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Abstract—Power grid operations rely on the trustworthy op-
eration of critical control center functionalities, including the so-
called Economic Dispatch (ED) problem. The ED problem is a
large-scale optimization problem that is periodically solved by the
system operator to ensure the balance of supply and load while
maintaining reliability constraints. In this paper, we propose a
semantics-based attack generation and implementation approach
to study the security of the ED problem.1 Firstly, we generate
optimal attack vectors to transmission line ratings to induce
maximum congestion in the critical lines, resulting in the violation
of capacity limits. We formulate a bilevel optimization problem in
which the attacker chooses manipulations of line capacity ratings
to maximinimize the percentage line capacity violations under
linear power flows. We reformulate the bilevel problem as a mixed
integer linear program that can be solved efficiently. Secondly,
we describe how the optimal attack vectors can be implemented
in commercial energy management systems (EMSs). The attack
explores the dynamic memory space of the EMS, and replaces
the true line capacity ratings stored in data regions with the
optimal attack vectors. In contrast to the well-known false data
injection attacks to control systems that require compromising
distributed sensors, our approach directly implements attacks to
the control center server. Our experimental results on benchmark
power systems and five widely utilized EMSs show the practical
feasibility of our attack generation and implementation approach.

I. INTRODUCTION

Critical national infrastructure has become increasingly
complex. The power grid exemplifies a cyber-physical infras-
tructure, with data collected from its physical components
and processed by control algorithms running on computers to
provide for accurate and safe monitoring and control. Such
a large-scale trusted computing base introduces a hard-to-
protect attack surface. Events such as proliferation of the
Stuxnet worm [10], the coordinated attack on the Ukranian
power grid [5], and the emergence of new threats that leverage
existing weaknesses in these systems [23] demonstrate that
cyber-physical infrastructures are unprepared to maintain their
safe and secure operation in the face of malicious adversaries.

Despite the failures, the past intrusions had two features: i)
they mostly required full ownership of the target controllers
(e.g., Siemens Step7 server compromise by Stuxnet [10]) to
perform the attacks; and ii) they did not fully optimize their
adversarial impact via utilization of the underlying physical
model. A semantics-based attack can do a lot more using much
less resources. For instance, an attacker with access to only few
power system parameters can leverage its dynamical model to

1This is a Regular research paper.

calculate the malicious replacing parameter values such that
the ultimate damage to the power system is maximized.

In the literature, there has been an extensive body of work
on false data injection attacks [17], where the compromised
sensors send corrupted measurements to mislead the operators
regarding the power system state. Such attacks assume the
attacker can compromise a large number of geographically
and logically distributed set of sensors remotely. In addition
to the scalability barrier, remote malicious access to (ana-
log) sensors with serial connections may not be feasible in
practice. Additionally, by design, false data injection attacks
target sensors or actuators only, and cannot manipulate core
system parameters such as the network topology and line
parameters (e.g., capacities). This information often resides
within the control center servers and are used for power system
operations such as state estimation and operational control.
However, almost all the past real attacks (e.g., [5], [10]) against
critical infrastructures have targeted control center assets (as
opposed to individual sensors or actuators).

A. Our focus

This article presents a semantics-aware attack against a
widely used power grid network control functionality, and
demonstrates its practical feasibility on well-known Energy
Management System (EMS) softwares. Specifically, we con-
duct a vulnerability assessment of an important functionality
provided by all EMSs – the so-called Economic Dispatch (ED)
problem. In critical infrastructures, ED is routinely solved
to set the generator output levels over a control area of a
regional transmission grid. We show that software security
vulnerabilities in power system controllers can be exploited
by an attacker (an external hacker or a strategic market partic-
ipant) to gain a backdoor entry into power grid operations.2 By
utilizing the knowledge of an approximate power flow model
– specifically, DC approximation – the attacker can launch
a semantic memory attack to change the critical parameters
such as transmission line ratings (capacities). A transmission
line’s rating reflects the maximum amount of power that it can
carry without violating safety codes or damaging the line. We
design experiments using ED implementation on real-world
EMS software packages to demonstrate the economic and
safety risks posed by use of manipulated line ratings.

