar{g} = 2.5\%$ and $\sigma_c = 2\%$, which are consistent with the US consumption data post WWII.

As for agent B, we assume that she agrees with the values of \bar{g} and σ_c, but we estimate the truncated Gamma distribution of disaster size using MLE from annual per-capita consumption data in the US 1890-2008.\(^{18}\) Over the sample of 119 years, there are three years where consumption falls by over 5\%. Thus, we set $\lambda^B = 3/119 = 2.5\%$. Alternatively, we can also jointly estimate λ^B and the jump size distribution.

Panel A of Figure 11 plots the probability density functions of the log jump size distributions for the two agents, which are very different from each other. The solid line is the distribution fitted to the international data on disasters. The average log drop is 0.36,

\(^{16}\)The truncated Gamma distribution has probability density function (PDF) $f(d; \alpha, \beta|d_{\text{min}}, d_{\text{max}}) = f(d; \alpha, \beta) / (F(d_{\text{max}}; \alpha, \beta) - F(d_{\text{min}}; \alpha, \beta))$, where $f(x; \alpha, \beta)$ and $F(x; \alpha, \beta)$ are the PDF and CDF of the standard Gamma distribution with shape parameter α and scale parameter β.

\(^{17}\)These assumptions are debatable. For example, many of the major declines cross European countries are in WWI and WWII. Moreover, many of the declines spanned several years. See Barro and Ursúa (2008), Donaldson and Mehra (2008), and Constantinides (2008) for more discussions on the measurement of historical disasters.

which is equivalent to 30% drop in the level of consumption. In the US data, the average drop in log consumption is only 0.075, or 7.3% in level. In addition, agent A’s distribution has a much fatter left tail than B. Thus, while A assigns significantly higher probabilities than B to large disasters (where consumption drops by 15% or more), agent B assigns more probabilities to small disasters, especially those ranging from 5 to 12%. In fact, agent B’s beliefs are close to the calibration adopted by Longstaff and Piazzesi (2004), who assume that the jump in aggregate consumption during a disaster is 10%.

The differences in beliefs lead the two agents to insure each other against the types of disasters they fear more, and the trading can be implemented using a continuum of disaster insurance contracts with coverage specific to the various disaster sizes. Panel B plots drops in the equilibrium consumption (level) for the two agents when disasters of different sizes occur, assuming that agent B owns 10% of total wealth. The graph shows that through disaster insurances, agent A is able to reduce her consumption loss in large disasters (comparing the
solid line to the dotted line). For example, her own consumption will only fall by 24% in a disaster where aggregate consumption falls by 40%, a sizable reduction especially considering the small amount of wealth that agent B has. At the same time, she also provides insurances to B on smaller disasters, which increases her consumption losses when such disasters strike. Agent B’s consumption changes are close to a mirror image of agent A’s. However, the changes are magnified both for large and small disasters due to her small wealth share.

Panel C shows the by-now familiar exponential drop in the equity premium as the wealth share of agent B increases. The equity premium is 4.4% when all the wealth is owned by the agents who form their beliefs about disasters based on international data, but drops to 2.0% when just 10% of total wealth is allocated to the agents who form their beliefs using only the US data. The main reason for the lower equity premium is again due to the decrease of the jump risk premium (Panel D), which falls from 6.5 to 4.0 when agent B’s wealth share rises to 10%. This effect alone drives the equity premium down to 2.4%. Notice that the jump risk premium is no longer monotonic in the wealth share of agent B. This is because when agent A has little wealth, she would be betting against small disasters so aggressively that the big losses for her during small disasters can cause the jump risk premium to rise again.
References

45

A Securities’ prices and portfolio positions

In this appendix we compute the prices of the claim on aggregate endowment (stock), the claim on individual agents’ consumption streams (agents’ personal wealth), disaster insurance, and the equilibrium portfolio positions. We begin with the general setting of time-varying disaster intensity. To concentrate on the effects of heterogeneous beliefs, we assume that the two agents have the same relative risk aversion γ.

