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Motivation and Focus

Vulnerability analysis & control of distribution networks

Questions

How to assess vulnerability of electricity networks to disruptions of
Distributed Energy Resources (DERs)?

What is the optimal attacker interdiction plan?

Approach

Attacker-defender model; Network interdiction formulation;
Characterization of worst-case attacks; Defender strategies

Results

Interdiction model captures threats to DERs / smart inverters;

Structural results on worst case attacks that maximize weighted sum
of cost due to loss of voltage regulation and cost of load control;

Efficient (greedy) technique for solving interdiction problems with
nonlinear power flow constraints;
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Motivation and Focus

Main idea: Model of DER disruptions

Vulnerability: Control Center and
Substation communications

Substation

Transmission linesGeneration

Control Central

Distribution
lines

Typical communication

New communication
requirenments

Hack control center-substation
communications

Introduce incorrect set-points and
disrupt DERs

Create supply-demand mismatch

Cause voltage bounds violations

Induce cascading failures
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Vulnerability analysis under DER disruptions

Network interdiction

Network interdiction problem

Perfect information leader-follower game;

Attacker moves first and defender moves next.

Problem statement:

Determine attacker’s interdiction plan (compromise DERs) to
maximize the sum of loss of voltage regulation (LOVR), and load
shedding (LL),

Under defender choices:

Non-compromised DERs provide active and reactive power (VAR);
Demand at consumption nodes may be partly satisfied;
Small LOVR acceptable.
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Vulnerability analysis under DER disruptions

Related work

Control of distribution systems

Steven Low, Javad Lavaei, et al.: Convex optimal power flow (on tree
networks)

Konstantin Turitsyn e. al., Ian A. Hiskens. et. al.: Distributed
optimal VAR control balancing voltage regulation and line losses

Resilience and security of networked systems

Ross Baldick, Kevin Wood: Interdiction for transmission networks

Daniel Bienstock, et al.: Cascading failures with linear power flow

Rakesh Bobba, Robin Berthier: AMI security, false-data injection
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Vulnerability analysis under DER disruptions

Network model

Tree networks

G = (N , E) - tree network of nodes and edges

νi = |Vi |2 - square of voltage magnitude at node i

`ij = |Iij |2 - square of current magnitude from node i to j

zij = rij + jxij - impedance on line (i , j)

Pij ,Qij - real and reactive power from node i to node j

Sij = Pij + jQij - complex power flowing on line (i , j) ∈ E

V0

P01,Q01

Vi

Pij ,Qij

Vj Vy

Py ,Qy

Vk Vl Vz

Pik ,Qik
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Vulnerability analysis under DER disruptions

Power flow and operational constraints

Generated power: sgi = pgi + jqgi
Consumed power: sci = pci + jqci
Power flow

Pij =
∑

k:j→k

Pjk + pcj − pgj + rij`ij

Qij =
∑

k:j→k

Qjk + qcj − qgj + xij`ij

νj = νi − 2(rijPij + xijQij) + (r2ij + x2ij )`ij

`ij =
P2
ij + Q2

ij

νi

Voltage limits
ν i ≤ νi ≤ ν i

Maximum injected power

−
√
sg2

i − (pgi )2 ≤ qgi ≤
√

sg2
i − (pgi )2
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Vulnerability analysis under DER disruptions

Attacker model
Attacker strategy: ψ = (δ, p̃g a, q̃g a)

δ is a vector, with elements δi = 1 if DER i is compromised and zero otherwise;

p̃g a : Active power set-points induced by the attacker;

q̃g a : Reactive power set-points induced by the attacker.

Satisfy resource constraint
n∑

i=1

δi ≤ M

M: attacker’s budget.

Change on set-
points due to the
attack

Power injected by each DER constrained by:

−
√

sg 2
i − (p̃g a

i )
2 ≤ q̃g a

i ≤
√

sg 2
i − (p̃g a

i )
2
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Vulnerability analysis under DER disruptions

Attacker’s impact with no defender response

Scenario: Attacker introduces incorrect set-points s̃g a that lead voltage
below (or above) the permitted thresholds.

DER Interconnection guidelines would mandate disconnections of other
non-compromised DERs.

This could cause disconnection of DERs or load-shedding which, if uncontrolled,

may result in failures in other DNs.
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Vulnerability analysis under DER disruptions

Defender model

Defender response: φ = (γ, p̃gd , q̃gd)

γ ∈ [0, 1] the portion of controlled loads;

p̃gd : New active power set-points set by defender;

q̃gd : New reactive power set-points set by the defender.

New set-points are
obtained for the
noncompromised
DERs.

pci = γipc
d
i , qci = γiqc

d
i

Power injected by each DER constrained by:

−
√

sg 2
i − (p̃gd

i )
2 ≤ q̃gd

i ≤
√

sg 2
i − (p̃gd

i )
2

Final PV output
pgi = δi p̃g

a
i + (1− δi )p̃gd

i

qgi = δi q̃g
a
i + (1− δi )q̃gd

i

How to choose the defender response (set-points)?
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Vulnerability analysis under DER disruptions

Losses

Loss of voltage regulation

LLOVR ≡ max
i∈N0

Wi (ν i − νi )+

Cost incurred due to load control

LVOLL ≡
∑

i∈N0

Ci (1− γi )

Composite loss function

L(ψ, φ) = LLOVR + LVOLL
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Vulnerability analysis under DER disruptions

Problem statement

Find attacker’s interdiction plan to maximize composite loss L(ψ, φ), given
that defender optimally responds

max
ψ

min
φ


max

i∈N0

Wi (ν i − νi )+ +
∑

i∈N0

Ci (1− γi )




s.t. Power flow, DER constraints and resource contraints

φ = (γ, p̃gd , q̃gd)

ψ = (δ, p̃ga, q̃ga)

δ ∈ {0, 1}N , γ ∈
∏

i∈N0

[γ
i
, 1]

This bilevel-problem is hard!

