IllilT | School of Engineering ‘ )

@l Civil and Environmental Engineering

Towards Improving the Resilience of
Power Systems

Devendra Shelar | shelard@mit.edu
August 30, 2018

Collaborators: Saurabh Amin, lan Hiskens



Research Focus

Smart grid
resilience




Outline

* Motivation: Resilience-Aware operations
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 Main results



Cyber-Physical disruptions

Hurricane Maria Metcalf Substation (April 2013) Ukraine attack (Dec ‘15, ‘16)

(September 2017) * Sniper attackon 17 * First ever blackouts

* Customers facing transformers caused by hackers
blackouts for e Telecommunicationcablescut < Controllersdamaged for
months * 15 million S worth of damage months

* 100 mn S for security upgrades



Research challenge

Existing literature considers:
* Physical security of transmission networks
* DC powerflow models

Limited focus on:
* Smart Distribution networks (DNs)
» Optimal attacker/defender strategies based on:
* Network topology
* Tradeoffs in resource allocation

My approach combines:
* Physics-based optimal attack
* Semantics-aware software memory attack



Distribution network attack scenarios

* Agent
* Disgruntled employee
e External hacker
* Buggy SCADA implementation

Transmission lines

Substation

 NESCO Vulnerabilities (EPRI)

‘ * Mass remote disconnect of smart meters
‘ | Disriution * Simultaneous disconnect of DERs
* Rapid overcharging of electric vehicles

* Impact: supply-demand disturbances
(sudden or prolonged)
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Background: Security-constrained OPF

= Economic Dispatch problem to ensure an operational power system
despite contingencies

= Accounts for appropriate corrective actions for the said contingency

Main issues

* Only captures N-k contingencies for small k. Typically k=1 or 2
* Assumes a priori fixed set of contingencies

* Does not model strategic attacker-induced failures

A. Monticelli, et al. - "Security-Constrained Optimal Power Flow with Post-Contingency Corrective Rescheduling”
J. A. Momoh, et al. - "A review of selected optimal power flow literature to 1993. Il. Newton, linear programming and interior point methods”



Our formulation: Resilience-Aware OPF

Stage | Stage |l Stage Il
Over all Over all Over all
allocations disruptions responses

Subject to

e Network constraints
« Componentconstraints
e Voltage constraints



Resilience-Aware OPF (3-Stages)

Pre-contingency @ Worst-case post-

state contingency state

min C,;;,.(a) +| maxmin L(a, d,u)| RAOPF

a€A deD u€el (Stages Il and Ill)
Subject to

* Network constraints
* Componentconstraints
* Voltage constraints



A specific attack scenario

Adversary:
Transmission lines i HaCk DER SCADA and disru pt DERS
* Createsupply-demand disturbance

Generation

 Causefrequencyand voltage violations

* Induce network failures (cascades)

Substation 1.20

—— nominal

1.15/ ---- only TN-side disruption
---- TN/DN disruption

—— cascade

‘
Distrfqution
lines

1

0 2 4 6 8 10 12 14
Distance from substation



A 3-regime picture

Grid-connected regime
e (Can absorb the impact of
disturbances

Transmission
network (TN)

Islanding mode regime
* Larger disturbances may
force microgrid islanding

Cascade regime

 High severity voltage
excursions, then more DER
disconnects (cascades),
more load shedding

DER disconnect -- cascade

load disconnect

TN level

Distribution disturbance

substation Attack-induced
DN level

vy —Av supply-demand

- imbalance

SO response
Py, Qo

Microgrid
islanding

When TN and DN level disturbances clear,
the system can return to its nominal regime
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Our approach

Most attacker-defender interactions can be modeled as
* Supply-demand imbalance induced by attacker
» Control (reactive and proactive) by the system operator

* Abstraction: Bilevel (or multilevel) optimization problems

* Supplements simulation based approaches
 Forexample, co-simulation of cyber and power simulators



Resilience-aware OPF (Stages Il and Il1)

Stage Il - Adversarial node disruptions
a. Which nodesto compromise (4)?