A.1 Aggregate and individual consumption claim prices: general setting

The price of the aggregate endowment claim is

$$ P_t = \int_0^\infty E_t^A \left[\frac{M_t^A}{M_t^A} C_{t+T} \right] dT, \quad (A.1) $$

where M_t^A is the stochastic discount factor

$$ M_t^A = e^{-\rho t} C_t^{-\gamma} \left(1 + (\zeta_0 e^{\log \eta_t})^{\frac{1}{\gamma}} \right)^\gamma. \quad (A.2) $$

This price can be viewed as a portfolio of zero coupon aggregate consumption claims

$$ M_t^A P_t^{t+T} = E_t^A [M_t^{A_T} C_{t+T}] $$
$$ = e^{-\rho(t+T)} e^{T[\gamma(1-\gamma)+\frac{1}{2}\sigma^2_t(1-\gamma)^2]_t} (1-\gamma)^c_t \times E_t^A \left[e^{(1-\gamma)c_{t+T}^d} \left(1 + (\zeta_0 e^{\log \eta_{t+T}})^{\frac{1}{\gamma}} \right)^\gamma \right]. $$

Under our assumption of integer γ, the final term will be a sum of expectations of the form

$$ E_t^A \left[e^{(1-\gamma)c_{t+T}^d + \beta_t \log \eta_{t+T}} \right] = e^{A_t(T)+(1-\gamma)c_{t+T}^d + \beta_t \log \eta_t + B_t(T)\lambda_t}, \quad (A.3) $$
where \((A_i, B_i)\) satisfy a simplified version of the familiar Riccati differential equations
\[
\begin{align*}
\dot{B}_i &= -\frac{\bar{\lambda}}{\lambda} B_i - \kappa B_i + \frac{\sigma^2}{2} B_i^2 + (\phi((1 - \gamma, \beta_i)) - 1), & B_0(0) = 0, \quad (A.4a) \\
\dot{A}_i &= \kappa \theta B_i, & A_i(0) = 0, \quad (A.4b)
\end{align*}
\]
where \(\phi\) is the moment generating function of jumps in \((c_t^A, a_t)\).

It follows that price/consumption ratio of the zero-coupon equity varies only with the stochastic weight \(\tilde{\zeta}_t\) and the disaster intensity:
\[
P_t^{t+T} = C_t h^T (\lambda_t, \tilde{\zeta}_t). \quad (A.5)
\]

Next, agent A’s wealth \(P_t^A = \int_0^\infty E_t^A \left[\frac{M_{t+T}^A}{M_t^A} C_{t+T}^A \right] dT\) at time \(t\) is a portfolio of her zero coupon consumption claims
\[
M_t^A P_{t+T}^A = E_t^A \left[M_{t+T}^A C_{t+T}^A \right] = e^{-\rho(t+T)} e^{T[\gamma(1-\gamma)+\frac{1}{2} \sigma^2(1-\gamma)^2]c_t} \times E_t^A \left[e^{(1-\gamma)c_t^A} \left(1 + \left(\zeta_0 e^{\log \eta_t + T} \right)^{\frac{1}{\gamma}} \right)^{\gamma-1} \right].
\]

We can compute agent A’s wealth process by making a similar binomial expansion as in the case of \(P_t\), and then computing the expectation concerning the same affine jump diffusion process. Finally, the wealth process of agent B is simply \(P_t^B = P_t - P_t^A\).

A.2 Special case: constant disaster risk

Closed form expressions can now be obtained in the special case of constant disaster intensity and constant disaster size. Let’s denote \(\tilde{\zeta}_t \equiv \zeta_0 e^{\log \eta_t}\). Again by expanding the binomial for the cases with integer \(\gamma\),
\[
E_t^A \left[M_{t+T}^A C_{t+T}^A \right] = e^{-\rho(t+T)} E_t^A \left[\left(1 + (\tilde{\zeta}_{t+T})^{1/\gamma} \right)^\gamma C_{t+T}^{1-\gamma} \right]
\]
\[
= e^{-\rho(t+T)} C_t^{1-\gamma} \sum_{k=0}^{\gamma} \binom{\gamma}{k} E_t^A \left[(\tilde{\zeta}_{t+T})^{k/\gamma} C_{t+T}^{1-\gamma} \right].
\]
Plugging in the explicit expressions for aggregate consumption C_t, the stochastic discount factor M_t^A, and performing the simple affine jump diffusion expectation we obtain

