Compromising Security of Economic Dispatch in Power System Operations

Devendra Shelar, MIT

Dependable Systems and Networks, June 29th, 2017

Joint work with

Saurabh Amin, MIT

Pengfei Sun and Saman Zonouz, Rutgers

Focus of the talk

Economic dispatch

- United States 4 Billion MWh of energy produced
- Around 400 Billion \$ revenues per annum
- Day-ahead market, real-time operations

Question - Cybersecurity of economic dispatch software (in the control center) in the wake of semantics-aware memory data compromises

Security failures (attacks): post Stuxnet

Sniper attack: PG&E's Metcalf substation (2013) Ukraine: Outages & equipment damage (2016)

Motivation

Characteristics of previous attacks

- Not geographically diverse attack
- Control center node attacks
- Sub-optimal attacks
 - Did not fully exploit the physics of the underlying system
- In Ukraine attack, attacker had full control of the grid controller
 - Power was restored after 6 hours

Question

• Can there be a more damaging attack with lesser attacker control?

Our contributions

Semantic data attack on power grid controller software

- Attack on control algorithm Economic Dispatch (ED)
 - Using network and power system knowledge
 - Game-theoretic framework for optimal attack strategy
- Implementation based on memory data corruption
 - Leverage logical memory invariants in the software
 - Implemented on widely used ED software

Overall approach

Attacker's 3-step plan

Related Work

Cyber security issues of the power system

- M. Reiter et al. False data injection attacks against state estimation
- Z. Zhang et al. Bad data identification based on measurement
- Z. Kalbarczyk et al. False data injection attacks against automatic generation control

Physical vulnerabilities of the power system

- Bienstock et al. N-k problem, cascades
- Kevin Wood et al. Network interdiction problem

Comments

- Lack of integrated approach to implement optimal attack into the control algorithm
- Assume that the attacker can directly compromise distributed sensors or components
- Assume knowledge of network parameters that usually resides at the control center

Attacker's 3-step plan

Optimal attack generation

A sequential game between attacker and defender (operator)

- Attacker moves first
 - Stealthily manipulates parameters of the economic dispatch
- Defender (operator) moves next
 - Computes economic dispatch

Problem statement:

- Determine optimal attack plan (i.e. parameter manipulation) to maximize power system violations
 - Assuming defender does economic dispatch with manipulated DLR values

Economic Dispatch

- Inputs
 - network topology
 - Generator / demand data
 - Network parameters
- Constraints
 - Device limits
 - Power flows
 - Supply-demand balance
- Output
 - Generation levels
- Objective
 - Minimize cost of generation

Economic Dispatch

$$\min_{p,\theta,f} C(p)$$
subject to
$$\sum_{i\in G} p_i = \sum_{j\in V} d_j$$

$$\forall \{i,j\} \in E \qquad f_{ij} = \beta_{ij}(\theta_i - \theta_j)$$

$$\forall i \in V \qquad \sum_{j:\{i,j\}\in E} f_{ij} = \sum_{k\in G_i} p_k - d_i$$

$$\forall \{i,j\} \in E \qquad |f_{ij}| \le u_{ij}$$

$$\forall i \in G \qquad p_i^{min} \le p_i \le p_i^{max}$$

$$C(p) = \sum_{i=1}^{n} a_i p_i^2 + b_i p_i + c_i$$

i∈G

Minimize total cost of generation

Total Supply = Total demand

Ohm's law (DC power flow)

Power flow conservation

Line capacity limits

Generation bounds

Generation cost functions

Dynamic Line Ratings (DLR)

$$u_{ij} = \begin{cases} u_{ij}^{s} \text{ if } \{i, j\} \in E^{S} \quad (\text{static}) \\ u_{ij}^{d} \text{ if } \{i, j\} \in E^{D} \quad (\text{DLR}) \end{cases}$$

Lower and upper bounds for DLR values $u_{ij}^{min} \leq u_{ij}^{d} \leq u_{ij}^{max}$

Figure 1: Tapping into existing capacity above the static rating

Source: Valley Group

Economic dispatch

$$\left(y^{\star}(u^{d}), s^{\star}(u^{d})\right) \in \arg\min_{y,s} \frac{1}{2}y^{T}Hy + h_{1}^{T}y + h_{2}$$

Subject to
$$By + s = b$$

 $s \ge 0$

Illustration of DLR manipulation

- G2 has lower costs
- Load, $d_3 = 300$.
- If $u_{13}^d = u_{23}^d = 150$, then • $p_1 = p_2 = 150$
 - $f_{13} = f_{23} = 150$
- If $u_{13}^a = 100, u_{23}^a = 200$, then
 - $p_1 = 0, p_2 = 300 \text{ MW}$
 - $f_{13} = 100, f_{23} = 200, 33\%$ violation

Sequential Game

Sequential interaction between the attacker and the defender (operator)

Attacker model

Action set – Compromise DLR values $u_{ij}^d = u_{ij}^a$ such that $u_{ij}^{min} \leq u_{ij}^a \leq u_{ij}^{max}$ Objective – Maximize the maximum line capacity violation over all DLR lines