... can include other attack models

Stage Il - Optimal dispatch / response (x©)
a. Exercise load control or not
b. Disconnectsloads/DGs?
c. Maintain voltage regulation

Goals:
1. Identify critical nodes
2. Determine optimal response

... possible to consider frequency regulation
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Modeling of Grid-connected/Cascade regimes

max min L(d, u)

deD uel
Subject to
 Network constraints
 Componentconstraints
* Voltage constraints



Nominal

Network model | load
DCx t+)qCy,

0 [ Power flow ] Pik pCy + jqck
Pij +iQij Actual
...... —_— load
. V7 O

Lij )X %]Qj! [ Nominal
Vo Vi Impedance v; ieneraticl
Pg: T1499

\ —

= (I, € I

g ( ) Voltages mp \%) iﬁfjal J49:

generation



Defender model in Grid-connected regime

* Defender response: only load control

cu =24

* [5; € [,Bl-, 1]: load control parameter at node i

pc; = P; ey, qc; = B; qc;

Defender response:
How much load control should be exercised?
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Losses in Grid-connected regime

] GC regime  _ Cost of active Cost of loss of Cost of load
o power supply voltage regulation control
Wacho / I
Wyrt Z Wici(1—=5;)
LEN
Where
t = max |vy°™ —v;

1EN



Defender model in Cascade regime

Defender response: load control, connectivity control

u = (IBJ kg' kC) Voltage
kg = {1, if DG i is disconnected bounds for DG
: 0, otherwise.
ke — {1, if load i is disconnected
‘ 0, otherwise.

Connectivity constraints are mixed-integer linear:

* Connected impliesno violations kgi =0 = Vi € [Eir@i]

* Violationimplies not connected v ¢ [Eir@i] — kg; = 1
Defender response: Similarly
for loads!

Which loads and DGs to disconnect?
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Losses in Cascade regime

LCS regime — LGC regime

Cost of load
disconnection

\ Z Wgp k¢
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Attacker model

Attacker strategy: d = (5, Avy)
1, if node i is attacked
0, otherwise.

Attacker’s resource budget z 5; <k
i

* Avy: amount by which substation voltage drops
* Due to physical disturbance or temporary fault in the TN

Attacker strategy:

* Which nodesto compromise?

20



Effect of attacker actions

* DER disruption makes its output zero.

kgi > 5i
pg; = (A—-kg;)pg;
q9; = (1-kg;)qg;

* TN-side disturbance impacts substation voltage

nom

Vo = Voo o — Avg



Linear power flows

Power conservation

Voltage drop

System state

Vo = vy — Av

x = (pc,qc,pg9,99,V)



Cascade regime

L := maxminL">Te8Me (4 1))
deD uell

Subject to

 Network constraints
 Componentconstraints
* Voltage constraints

This is a mixed-integer bilevel linear program: NP-hard!



Islanding regime

max min LM! re8ime (4 1))
deD uel

Subject to

 Network constraints

« Componentconstraints
* Voltage constraints

[MIregime — jCSregime 4 (Cost of islanding

\ z WMG,ijkml-j

(L,J)EX
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System resilience

* Lonax = Dien Wsp ; : maximum loss
e Cost of disconnection of all loads

e System resilience

* Percentage decrease in system performance relative to maximum
loss

+ =100(1-—)

max
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Uncontrolled (multi-round) cascade

In reality, defender may not be able to instantaneously detect
and identify attack, and optimally respond to it

No response cascade algorithm
* Initial contingency

*Forr=1,2,...
* Compute power flows
* Determine the nodes that violate the voltage bounds
* Disconnect the loads or non-controllable DGs accordingly



Uncontrolled vs Cascade regime

100
90
80
70
60
50 | | | |

o

e—e \\Vorst attack, no response
30‘ ® @ Worst attack, optimal response| i
Random attacks, no response

00— 10 20 30 40 50

% Number of nodes attacked

% System resilience
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% System resilience

100
90
80
70
60

40
30
20

EY et I . .
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e—e \Worst attack, no response

| = @ Worst attack, optimal response| 7
Random attacks, no response

0 10 20 30
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% Number of nodes attacked
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Performance of Benders Decomposition

Entries are resilience metric of DN (in percentage), number of itera-
tions (written in brackets), time (in seconds), attack cardinality.