$$P_t^{t+T} = C_t \sum_{k=0}^{\gamma} \alpha_{k,t} e^{-\beta_k T}, \quad (A.6)$$

with

$$\alpha_{k,t} \equiv \binom{\gamma}{k} \frac{(\tilde{\zeta}_t)^{k/\gamma}}{(1 + (\tilde{\zeta}_t)^{1/\gamma})^\gamma}, \quad (A.7a)$$
$$\beta_k \equiv \rho + (\gamma - 1)\bar{g} - \frac{1}{2}\sigma^2 (\gamma - 1)^2 - \bar{\lambda}(e^{(\gamma - 1)\bar{d} + \frac{k\Delta a}{\gamma}} - 1) + \frac{\lambda k}{\gamma}(e^{\Delta a} - 1), \quad (A.7b)$$

where Δa is given in (5).

Finally, integrating over time T yields the explicit price of aggregate endowment claim

$$P_t = \int_0^\infty P_t^{t+T} dT = C_t \sum_{k=0}^{\gamma} \frac{\alpha_{k,t}}{\beta_k}. \quad (A.8)$$

The restriction $\beta_k^A > 0$ is needed to ensure finite value for P_t. We will come back to this type of restriction below.

By identical approach, we obtain the price of agent A’s consumption claim (i.e. her wealth process)

$$P_t^A = \int_0^\infty P_t^{A,t+T} dT = C_t \sum_{k=0}^{\gamma-1} \frac{\alpha_{k,t}^A}{\beta_k}. \quad (A.9)$$

where β_k remains the same as above and

$$\alpha_{k,t}^A \equiv \binom{\gamma - 1}{k} \frac{(\tilde{\zeta}_t)^{k/\gamma}}{(1 + (\tilde{\zeta}_t)^{1/\gamma})^\gamma}. \quad (A.10)$$

Price of disaster insurance

Let $P_{t,t+T}^{DI}$ denotes the price of disaster insurance which pays $1 at maturity time $t + T$ if there was at least one disaster taking place in the time interval $(t, t + T)$. In the main text
we consider disaster insurance P_t^{DI} of maturity $T = 1$ in particular.

\[
\begin{align*}
P_{t,t+T}^{DI} &= E_t^A \left[\frac{M_{t+T}^A}{M_t^A} 1_{(N_{t+T} > N_t)} \right] \\
&= e^{-\rho T} E_t^A \left[(C_T^A)^{-\gamma} 1_{(N_{t+T} > N_t)} \right] \\
&= \frac{e^{(-\rho - \gamma + \frac{1}{2}\gamma^2 \sigma^2)T}}{(1 + (\zeta_t)^{1/\gamma})^\gamma} E_t^A \left[e^{\gamma d \Delta N_T} (1 + (\tilde{\zeta}_{t+T})^{1/\gamma} e^{(\Delta a \Delta N_T - \tilde{\lambda} T(e^{\Delta a} - 1))/\gamma})^\gamma 1_{(\Delta N_T > 0)} \right] \\
&= \frac{e^{(-\rho - \gamma + \frac{1}{2}\gamma^2 \sigma^2)T}}{(1 + (\zeta_t)^{1/\gamma})^\gamma} \left\{ E_t^A \left[e^{\gamma d \Delta N_T} (1 + (\tilde{\zeta}_{t+T})^{1/\gamma} e^{(\Delta a \Delta N_T - \tilde{\lambda} T(e^{\Delta a} - 1))/\gamma})^\gamma \right] \\
&- (1 + (\tilde{\zeta}_t)^{1/\gamma} e^{-\tilde{\lambda} T(e^{\Delta a} - 1)/\gamma})^\gamma \mathbb{P}_A(\Delta N_T = 0) \right\},
\end{align*}
\]