2Throughout the paper, we use the term controller as the ED implementa-
tion software packages that solve economic dispatch problem.
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The core of our attack generation approach against the
power grid infrastructure is a bilevel optimization problem
that encodes the attacker’s partial knowledge of power system
operations to compute the target malicious power system
parameters. This physics-aware attack generation approach
enables us to identify key features of power system data and
software operations whose exposure can significantly increase
security risks. The implementation of our optimal attack
against power system operation involves targeted manipulation
of specific power system parameters that reside within the
EMS’s dynamic memory space. The exploit performs an online
memory data search using lightweight pattern matching to
locate the sensitive power system parameters used by the
ED software to calculate the generation output levels. The
use of manipulated parameter values makes the EMS issue
incorrect dispatch (generation and power flow) commands, and
consequently drive the power system towards unsafe states.
The merit of our overall approach lies in the combination of
the semantics-based optimal attack generation and a generic
implementation procedure for EMS’s memory data corruption.

The bilevel problem for attack generation can be viewed
as a sequential game between the attacker (leader) and the
follower (grid operator). In the first stage, the attacker chooses
power system parameter manipulations with the objective of
maximizing the violation of capacity limits; in the second
stage, the operator solves the ED to determine generator output
levels while facing the manipulated parameters chosen by the
attacker in the first stage. We show that the optimal power
injections and nodal voltages computed using the manipulated
parameters yield suboptimal and unsafe power flow alloca-
tions. This significantly increases the possibility of cascading
failures and the risk of subsequent emergency actions.

Thus, the main contributions of our paper are as follows:

‚ We introduce a new domain-specific semantic data attack
against power grid controllers. The attack leverages an
approximate model of power system to manipulate the
controller runtime memory such that the execution of the
legitimate controller software, using partially corrupted
values, drives the physical plant towards unsafe states.

‚ We formulate the problem using a game-theoretic frame-
work to optimize the attack strategy in terms of which
available data regions in the controller memory space
should be modified. The adversary-optimal values are
calculated using fast bilevel optimization procedures.

‚ We implemented working prototypes of the proposed con-
troller attack against real-world large-scale and widely-
used energy management systems. Our implementations
leverage logical memory invariants to locate the sensitive
power system parameters in the controller’s memory
space. The evaluation results prove the feasibility of
domain-specific data corruption attacks to optimize for
the physical damage.

In the remaining of this section, we present an overview
of our proposed attack. Section II and Section III present
the attack model and optimization algorithm to calculate
the parameter manipulations that will maximize the ultimate
adversarial impact of resulting power flows. Section IV and
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Fig. 1: Physics-aware memory attack on control systems.

Section VI present our empirical experiments with real-world
commercial power grid monitoring and control software solu-
tions. Section VII discusses the potential mitigation strategies,
and Section VIII reviews the related work.

B. Solution Overview

Our contribution builds on two perspectives that have
evolved in the emerging field of cybersecurity of networked
control systems. The first perspective involves the analysis
of state estimation and control algorithms under a class of
attacks to sensor measurements or actuator outputs [24]. These
attack models reflect the loss of availability (resp. integrity)
of measurements/outputs when the communication network
linking the physical system and remote devices is compro-
mised. Recent work has studied how the physical system’s
performance and stability can be compromised by such at-
tacks [17]. Typically the attacker is assumed to be a resource-
constrained adversary with only partial (or possibly full)
knowledge of system, and a resilient control design problem
is to ensure a reliable and safe performance against arbitrary
actions that can be performed by the attacker. These results
are grounded in the theory of robust and intrusion tolerant
control, which provides a quantitative framework to study
the tradeoffs between efficiency in nominal conditions and
robustness during non-nominal ones including the attacker-
induced failures. In contrast, as illustrated in Figure 1, our
attack model considers direct data corruption (specifically,
manipulation of power system critical parameters) in the
live memory of EMS software, where all distributed sensor
measurements are received and processed, i.e., single point
of compromise. Hence, individual infections of distributed
sensors are not required unlike previous work on false data
injection attacks [18]. This allows us to study how the vulner-
abilities in control software implementations and in their links
to external data sources can be exploited by the attackers.