Rtargct N =24

N =30

N =118

99 08.75, (3), 0.04, 1 98.96, (11), 0.22, 5 08.52, (27), 1.86, 14
95 91.15, (6), 0.08, 2 93.82, (13), 0.27, 6 94.66, (39), 3.34, 17
90 89.75, (10), 0.16, 3 88.08, (15), 0.34, 8 89.94, (50), 5.44, 26
85 82.41, (11), 0.18, 4 82.93, (17), 0.4, 10 84.96, (69), 9.23, 44
30 74.38, (14), 0.26, 5 76.99, (21), 0.52, 14 | 79.71, (86), 613.42, 52
5 74.38, (14), 0.26, 5 71.1, (23), 0.59, 16 Failure

65 58.01, (20), 0.41, 9 Failure

55 19.65, (23). 0.47, 12

45 Failure

ReSWorst—case

=(1_

Lm ax

)100%
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Summary (so far)

* Resource allocation and dispatch in electricity DNs
* under strategic cyber-physical failures
* Multi-regime defender response

* Benders decomposition approach for solving bilevel MILPs

* Structural results on worst-case attacks and defender response
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Motivation

* State estimation
* Optimal resource allocation for improved resiliency
* Secure and efficient operations

* Dynamic model estimation
* Detection of faults/attacks
* Prompt and accurate response

e Data-driven approach



Preliminaries

* Dynamical equation: x;,; = Ax; + Fv;
e A € RV*N . dynamic matrix;,

« x, € RN : state vector

* v, € RY : Noise vector

* I : Noise-scaling matrix



Assumptions

 Temporal independence of noise vectors
* v;and v; are independentforall i # j

 Spatial independence of noise vectors
e F is a diagonal matrix (there is no spatial mixing of noise)



Learning under full observability

Given: observations x; fort = 1,2,---,n+ 1

Result:

* Maximum likelihood estimator of A [1]
A=271%,

Where

n

2y = —1 E ! d 2y = —1 E ,
XX dall X X
0 n t*t 1 n t+1't

t=1 t=1

* Also the solution of least squares regression

[1]A. Lokhov et al. Online Learning of Power Transmission Dynamics



Linear Swing Dynamics model

* Network (V, £)
PV setofnodes, N = |V| number of nodes
« £ setofedges

Swing equation
Miéi 1 Di (91 _ a)O) — Pl(m) . Pi(e)

P> : mechanical powerinput

. pe) . :
-P"7 :electrical power output



Power system model

Using change of variables
* §; : phase deviations from steady state values
* w; : relative generator rotor speed relative nominal frequency
Mi Cl.)l' + Dl-a)l- - — z :Bl](gl — 5]) + 6Pl
(i,j)e€

[6] ONXN _INXN ] [5 ] [glfv’

d



Discrete dynamical model

* Using discretization with timestep T

[5t+1] [ Inxn
W] T I=TMTIL Iy —

xt+1 A xt

TLNxN ][5
M~1D

X1 = Axy + Foy




Learning under partial observability

1
* H € PV setofhidden nodes (without 2
PMUs)
* 0 =V \ H setofobservable nodes (with
PMUs)
4 3
6/ ;
\ . _—



Rearrangement of dynamic matrix

_51?+1_ _51(:9 _ 0 ]
wr1| _ [Aoo  Aox]|wf +[G 01| ve
st | Ao Axacl|s?| L0 HI| O

W WK vt
Wp 1 ;"

By change of notation,
oo Bt P 1 R P | 44
Problem statemement

* Given measurements from observable nodes y, for t =1,2,---,n

* Goal: To recover dynamic matrix A
* Or equivalently, recover sub-matrices B, C, D, E



Some simple observations

 Stable system implies
[Amax (E)| < |Apax (A)] < 1

* Thus, E* ~ 0 for sufficiently large k

* Large susceptance values imply more
unstable system

0.0

0 50 100 150 200 250 300 350 400
i
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Eliminating hidden node measurements

Y£+k+1 = [Y£+k 3’£+k—1 V']

BI
(CD)’

(CE*1D)']

+ ([G CH--- CE*1H]

3’£+k — Yt’X + ¢

[ Utk |

Witik-1




Connectivity restrictions

e Each observable node is connected
to at most one hidden node

* [{(o,h) eE:heH} <1Vo0oEOD
 Each hidden node is connected to
exactly one observable node
* [{(o,h) €EE:0€ 0} <1VhEH



Some simple properties

B ] [ Ut+k |

! ! ! ’ CD)' — Wt+k-1
Yerkt1 = [Verk Verr—1 V'] ( : ) +| [G CH - CE*"1H] :
(CE*~1D)’. W

Yt,+k =YX +n;

Properties
 ( is diagonal by assumption
e Under connectivityrestriction, forallm = 0,1,:--,k — 1, CE™H is of the form

[2 8], where

e x € RO with
e exactly 1 non-zero entry per column, and
e at most 1 non-zero entry per row.