where $\Delta N_T \equiv N_{t+T} - N_t$ is number of disasters taking place in $[t, t+T]$, and $\mathbb{P}_A(\Delta N_T = 0) = e^{-\tilde{\lambda} T}$ is the probability that no such disaster did happen. Again by expanding the binomial $(1 + (\tilde{\zeta}_{t+T})^{1/\gamma} e^{(\Delta a \Delta N_T - \tilde{\lambda} T(e^{\Delta a} - 1))/\gamma})^\gamma$, and then computing the expectation of each resulting term, we obtain

\[
P_{t,t+T}^{DI} = \frac{a_T}{(1 + (\zeta_t)^{1/\gamma})^\gamma} \left\{ \sum_{k=0}^{\gamma} b_{k,T}(\zeta_t)^{k/\gamma} \right\} - e^{-\tilde{\lambda} T} (1 + (\tilde{\zeta}_t)^{1/\gamma} e^{-\tilde{\lambda} T(e^{\Delta a} - 1)/\gamma})^\gamma \}
\]

where

\[
\begin{align*}
a_T &= e^{(-\rho - \gamma + \frac{1}{2}\gamma^2 \sigma^2)T}, \\
b_{k,T} &= \left(\gamma \atop k \right) e^{-\tilde{\lambda} k T(e^{\Delta a} - 1)/\gamma} e^{\tilde{\lambda} T[e^{(\gamma \Delta a k)/\gamma} - 1]}.
\end{align*}
\]

B Equilibrium portfolio positions

In the current case of constant jump size with two dimensions of uncertainties (Brownian motion and disaster jump), the market is complete when agents are allowed to trade contingent claims on aggregate consumption (stock) P_t, money market account $RF B_t$ and disaster insurance P_t^{DI}. We can use generalized Itô lemma on jump-diffusion (see, for example, Protter (2003)) to determine the price processes for each asset. Portfolio positions are then determined by equating the exposures to the Brownian and jump risks of each agents consumption claim to a portfolio of the aggregate claim and disaster insurance, which are
then financed with the risk free bond.

C Boundedness of prices

This appendix discusses the boundedness of securities prices in general heterogeneous-agent economy. As claimed in the main text, as long as agents have different but equivalent beliefs, necessary and sufficient condition for finite price of a security in heterogeneous-agent economy is that this price be finite under each agent’s beliefs in a single-agent economy. This is easy to see since

\[
\max(f^A_{1,0}, f^A_{2,0} \eta_t) \leq M_t^A \leq (2f^A_{1,0}) + (2f^A_{2,0}) \eta_t
\]

(C.1)

Conditions for the finiteness of prices in the single agent economy can be found by studying the fixed points of the equations (A.4a). Setting \(dB/dt = 0\), we find the fixed point of this differential equation is

\[
B^* = \frac{\kappa - \sqrt{\kappa^2 + 2\sigma^2_{\lambda}(1 - \bar{\phi} \bar{g} (1 - \gamma^i))}}{\sigma^2_{\lambda}},
\]

(C.2)

provided that (13a) holds. Otherwise there is no fixed point and \(B \to \infty\) implying infinite prices. Furthermore, it is easily seen that the initial condition \(B(0) = 0\) is in the domain of attraction. For equity price to be finite, it is easy to see that the limiting exponent in (A.3) must be negative, or

\[
-\rho + (1 - \gamma^i)\bar{g} + \frac{1}{2}(\gamma^i - 1)^2 \sigma^2_c + \kappa \lambda^i B^* < 0,
\]

(C.3)

for both \(i = 1, 2\). This is (13b) after we plug in the above expression for \(B^*\).

D Proofs from Section 3.2

In this section, we provide the proofs for the results in Section 3.2. It is useful to rewrite expression for the consumption fractions in terms of the initial consumption sharing rule
\((f_0^A, f_0^B) \) and the Radon-Nikodym derivative \((\eta_t)\). In these terms,

\[
f_t^A = \frac{f_0^A}{f_0^A + f_0^B \eta_t^{\frac{1}{\gamma}}}, \quad (D.1)
\]

\[
M_t^A/M_0^A = \left(f_0^A + f_0^B \eta_t^{\frac{1}{\gamma}} \right)^{\gamma} C_t^{-\gamma}/C_0^{-\gamma}, \quad (D.2)
\]

\[
\lambda_t^Q = \lambda_A e^{-\gamma d} \left(f_t^A + f_t^B \left(\frac{\lambda_B}{\lambda_A} \right)^{\frac{1}{\gamma}} \right)^{\gamma}. \quad (D.3)
\]

Additionally, for ease of notation, we set \(N_0 = 0 \) and \(C_0 = 1 \) which results in the expressions being fractions of the initial endowment.