A second perspective has emerged in the vulnerability
assessment of large-scale power grids against physical at-
tacks [6]. Here the objective is to find worst-case disturbance
or an adversary-optimal attack to physical components that
can maximize the impact on grid functionality, even under per-
fect observability and best response by the operator (defender).
Various classes of failures have been considered, for e.g., line
failures, sudden loss of generation, and load disconnects. Typ-
ically, these problems are formulated as bilevel optimization
problems, and involve explicit consideration of both physical
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constraints (e.g., power flows, generation constraints, and line
capability limits) as well as resource constraints of the at-
tacker. Examples of physical security problems that have been
considered using this framework include N ´ k contingency
analysis problem [7], network interdiction under line failures,
and modeling of cascading failures that originate due to
local component failures in one sub-network and progressively
propagate to other sub-networks of the grid. However, existing
work on adversary-optimal attack does not consider how such
an attack can be executed in controller software. In our work,
we combine the computation of adversary-optimal attack with
analysis of EMS software to execute the attack.
Threat model. Our adversary model is concerned with
stealthy memory data corruption of EMS (that typically sits
within the control center); thus, we require a compromised
controller process within the EMS server. This is a realistic as-
sumption, because it requires lesser privileges compared to the
past real incidents such as Stuxnet [10] and BlackEnergy [5]
that took complete control of the servers. With the access to
EMS dynamic memory, the exploit targets the true memory-
resident power system critical parameters, and implements
calculated adversary-optimal incorrect values in EMS memory.

We emphasize two aspects of our model: Firstly, our at-
tack generation and implementation approach is generalizable.
However, to concretely illustrate our approach and to evaluate
its feasibility, we assume that the attacker is concerned with
generating “optimal” dynamic line ratings (DLRs) to max-
imize capacity violations. Indeed, other variations of attack
generation are possible, for e.g. manipulation of other parame-
ters such as generator/loads/voltage bounds, etc. Secondly, our
implementation approach is motivated by server-side attacks
to EMS software and emphasizes the stealthiness of the
attack. Specifically, the in-memory parameter manipulations
are still within acceptable limits and hence pass the typical
out-of-bound checks for false data injections. Thus, they can
remain dormant in controller’s memory and can produce
the intended consequences (e.g. thermal overloading, or even
physical damage) before the last line of defense (i.e., physical
fail-safe mechanisms) are triggered. Again, other ways of
implementing our attack are possible, for e.g. intercepting
network communication and injecting false data.
Implementations. We perform off-line binary analysis to
locate the power system parameters in the controller’s memory
space. We use this information to extract logic-based structural
pattern signatures (invariants) about the memory around power
system parameter value addresses. The signature predicates
are checked during attack-time to identify the real param-
eters on the victim controller memory space. Such pattern-
based search (as opposed to absolute memory address-based
search) is required because analysis-time (offline) and attack-
time (online) parameter value addresses in memory often
differ. This is because of unpredictable execution paths (due
to potentially different workloads) across different runs that
result in different heap memory allocation function call/return
sequences, and hence different allocated memory addresses.
Finally, the attack achieves a certain level of stealthiness by
ensuring that the incorrect parameters reflect similar general
trends as the true ones.

II. OPTIMAL ATTACKS TO ECONOMIC DISPATCH

In this section, we describe how the attacker generates a
semantic attack that utilizes the knowledge of an approximate
model of power flow to manipulate the model parameters used
by the ED software. We choose DC model as the approximate
model known by the attacker, and line capacities as the
targeted model parameters.

We show that under our adversary model, the allocation
generated by the ED implementation under the manipulated
capacity ratings, causes the power flows on the transmission
lines to exceed the actual line capacity ratings. Specifically, its
implementation on the power system will lead to the violation
of safe thermal limits of the lines. This can cause the lines to
rapidly deteriorate or degrade, increasing their likelihood of
tripping. The sudden disconnection of power lines can cause
an outage. It may cause a short circuit between two lines
that can ignite a fire. Coming in contact with a line that is
live, can also kill people, seriously injure them. Thus, such a
semantic attack increases both reliability and safety risks in
power system operations to a significant degree.

In our attack model, the attacker chooses the DLR ma-
nipulations in a way such that his actions are not obvious
to the System Operator (SO). If the effect of the attack is
not visible to the SO (for e.g., via line flow measurements
or emergency signals), the SO will not invoke generation
curtailment and/or line disconnect operations. In fact, under
partial network observability, the operator may not be able to
implement the necessary preventive actions in a timely manner.
As a result, the SO will implement the false ED solution that
will violate the line limits.