Implications

Fortimestepst =1i,i + k,i + 2k, -
* The noise vectors n; satisfy both temporal and spatial independence

* Thus, we can use least squares estimator

_ 14 - — /
Vt+k+1 Y
I/ !/
Verok+1| — | Yevk
: o : X+
I/ !/
—yt+ck+1— —Yt+ck -

r = SX



Least squares estimator

« X =(5'S)"1(S'r), or equivalently,

B 1 /[Z Zi - ZeI\N /2]
€)Y | _(|2-1 Zo - Zg-1 Xk-1
(CEFIDY] NIk Zogyr - Zo | o

Where

1 z
L =7 T 1Zij+iy;k
]=

* Allows, recovery of B matrix in a straightforward manner.




Recovering submatrices C, E, and D

. Underécheoconnectiv(i)ty rOestrictions, C aRnd Dﬁre sparse matrices such that
C=[ ],D=[ andE‘=[“ 2L
x 0 7z 0 R3i Ry
e x € R9%* with exactly 1 non-zeroentry per column and at most 1 non-zero entry
per row.

e 7 € RMX0 with exactly 1 non-zeroentry per rowand at most 1 non-zeroentry per
column.

* Rj; € R™* is adiagonal matrixforj =1,2,3,4andi = 1,2,

* Hence, given values of CE'D, CE?D and CE3D, are relatively simpler non-
linear expressions of entriesin C, E and D.



Concluding remarks

Summary

e Connectivity restriction can be leveraged to learn the dynamical model
with partial observability.

* These properties may be applicable to other domains
* |dentifying properties of non-linear optimization model

Future work

* Relaxing assumptions such as connectivity restriction and using smaller
values of k.



Questions?

Thank you



Benders Decomposition approach

* Reformulate budget-k-max-loss problem as target-loss-min-
cardinality problem. Let L; ;- 4o: b€ minimum target loss.

Attacker Master problem Defender problem (Same as Stage Ill)

* |nitialize with no cuts
min L(0,u)
ueu
min 2&- s.t.
i e Network constraints

* Componentconstraints
* Voltage bounds

s.t. Bender cuts
6; € {0,1}



Benders Decomposition approach

Defender MIP
Exit
(S

mip L")

Attacker MIP

min z O;
i

s.t. Benders cuts
6; € {0,1}

(ur, uc

Benders cut
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Benders Decomposition approach

LP(s,u; )= min ¢’y

s.t. Ay = b+ Q&Uter
Fixed attacker -
Response with
strategy for

fixed integer

current iteration
values

Benders cut

2" (b +Q8) = Learget + €

' Small number ~ 10~°
Optimal dual vector

solutionto LP Right hand side of LP

52



Technical Detall

* Bad Benders cuts may arise

* If no Stage lll constraints have non-zero coefficients for both attack variables
and continuousinner variables

* Which indeedis the case in our problem!
* May perform as badly as brute force!

e Suggestion! Approximate reformulation?

* Ensure positive coefficients of attack variables in constraints having
continuousinner variables

 Significant computational speed-up
e Solutionsfor 118 node network obtained in less than 2 minutes
* Approximation error produces sub-optimal min-cardinality attacks



Resilience-Aware OPF - Trilevel formulation

pre-contingency post-contingency
state x° state x ¢

min C a) + maxmin L(a,d,u
aEA attoc (@) deD uel ( )

Subject to

* Network constraints
 Componentconstraints
* Voltage constraints
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Resiliency-aware Resource Allocation (Stage |)

BG supply
A
A
Total _ Supply-demand
capacity Balance
Reserves
% AN Resource
----- e ) ———— )
N ; allocation
Supply N
"~ Flexible
Y -~ _ Loads >
DERs
- u .

Supply Reserves

Stage | - Allocation of DERs over radial networks
a. Size and location
b. Active and reactive power setpoints (x")?