Taking derivatives, we find

\[
\frac{\partial \lambda_t^Q}{\partial f_0^A} = \lambda_A e^{-\gamma d} \gamma \left(f_0^A + f_0^B \left(\frac{\lambda_B}{\lambda_A} \right)^{\frac{1}{\gamma}} \right)^{\gamma - 1} \left(1 - \left(\frac{\lambda_B}{\lambda_A} \right)^{\frac{1}{\gamma}} \right). \quad (D.4)
\]

Setting \(f_0^A = 1 \) and taking the limit \(\lambda_B \to 0^+ \), we obtain (19).

In order to compute the derivative of the wealth fraction of Agent B with respect to \(f_0^B \), we first compute the derivative of the value of his claim, call it \(P^B \), with respect to \(f_0^B \). Since

\[
P^B = \int_0^\infty E_0^A \left[(f_0^A + f_0^B \eta_t^{\frac{1}{\gamma}}) \gamma^{-1} f_0^B \eta_t^{\frac{1}{\gamma}} C_t^{1-\gamma} \right] e^{-\rho t} dt, \quad (D.5)
\]

we have that

\[
\frac{\partial P^B}{\partial f_0^A} = \int_0^\infty (\gamma - 1) E_0^A \left[(f_0^A + f_0^B \eta_t^{\frac{1}{\gamma}})^{\gamma - 2} (1 - \eta_t^{1/\gamma}) f_0^B \eta_t^{\frac{1}{\gamma}} C_t^{1-\gamma} \right] e^{-\rho t} dt
\]

\[
- \int_0^\infty E_0^A \left[(f_0^A + f_0^B \eta_t^{\frac{1}{\gamma}})^{\gamma - 1} \eta_t^{\frac{1}{\gamma}} C_t^{1-\gamma} \right] e^{-\rho t} dt. \quad (D.6)
\]
From which it follows

$$\frac{\partial P^B}{\partial f^A_{0}} \Big|_{f^A_{0}=1} = - \int_{0}^{\infty} E_0^A[\eta_t^{1/\gamma}C_t^{1-\gamma}]e^{-rt}dt$$

$$= - \frac{1}{\rho + (\gamma - 1)\bar{g} - \frac{1}{2}\sigma_c^2(1-\gamma)^2 + \frac{1}{\gamma}(\lambda_B - \lambda_A) - \lambda_A(e^{(1-\gamma)d + \frac{1}{\gamma} \log \frac{\lambda_B}{\lambda_A}} - 1)}.$$

(D.7)

And so

$$\frac{\partial P^B}{\partial f^A_{0}} \Big|_{f^A_{0}=1} \to - \frac{1}{\rho + (\gamma - 1)\bar{g} - \frac{1}{2}\sigma_c^2(1-\gamma)^2 + \frac{2-1}{\gamma}\lambda_A} \text{ as } \lambda_B \to 0^+.$$ \hspace{1cm} (D.8)

Now, it is easy to see that the derivative of the value of the claim to the entire endowment is bounded and since \(P_B = 0 \) when \(f^A_{0} = 1 \), the derivative \(\frac{\partial w^B_0}{\partial f^A_{0}} \) is simply \(\frac{\partial w^B_0}{\partial f^A_{0}} \) divided by the value of the claim to the entire endowment. This proves (??).

E General valuation of disaster states

In Section 3.2, we demonstrated that within a simple calibration a large fraction of the the value of the endowment claim arises from the disaster states, even though these states are very rare. Here we demonstrate that in fact this property is a feature of a broad class of models. Specifically, suppose that the model is such that the dynamics of aggregate consumption under the actual measure, as well as the risk-neutral measure, follow the dynamics in 1 and that the risk-free rate is constant. This is true in our model with CRRA preferences and remains true with Epstein-Zin preferences (cf. Wachter (2009).) In particular, this reduced form setting removes the link between risk aversion and elasticity of intertemporal substitution.