Outer problem: mixed-integer attack variables

Inner problem: nonlinear in control variables
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Solution Approach
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Solution Approach

Bilevel Network Interdiction Problem

[ADLP1] z∗1 = min
x∈X

z1(x),where

z1(x) ≡ max
y

cTy

s.t. Ay ≤ b

0 ≤ y ≤ U(1− x).

[ADLP2] z∗2 = min
x∈X

z2(x),where

z2(x) ≡ max
y

(cT − xTR)y

s.t. Ay ≤ b

0 ≤ y ≤ U(1− x)

where R = diag(r), r = (r1 . . . rn)T and rk is an upper bound to the
optimal dual variable for the constraint yk ≤ uk(1− xk).

Can be solved using Bender’s decomposition
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Solution Approach

Simple case

For a fixed defender choice and ignoring loss of freq. regulation:

max
δ

(
max
i∈N0

Wi (ν i − νi )+
)

s.t. Power flow, DER constraints, and resource contraints

Results for this simple case also extend to the case when R/X ratio is
homogeneous and defender responds with only DER control.
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Solution Approach

Precedence description

0 a b c i m

e d k

g j

In the above figure

j ≺i k: Node j is before node k with respect to node i

e =i k: Node e is at the same level as node k with respect to node i

b ≺ k: Node b is before node k because of b is ancestor of k
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Solution Approach

Optimal interdiction plan

Theorem

For a tree network, given nodes i (pivot), j , k ∈ N0:

If DGs at j , k are homogenous and j is before k w.r.t. i , then DG disruption
at k will have larger effect on νi at i (relative to disruption at node j);

If DGs at j , k are homogenous and j is at the same level as k w.r.t. i , then
DG disruptions at j and k will have the same effect on νi at i ;

Let νoldi /νnewi be |Vi |2 before/after the attack

∆(νi ) = νoldi − νnewi

∆j(νi ) < ∆k(νi )

∆e(νi ) ≈ ∆k(νi )

0 a b c i m

e d k

g j

j ≺i k
e =i k
b ≺ k
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Solution Approach

Computing optimal attack: fixed defender choices

1: procedure OptimalAttackForFixedResponse
2: for i ∈ N0 do
3: for j ∈ N0 do
4: Compute ∆j(νi )
5: end for
6: Sort js in decreasing order of ∆j(νi ) values
7: Compute J∗i by picking js corresponding to top M ∆j(νi )

values.
8: end for
9: k := Wi arg min

i∈N0

νi −∆J∗i
(νi )

10: return J∗ := J∗k (Pick J∗i which violates voltage constraint the
most)

11: end procedure

O(n2log n)

D. Shelar, S. Amin July 2, 2015 20 / 30



Solution Approach

Greedy algorithm for optimal attack: defender response

Compute φ given δ
for problem CLPF (δ)

Compute δ given φ
for the problem FDR(φ)

δ ∈ ds ?

iter > max ?

timeout

δ

φ

δ

no

yes

success

failure

no

yes

δ∗, φ ∗

δ∗ = 0, φ ∗ = 0
L∗ = 0, iter = 0
δ = 0, φ = 0, ds = {}

if L(δ, φ) > L∗?
then δ∗ = δ, φ∗ = φ

δ

φ

ds = ds ∪ {δ}
iter = iter + 1

δ

δ
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Solution Approach

IEEE 37-node network
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Solution Approach

Secure network designs: which DERs to secure?

0

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

0

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Design 1 Design 2

Consider a DN with balanced tree topology, homogeneous R/X ratio, and
homogenous nodes. In an optimally secure design:

If any node is secure, all its child nodes must also be secure;

There exists at most one intermediate level (depth) that contains
both vulnerable and secure nodes;

In this intermediate level, the secure nodes are “uniformly
distributed”.
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Computational Results
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Computational Results

Results: VOLL vs |δ|, γ = 0.5

0 2 4 6 8 10 12 14

0

200

400

600

800

1000

1200

1400

1600

|δ |

V
O
L
L

(i
n
$
)

 

 

W

C
= 2

W

C
= 10

W

C
= 18

BF

GA

BC NPF

BC LPF

D. Shelar, S. Amin July 2, 2015 25 / 30



Computational Results

Results: LOVR vs |δ|, γ = 0.5
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Computational Results

Results: Homogeneous Network
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Computational Results

Results: Homogeneous vs Heterogeneous Network
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Computational Results

Main insights

Results using greedy algorithm compare very well with results from
(more computationally intensive) brute force and Bender’s cut;

Optimal attack plans with defender response (using both DER control
and load control) show downstream preference;

When cost of load control is high (resp. low), defender permits (resp.
does not permit) increase in cost due to LOVR;

For small # of compromised DERs, load control is preferred over
LOVR;

Beyond a certain attack intensity, load control is not effective and
attacker starts targeting upstream nodes (and their voltage bounds).
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Computational Results

Vulnerability analysis & control of distribution networks

Questions

How to assess vulnerability of electricity networks to disruptions of
Distributed Energy Resources (DERs)?
What is the optimal attacker interdiction plan?

Approach

Attacker-defender model; Network interdiction formulation;
Characterization of worst-case attacks; Defender strategies

Results

Interdiction model captures threats to DERs / smart inverters;

Structural results on worst case attacks that maximize weighted sum
of cost due to loss of voltage regulation and cost of load control;

Efficient (greedy) technique for solving interdiction problems with
nonlinear power flow constraints;
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