Defender model

Assume the (possibly manipulated) DLR values Compute the economic dispatch solution

$$\max_{u^a} U_{\operatorname{cap}}(\hat{u}^d = u^a) \coloneqq \max_{\{i,j\} \in E^D} 100 \left(\frac{|f_{ij}^*|}{u_{ij}^d} - 1 \right)_+$$

where $p^*, \theta^*, f^*(\hat{u}^d) \in \arg\min_{p,\theta,f} C(p)$

s.t. economic dispatch constraints

KKT-based Mixed Integer Linear Program

Shelar

 $2|E^{D}|$ subproblems Focus on one DLR line at a time $\max_{\mathbf{x}} g^T \mathbf{y}^{\star}$ s.t. $Ax \leq e$ $y^*, s^* \in \arg\min_{y} \frac{1}{2} y^T H y + h_1^T y + h_2$ s.t. By + s = b - Fxs > 0

 $\max_{x, y^{\star}, s^{\star}} g^T y^{\star}$ s.t. $Ax \leq e$ $\begin{cases} By^* + s^* = b - Fx\\ s^* \ge 0 \end{cases}$ Primal feasibility $\lambda^{\star} > 0$ **Dual feasibility** $Hy^{\star} + h_1 + B^T \lambda^{\star} = 0$ **Stationarity** $\lambda_i^* \lambda_{ii}^{**} \leq \mathbf{M0}(1 - \mu_i)$ $s_i^* \leq \mathbf{M}\mu_i$ Complementarity slackness $\mu_i \in \{0,1\}$ 16 M is an upper bound on dual and slack variables

Optimal attack strategy on 3 node network

Optimal attack strategy on 118 node network

- Bang-bang policy holds for larger network.
- The line capacity violation under AC power flows can be smaller than those of DC power flows
 - Attacker's approximate model may overestimate the impact of the attack

Attacker's 3-step plan

Semantics-aware memory attack

Post-attack power system state

Memory Data Manipulation Attack

Logical memory structural patterns

- Intra-class type patterns
- Code pointer-instruction patterns
- Data pointer-based patterns

➢Intra-class

➢Fixed offset

Data types and/or values

type(&line-rating + 0x0C) == string

Logical memory structural patterns

- Intra-class type patterns
- Code pointer-instruction patterns
- Data pointer-based patterns

Code segments read-only
 Virtual function table
 Virtual function prologue

((&line-rating-0x04)+0x04) == 0x53568BF2

Logical memory structural patterns

- Intra-class type patterns
- Code pointer-instruction patterns
- Data pointer-based patterns

Inter-object dependencies
 Recursive pointer traversal
 Directed graph

((&lr - 0x08) + 0x04) = = (&lr - 0x10)

ED Software - PowerWorld, NEPLAN, PowerFactory, PowerTools, SmartGridToolbox

Memory Forensics Accuracy

fbus	tbus	r	x	b	rateA	rateB	rateC	ratio	angle	status	angmin	angmax
1	3	0.0	0.05	0.0	150.0	9999.0	9999.0	0.0	0.0	1	-30.0	30.0
1	2	0.0	0.05	0.0	150.0	9999.0	9999.0	0.0	0.0	1	-30.0	30.0
2	3	0.0	0.05	0.0	150.0	9999.0	9999.0	0.0	0.0	1	-30.0	30.0

Sample result: PowerWorld memory for 3-bus power system

016C0500	0003	0000	0000	0000	95B8	016B	0000	0000	
016C0510	0000	0000	0000	3FF8	0000	0000	0000	0000	
016C0520	0000	0000	0000	3FF0	0000	0000	0000	0000	
016C0530	0000	0000	0000	0000	999A	9999	9999	3FA9	
016C0540	0000	0000	0000	0000	FFFF	FFFF	FFFF	C033	
016C0550	0000	0000	0000	3FF0	0000	0000	0000	0000	

Forensics accuracy for five known EMS software modules

EMS Software	vfTable	Line	Bus	Gen.	Accuracy
PowerWorld	8527	3	3	2	100%
NEPLAN	6549	51	30	5	100%
PowerFactory	110	34	39	10	100%
Powertools	3	185	118	53	100%
SmartGridToolbox	194	79	57	4	100%

Attacker's 3-step plan

PowerWorld pre-attack system state

PowerWorld post-attack system state

Potential Mitigations

- Protection of sensitive data
 ➢ Fine-grained data isolation (e.g. SGX)
- Control command verification
 Controller output verification
- Intrusion-tolerant replication

➤Comparing with one replica controller result

Algorithmic redundancy

Attack-aware optimal dispatch

• Memory vulnerability mitigation

Summary

Semantics-aware compromise of power grid controllers

- Optimal attack on control algorithm
- Implementation by means of memory data corruption

Future Work

- Extension to other parameter violations
- Simultaneous line capacity violations of multiple lines
- Automation of critical parameter location and corruption

Thank You!

Cyber-physical security problem