Within this setting, let \(\bar{g}^Q \) denote the growth rate of consumption under the risk neutral measure. The fractional value of consumption in the non-disaster states is then

$$\frac{\int_{0}^{\infty} E_0^Q [e^{-rt}C_t \times 1_{\{N_t=0\}}]}{\int_{0}^{\infty} E_0^Q [e^{-rt}C_t]} = \frac{r - \bar{g}^Q - .5\sigma_c^2 - \lambda^Q(e^d - 1)}{r - \bar{g}^Q - .5\sigma_c^2 + \lambda^Q} \text{ (E.1)}$$

The difference between the numerator and denominator is \(\lambda^Qe^d \). In order for disasters to
account for a substantial risk premium, this term should be sizeable (it is 6% in the example of Section 3.1.) Moreover, it is reasonable to expect the price-consumption ratio (the inverse of the denominator) should not be too small. Setting these to 4% and 10 gives a fraction 4/14 due to disaster states. Setting them to 6% and 20 give a fraction of 6/11 to the disaster states. In summary, under these very general reduced form assumptions on the endowment and preferences along with the assumptions that (i) disasters account for a significant risk premium and (ii) the price-consumption ratio is not too small, the fraction of wealth due to non-disaster states is significant.\footnote{In the CRRA version of this equation, }\footnote{In the CRRA version of this equation, $r = \rho + \gamma \bar{g} - .5\sigma^2 \gamma^2 - (\lambda^Q - \lambda^P)$. This causes increasing λ^P (and thus λ^Q) to increase the price-consumption ratio. In the general formula if we fix r and increase λ^Q independently this decreases P/C so clearly the generic form does not have EIS-risk aversion link problems.}

\section{General Forms of Disagreements}

The affine heterogeneous beliefs framework in Section 2 can capture other forms of heterogeneous beliefs besides disagreement about disaster intensity. In this section, we first show that disagreement about the size of disasters has similar impact on the risk premium as disagreement about the frequency of disasters. We then provide an example with strong effects of risk sharing even when both agents are pessimistic about disasters.

\subsection{Disagreement about the Size of Disasters}

For simplicity, let’s assume that the drop in aggregate consumption in a disaster follows a binomial distribution, with the possible drops being 10% and 40%. Both agents agree on the intensity of a disaster ($\lambda = 1.7\%$). Agent A (pessimist) assigns a 99\% probability to a 40\% drop in aggregate consumption, thus having essentially the same beliefs as in the previous example. On the contrary, agent B (optimist) only assigns 1\% probability to a 40\% drop, but 99\% probability to a 10\% drop. The rest of the parameter values are the same as in the first example.

Figure IA.1 (solid lines) plots the conditional equity premium and jump risk premium under the pessimist’s beliefs. When the pessimist has all the wealth, the equity premium is 4.6\% (almost the same as in the first example). Again, the equity premium falls rapidly as we starts to shift wealth to the optimist. The premium falls by almost half to 2.4\% when the optimist owns just 5\% of total wealth, and becomes 1.4\% when the optimist’s share of
Figure IA.1: **Disagreement about the size of disasters.** The left panel plots the equity premium under the pessimist’s beliefs. The right panel plots the jump risk premium for the pessimist. In the case with “more disagreement”, the pessimist (optimist) assigns 99% probability to the big (small) disaster, conditional on a disaster occurring. With “less disagreement”, the probability assigned to big (small) disaster drops to 90%.

Total wealth grows to 10%. Similarly, the jump risk premium falls from 7.6 to 4.5 with the optimist’s wealth share reaching 10%, which by itself will lower the premium to 2.4%.