DER Resource Allocation

100

Reactive Power Setpoint (%)

-100

0 2‘0 4‘0 éO éO 160
Active Power Setpoint (%)

Suppose, some controllable DERs
are not vulnerable to attack.
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Resiliency-Aware OPF - Trilevel formulation

Frequency deviation model
from — f€ = —fTB (P — )

Voltage deviation model
yhom __ V(C) — _Vreg(Q(()) _ QS)

Pre-contingency resource allocation
a=(pg° q9°)



Defender Response and Allocation:
Diversification

* Some DERs contribute to Lyg
more than L, and vice versa

Uniform
’ allocation
. X X X X X X X X |
. Attacked , ;

EV nodes

=

N B O OO
CR-R-R-NS

O T

> > > >

Active power
setpoint (%)

* Diversification holds for
Lot el () “heterogeneousallocation”
L ACS VR 012345678609

/ with downstream DERs with

more reactive power

=

N B OO0 O
CR-R-R-RS

O T

Right lateral (r)
“VR>AC

| X X X X X X X X |

Reactive power
setpoint (%)

L] * Post-contingencylosses are the same
for uniformvs. heterogeneous
resource allocations

* Pre-contingency voltage profileis

ter for heterogeneous resource
allocation
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Going from LPF to NPF

Lower and upper bound the optimal loss for non-linear power flows with
optimal losses computed using linear power flows.

Theorem: Let L,ﬁ, and £ denote the optimal losses using NPF, LPF, and e-LPF
respectively. Then,

uN

L<L<L .
- +2,u+4

Remarks .
U
* Foru =05 N = 37,m= 3.7. With typical € (max. ratio of line loss to
power flows), the gap between the bounds is small (3-5%).



Our contributions

I Regulation objectives I

1

IAttacker model I———PI Bilevel problem |<——-I Defender model I

Regime?

|

A\ 4

: Grid-Connected regime

\ 4

|

I Cascade / Islanding regimes

\ 4

DER disruptions

Greedy Approach
IEEE TCNS 2016 [1]

DN vulnerability to
simultaneous EV
overcharging [2]

Security of Economic Dispatch

KKT based reformulation
DSN 2017 [3]

Multiple regimes
* Inner problem: mixed-integer vars
* Benders decomposition

[1] Shelar D.and Amin. S - "Security assessment of electricity distribution networks under DER node compromises”
[2] Shelar D., Amin. S and Hiskens I. — “Towards Resilience-Aware Resource Allocation and Dispatch in Electricity Distribution Networks”
[3] Shelar D., Sun P.,, Amin. S and Zonouz S. - “Compromising Security of Economic Dispatch software”




Uncontrolled vs Cascade vs Islanding

% Load shedding

100

80 A

(o))
o
1

IS
o

20 A

—@— Uncontrolled Av=0
-B- Cascade Av=0
-+ Islanding Av =0

0 1'0 2'0 3'0 4'0
% Number of nodes attacked

50

100

80 A

% Load shedding

20 A

24

60

40 A

—@— Uncontrolled Av =0.02
-B- Cascade Av=0.02
-+ [slanding Av =0.02

v
|k | TSI Ay
Rl
lme

0 1'0 2'0 3'0 4'0
% Number of nodes attacked

50

Value of timely
Bistatingctions
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Strategic deployment of portable DERs for
post-hurricane power restoration efforts

* A simpler problem
* Given
 set of subnetworks
* repair times of lines

* inventory of portable DERs with
varying capabilities

* Question
,' SN2 r—e—e * What is optimal deployment of
SN1 N SN3,' SN4 portable DERs such that lost demand

>— is minimized?
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Portable DERs for power restoration

* More challenging problem
* What is the optimal deployment of portable DERs before the hurricane to

minimize expected lost demand?

r

.

Storm wind
field
simulation

.

Power
component
failures model

(
Network
simulation, outage
L prediction

4 . )
Optimal
resource
1 ion

_allocation
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Technical detail

Original constraints

kg;
PYi
49

v

O

(1-kg)pg | ———

(1—kg;) qg;

Reformulated constraints: Choosen = 10e

LP constraints

kg;
PYi
49

LY

0;
(1—(Q —n)kg; —nd;) pg;
(1 - —n)kg; —nd;) q9;

