Vulnerability Analysis Of Optimal Power Flow Problem Under Cyber-Physical Security Attacks

Devendra Shelar and Saurabh Amin

Massachusetts Institute of Technology

INFORMS
November 15th, 2016
In addition to reliability failures, power grids are increasingly vulnerable to cyber-physical security (CPS) attacks. Such CPS attacks can be modeled as bilevel optimization problems. We present two CPS attack scenarios: Dynamic Line Rating (DLR) Manipulation and Distributed Energy Resource (DER) disruption. Structural insights allow for greedy and efficient (approximate) algorithms.
A. Verma, D. Bienstock: N-k vulnerability problem
 - Attacker disrupts generators or manipulates line impedances to maximinimize load shedding
 - DC Power Flow approximation

S. Wright et al.: Vulnerability Analysis of Power Systems
 - Attacker increases the line impedances to maximinimize
 - Loss of voltage regulation, OR Load shedding
 - Use both active and reactive power

R. Baldick, K. Wood, D. Bienstock: Network Interdiction, Cascades
Use bilevel optimization models with outer problem as attack model, and the inner problem being optimal power flow (OPF) problem
 - Ensure demand is fully met while minimizing costs subject to generator, capacity, supply-demand balance, power flow constraints
Bilevel problem (Stackelberg game)

- **Leader**: Attacker compromises the DLRs using false data injection attack;
- **Follower**: Defender’s economic dispatch solution is optimal for new *manipulated* system, but possibly infeasible for the old *actual* system.

Problem statement:

- Determine an optimal attack plan to maximinimize line rating violations
Solution Approaches

Benders Decomposition (Kevin Wood et al.)
- Alternately consider follower problem, with fixed attacker actions, and master problem with fixed defender actions
- Sequentially generate Benders cut for the Master Problem until zero optimality gap
- Results in systematic vertex enumeration of the inner problem

Kuhn-Tucker Single-level reformulation (Bard et al.)
- Apply KKT optimality conditions for the inner problem, and reformulate complementarity constraints
- Use Branch-n-Bound techniques to solve the resulting Mixed-Integer Linear Program (MILP)
Attacker strategy, by and large, exhibits a bang-bang policy
 - Some DLRs are set to maximum
 - Other DLRs are set to minimum (as long as feasible operating point exists)
 - Similar results hold for larger (118 node) testcase
Implementation of attack in Powerworld simulator

(c) Pre-attack system state (safe).
(d) Post-attack system state (unsafe).