These results show that, in terms of asset pricing, introducing an agent who disagrees about the severity of disasters is similar to having one who disagrees about the frequency of disasters. Even though the two agents agree on the intensity of disasters in general, they actually strongly disagree about the intensity of disasters of a specific magnitude. For example, under A’s beliefs, the intensity of a big disaster is $1.7\% \times 99\% = 1.68\%$, which is 99 times the intensity of such a disaster under B’s beliefs. The opposite is true for small disasters. Thus, B will aggressively insure A against big disasters, while A insures B against small disasters. For agent A, the effect of the reduction in consumption loss in a big disaster dominates that of the increased loss in a small disaster, which drives down the equity premium exponentially. Such trading can also become speculative when B has most of the wealth: agent A will take on so much loss in a small disaster that the jump risk premium rises up again.

Naturally, we expect that the agents will be less aggressive in trading disaster insurances when there is less disagreement on the size of disasters, and that the effect of risk sharing on the risk premium will become smaller. The case of “less disagreement” in Figure IA.1
confirms this intuition. In this case, we assume that the two agents assign 90% probability (as opposed to 99%) to one of the two disaster sizes. While the equity premium still falls rapidly near the left boundary, the pace is slower than in the previous case. Similarly, we see a slower decline in the jump risk premium.

F.2 When Two Pessimists Meet

The examples we have considered so far have one common feature: the new agent we are bringing into the economy has more optimistic beliefs about disaster risk, in the sense that the distribution of consumption growth under her beliefs first-order stochastically dominates that of the other’s, and that the equity premium is significantly lower when she owns all the wealth. However, the key to generating aggressive risk sharing is not that the new agent demands a lower equity premium, but that she is willing to insure the majority wealth holders against the types of disasters that they fear most.

In order to highlight this insight, we consider the following example, which combines disagreements about disaster intensity as well as disaster size. Both agents believe that disaster risk accounts for the majority of the equity premium. The key difference in their beliefs is that one agent believes that disasters are rare but big, while the other thinks disasters are more frequent but less severe. Specifically, we assume that disasters can cause aggregate consumption drops of a 30% or 40%. Agent A believes that $\lambda^A = 1.7\%$, and assigns 99% probability to the bigger disaster. B believes that $\lambda^B = 4.2\%$, and assigns 99% probability to the smaller disaster.

By themselves, the two agents both demand high equity premium. We have chosen λ^B so that, under the beliefs of agent A, the equity premium is 4.6% whether A or B has all the wealth. However, they have significant disagreement on the exact magnitude of the disaster. Such disagreement generates a lot of demand for risk sharing. As we see in Panel A of Figure IA.2, the conditional equity premium falls rapidly as the wealth share of agent B moves away from the two boundaries. In fact, the premium will be below 2% when B owns between 9% and 99% of total wealth. In Panel B, the jump risk premium also falls by half from 7.6 and 10 on the two boundaries when B’s wealth share moves from 0% to 25% and from 100% to 91%, respectively.

To get more information on the risk sharing mechanism, in Panel C and D we examine the equilibrium consumption changes for the individual agents during a small or big disaster.
Figure IA.2: **When Two Pessimists Meet.** Panel A and B plot the equity premium and jump risk premium under agent A’s beliefs. Panel C and D plot the individual consumption changes in small and big disasters.

Since agent A assigns a low probability to the small disaster, she insures agent B against this type of disasters. As a result, her consumption loss in such a disaster exceeds that of the aggregate endowment (-30%), and it increases with the wealth share of agent B. When B has almost all the wealth in the economy, agent A sells so much small disaster insurance to B that her own consumption can fall by as much as 82% when such a disaster occurs. As a result, agent B is able to reduce her risk exposure to small disasters significantly. In fact, her consumption actually jumps up in a small disaster when she owns less than 75% of total wealth, sometimes by over 100% (when her wealth share is small).

The opposite is true in Panel D. As agent B insures A against big disasters, she experiences bigger consumption losses in such a disaster than the aggregate endowment (-40%). The equilibrium consumption changes of the two agents are less extreme compared to the case of small disasters, which is due to two reasons. First, the relative disagreement on big
disasters is smaller than on small disasters. Second, the insurance against larger disasters is more expensive, so that agent A’s ability to purchase disaster insurance is more constrained by her wealth.