0 = 0
1 = 0
1 =2 1
Cases



Going from LPF to NPF

Theorem: Let £, £, and Lbe optimal solutions to attacker-defender game under NPF,
LPF, and e-LPF respectively; and denote the optimal losses by, respectively. Then,

uN
2u+4

L<L<L+

Remarks
« Voltages for £ (resp. LV) upper (resp. lower) bound voltages for L

* Power flows for £ (resp. lf) lower (resp. upper) bound power flows for L

N
* Foru =0.5N = 37,% = 3.7. With typical € (max. ratio of line loss to power flows),

the gap between the boundsis small (3-5%).

e Better bounds can be derived



Two simpler problems

L (LPF model)
L (e-LPF model)

( maaxmqbin L(x(5,¢))

S.t. constraints,

linear power flow (LPF) or (e — LPF)

LPF state: X = [\7, ?, sc, Sg,f] eEX

A

S Zk ]k+5+}i7‘gi7"

Vi =V —ZRE(ZU U)+|,ZU_|_«~,”_¢7

e-LPF state: X = [\7, ?, sc, Sg,S'] eX

gij = Zk‘gjk + (1 + E)Sj
V;

€ chosen based on the size of the tree network and the max ratio of line losses to power flows



Structure of attacks

OBF

1200 |OBF | | i
«GA = g 1500 - 51(333 NPF
1000 | OBC NPF L = a @
<IBC LPF TR @ <IBC LPF|
& 0 @,,.-g»ﬂ ,w'/ﬁ/ | = 1000
£ 600! wo_, p . %,_%:g-_@ =
: T pa AT 5
- A R < .
= 400 @;@ L 500 -
, g @ Y NW g -4
200 @', <] ;m /’ C /@/
0’ /s g
0 *Ggg—@—ﬂ—ﬂ—-ﬁ--@--@-ﬁ’ 1 0 &% - & & & -6
0 5 10 0
M

Downstream nodes are more critical for voltage regulation

Greedy approach computes “near-optimal” solutions

Load control is not effective for higher intensity attacks

Load control reaches higher saturation levels for higher weightage for L



Defender model (Cascade regime)

Defender response: u = (B, kg, kc)
1,if DG i is disconnected

k91 = 0, otherwise.
ke — 1, if load i is disconnected
‘o, otherwise.
Connectivity condition: Voltage
kgi =0 — V; E [vgi,@i] 4/- boundsfor DG
— R Similarly
Vi € [V_gi,vgi] = kgi =1 for loads!

Defender response:
Which loads and DGs to disconnect?
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Strategic deployment of portable DERs for
post-hurricane power restoration efforts

 Damage to linesresult in subnetworks (SNs)

e Usual restoration steps are:
* Repair the damaged lines
e Connectto main grid
* Restore the power supply

* How can portable DERs help?
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Defender Response and Allocation: Diversification

Uniform

allocation
’ nggg TEIEIEIY s ] e Some DERs contribute
S I v oA to Lygmore than Ly,
: 28 a0 A ,
i S8 20 and vice versa
+ Left lateral (1) SBT3 545678609

t AC>VR

£..1000 e e -
. %\8077 Lo qq°, |
+ Right lateral () Se ol ] >>> g9, T
',- VR>AC %g 0! x x x x xx xx xXx qg°
! T 88 20’ e
= 0

01234567809
Distance from substation
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Defender Response and Allocation: Diversification

Uniform Heterogeneous
’ - a‘llo‘ca‘tio‘n - - a‘IIo‘ca‘tio‘n -
o — 100 ¢ ¢ 99w e) 100 %% g g ¢t P
. Attacked ga\o, gol X X X X x X X X | gol .. XX x x| pg
! EV nodes 8*,5 60p e B0p ’:’ " ' . . (e .
; ©S a0 " a0 T oxow e Diversification holds for
: S 20l ] 20b ]
+ Left lateral (1) < I A R R B 7 . ”
ACs VR VRN 8 ¢ S | heterogeneous allocation
with downstream DERs with
: 520 T EE RS ] a0 T R L .
g ) 58S 80 | sl | [T ! more reactive power
VRS AC o2 el ! 6ol o X 9 -
\ > ES) X X X X X X X X A xxXx qg°
Ba 40 Ll i i e e LD e a ]
€S 200 ] 20L X
~ oL . | 0¢’i‘iiiiii
012345673829 012345672829

Distance from substation Distance from substation
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Defender Response and Allocation: Diversification

Uniform Heterogeneous
‘ allocation allocation
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Heterogeneous resource allocation can support more loads than uniform one. ,



Effect of power factor on losses
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Optimal attacker set-points

Typically, 1.05

* Small line losses: in comparison to power flows

* Small impedances: sufficiently small line resistances

Assume for simplicity:

* No reverse power flows: power flows from substation 0.90
to downstream

0.85. ) ‘ ‘ : ‘ ‘
1 2 3 4 5 6 7 8
Distance from substation

What are optimal attacker set-points?