A. Attacker Knowledge

We first describe the attacker’s system knowledge which
consists of DC-approximation of the actual nonlinear AC
power flow equations. The topology of a transmission network
can be described as a connected graph with the set of nodes
V and the set of edges E . In power systems terminology, each
node refers to a bus and each edge refers to a transmission
line. We let n “ |V|. Let ti, ju denote the line joining the
nodes i and j, and its susceptance (inverse of reactance) be
denoted as βij . The set of generators at a bus i is denoted
as Gi. The set of all generators is denoted by G :“ Gi. For
each i P G, pmini and pmaxi are the lower and upper generation
bounds that are specific to the i´th generator. The generation
bounds can be expressed as constraints on individual pi:

pmini ď pi ď pmaxi . (1)

Following the standard formulation of economic dispatch,
the cost of power generation for the i´th generator is modeled
as a convex quadratic function Cippiq in pi. Let p P RG

and d P RV denote the generation and demand vectors,
respectively. The total cost of generating p is:

Cppq “
ÿ

iPG
Cippiq, (2)

where
Cippiq “ aipi

2 ` bipi ` ci. (3)

3



ai, bi, ci P R` @ i P G. ai and bi are not simultaneously zero,
i.e., the cost of generation is an increasing function of power
(MWs) supplied.

The power flow fij from node i to node j can be expressed
as a linear function of the difference between the voltage phase
angles at nodes i and j [6]:

fij “ βijpθi ´ θjq, (4)

where θ P RV is the vector of voltage phase angles.
The conservation law for the power flows is:

ÿ

j:ti,juPE

fij “
ÿ

kPGi

pk ´ di, (5)

which states that the net generation at a node i is equal to the
sum of outflows from node i to its neighbors. The DC power
flow (4)-(5) is said to be feasible if and only if total supply is
equal to total demand (see [6]), i.e.,

ÿ

iPG
pi ´

ÿ

jPV
dj “ 0. (6)

The power flows satisfy the capacity line constraints, i.e.,

|fij | ď uij . (7)

Thus the DC-optimal power flow problem faced by the SO
can be posed as follows:

min
p,θ

Cppq s.t. (1)´ (6), (7). (8)

B. Attacker Resources

The true capacities of the transmission lines dynamically
vary over time due to weather conditions (ambient tem-
perature, wind, etc.) [9], and are, in fact, greater than the
static line ratings assumed by the SO for economic dispatch
problem (Figure 2). Dynamic Line Rating (DLR) lines are the
transmission lines with DLR sensors that report the true line
capacities to the system operator.

Fig. 2: Static vs Dynamic Line Rating

Let ED Ă E denote the set of lines that are equipped with
DLR devices. The complementary set ES “ EzED denotes
the set of lines that are not equipped with DLR technology,
and hence their rating will be fixed to the respective static line
capacity values. Given that DLR deployments are done as part

of government sponsored smart grid projects [8], [9], the set of
lines ED equipped with DLR technology is public knowledge.
These lines will be the ones that are routinely prone to
congestion and hence receive priority DLR implementation
by the operator.

For a line ti, ju P ED, we denote udij as the actual line rating
computed by the DLR software using measurements collected
from the Supervisory Control and Data Acquisition (SCADA)
system.

uij “

#

usij if ti, ju P ES
udij if ti, ju P ED,

(9)

where
@ ti, ju P ED uminij ď udij ď umaxij (10)

i.e. the DLRs can only take values between a certain range.
Thus the DC-optimal power flow problem faced by the SO

can be posed as follows:

min
p,θ

Cppq s.t. (1)´ (6), (7), (9). (11)

We assume an informed attacker. Specifically, the attacker’s
knowledge includes the network topology, line susceptances,
set of generators, and their corresponding generation limits,
and the cost of generation. The attacker also knows the
nominal demand dj at each node j and the nominal generator
output pi for each i P G. In power systems terminology,
with this knowledge, the attacker can solve for an DC ED
solution which is an approximation of AC ED solution that
the EMS implements on the power system. Note that our
assumption on attacker’s knowledge is not unrealistic given
that all major ISOs publicly disclose historical generation and
demand patterns and the locational marginal prices in day
ahead and hourly power markets.

Since the SO knows the static line ratings and these are fixed
in ED software implementations, we assume that the attacker
cannot compromise them in ED implementation’s memory.
Any compromise to static line ratings can be overridden by
simple built-in checks in power flow implementations. Also,
since the static ratings are typically calculated for constant
(worst-case) weather conditions over an extended period of
time (few months to years), we assume that the attacker knows
their values. This assumption can be justified by the fact that
the manufacturers of transmission line conductors supply static
line ratings in their product specifications. Thus, under the
aforementioned constraints, the set of lines ED constitutes the
attacker’s constraint since the attacker only targets DLR ratings
and not the static ones.

C. Attack Objective

Now, we present the constraints faced by the attacker so
that the attack remains stealthy, and the SO’s ED software
admits the DLR ratings manipulated by the attacker. Then,
we formulate the attack policy of the attacker as a bilevel
optimization problem.