Proposition: For a defender action ¢, and given attacker choice of 6, the optimal
attacker set-pointis given by:

pd® =0, qd* =—j5sg;
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Greedy Approach

[Mm] max min L(#(dw) [——s [Mm —A]d* = argmc?xf (f(d, uf))

w
T * - df = x N *
< Convergence [Mm — DJu* = arg rrgnL (x(df' u)) B Dk(uf) = Dk(uf)

[Mm] max min L(¥(d,vw) f——s| [Mm— A|d* =arg mc?xlv,(f(d, w))
u

For fixed defender action:

* For a fixed attacker action, the ordering of nodes with respect to their voltages remain the
same between £ and £

* For any fixed node, the ordering of optimal attacker actions with respect to their impact
on this node remains the same between £ and £



Defender model

 Defender response: u = (pr,qr, ) Detender Response
100 1

* p1;, qr; : active and reactive power output of reserves

(controllable DGs) at node i 50/

e 0 < pri < Wi,priz + qTiZ < S_Tiz

* [5; € [,B,;, 1]: load control parameter at node i

* pc; = PBiPCi, qc; = Piqc;

=50}

Reactive Power Setpoint (%)

-100

Defender response: 0 20 40 60 80 100
Active Power Setpoint (%)

How to optimally dispatch reserves?
How much load control should be exercised?

76



Optimal interdiction plan: fixed defender choices

Proposition
For a tree network, given nodes i (pivot), j,k € N :

* If DGs at j, k are homogeneousand j is before k w.r.t. i, then DG disruption at k will have
smaller effect on v; (relative to disruption at j)

* If DGs at j, k are homogeneousand j is at the same level as k w.r.t. i, then DG disruptions
at j and k will have the same effect on v;

T
| g\ré. J )
T\
0o Q9o o 0o
) = ) (o —(m)
Ao(vi) ~ D (v;) O\ \[:\:/ \_; \_/
0 Qo 0
| AU A
/ k ' \
] : P & WK
b < k
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Resiliency-aware Resource Allocation (Stage 1)

Attacker Setpoint Manipulation

097 : , : ‘ 100 ]
Normal operation

0.965 e |

3
Attack strategy g8 096}
a :%jD 955
59 SG £0. _ 50l
C C _gog_ Susbstatio ~a -‘E Attack /
o | sg (171 S S S
0945 : . . ‘
u \ 1900 1950 2000 2050 2100

0.1

00
O

Reactive Power Setpoint (%)

;N_ P Normal operation
c 0 J
2
kS
$-0.1 —50}
he]
a\ K
€02 Attack
3
o
it}
Cdd-----————- , a7
1900 1950 2000 2050 2100 -100

Time (sec)

0 210 40 60 éO 160
Active Power Setpoint (%)
Stage Il - Adversarial node disruptions

a. Which nodesto compromise (0)?
b. Set-point manipulation (sp)?

... can include other attack models
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Resiliency-aware Resource Allocation

Stage | - Allocation of DERs over radial networks
a. Size and location
b. Active and reactive power setpoints (x)?

Stage Il - Adversarial node disruptions
a. Which nodesto compromise (4)?
b. Set-point manipulation (sp%)?

Stage Il - Optimal dispatch / response (x©)
a. Maintain voltage
b. Exercise load control or not

Goals:

1. Determine the best resource allocation

2. ldentify vulnerable / critical nodes

3. Determine optimal dispatch post-contingency

Reactive Power Setpoint (%)

Defender Response

100

50

—50}

0 20 40 60 éO 160
Active Power Setpoint (%)
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Resiliency-aware Resource Allocation

Stage Il - Adversarial node disruptions
a. Which nodesto compromise (4)?
b. Set-point manipulation (sp%)?

Stage Il - Optimal dispatch / response (x©)
a. Maintain voltage
b. Exercise load control or not

Goals:
1. Identify vulnerable / critical nodes
2. Determine optimal dispatch post-contingency
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