Under our attack model, the attacker accesses the actual
DLR values udij for lines ti, ju P ED in ED’s dynamic memory
and replaces them with incorrect values uaij (Section VI). The
attacker knows udij and computes uaij in order to maximize
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the violation of line ratings by the resulting power flows. To
avoid detection by in-built checks, each uaij is constrained
by minimum and maximum permissible limits of line ratings,
denoted as uminij and umaxij , respectively. These limits are also
known by the attacker. For ease of presentation, we introduce
an auxiliary variable puij to denote the manipulated dynamic
line rating for the line ti, ju P ED. The attacker is subject to
following constraints:

@ ti, ju P ED

#

puij “ uaij
uminij ď puij ď umaxij ,

(12)

because, the attacker wants to maintain a level of stealthiness,
so he does not choose an out-of-bound DLR value, that may
set off an alarm.

If the DLR value of a line ti, ju P ED is manipulated by
the attacker, then the EMS software will obey the following
constraint for the power flow on the line:

@ ti, ju P E |fij | ď puij . (13)

We pose the problem of optimal attack generation – from
the attacker’s viewpoint – as the following bilevel optimization
problem:

max
ua

Ucappf;u
dq “ max

ti,juPED

100

˜

|fij |
udij

´ 1

¸

`

(14a)

min
p,θ

Cppq s.t. (1)´ (6), (12), (13), (14b)

where a` :“ maxpa, 0q. This problem is equivalent to a 2-
stage sequential (Stackelberg) game, in which the attacker
(leader) chooses his strategy assuming a best response from the
defender (follower). Specifically, in the first stage, the attacker
chooses the incorrect DLR ratings ua (or equivalently puij) that
are subsequently implemented in runtime by localizing and
corrupting true DLR values in the nonlinear ED controller’s
memory (Section VI). The attacker’s objective is to maximize
the maximum percentage capacity bound violation of the
power flows fij on lines ti, ju P ED over the true DLR
values udij after the defender responds optimally in the second
stage. This objective can be expressed as Ucappf;udq in (14a).
In the second stage, the defender chooses the generator outputs
p and voltage phase angles θ that achieves min-cost solution to
DC-ED, i.e., minimize the generation costs (2) subject to the
constraints (1)-(6),(12),(13). The attacker ensures that under
the manipulated DLR ratings puij for lines ti, ju P ED and
given static ratings usij for lines ti, ju P ES , there exists a
feasible flow allocation that minimizes the generation cost (2),
otherwise the SO will be require to setting off an alarm causing
the SO to initiate other actions such as load curtailment.

Note that the actual generation cost faced by the operator
when incorrect ua are used in the SO’s nonlinear ED formu-
lation will be different than the defender cost obtained in the
stage 2 subgame. In fact, the nonlinear ED is likely to be
infeasible in the sense that the power flows on certain lines
can exceed the permissible line ratings.

The attack model can be summarized as follows. The
physical system consists of the physical components, e.g.,
generators, transmission network, and the loads. Each of these

components send data to the EMS via means of SCADA,
which is part of the attacker knowledge. The generators submit
the cost functions, the transmission network submits the topol-
ogy and the line ratings, and the loads submit the demand. The
attacker uses this data to compute a DLR manipulation based
on his attack policy, and then compromises the DLR values
utilized by the EMS while solving the ED problem. Finally,
the EMS implements the false ED solution by dispatching the
new generation set-points to the individual generators.

Next, we present our computational approach to compute
the optimal maximin attack.

III. CHARACTERISTICS OF OPTIMAL ATTACK

The optimal attack generation problem posed in (14) is a
linear-quadratic bilevel (LQBP) that is, in general, compu-
tationally hard to solve. One of the standard approaches to
solve a LQBP is to reformulated it as a Mixed Integer Linear
Program (MILP), which can be implemented using commonly
available optimization solvers.

Our approach for solving the bilevel optimization problem
(14) is as follows. First, we divide the main problem as 2 |ED|
parallel optimization problems where the attacker’s objective
is to just maximize the capacity violation of one DLR line,
in either flow direction. This converts the attacker’s objective
function from nonlinear to an affine function. This subproblem
can be represented as follows:

max
xPX

g1
Tx` g2

T y‹

s.t. A1x`B1y
‹ ď k1

y‹ P min
y

1

2
yTHy ` h1

T y ` h2

s.t. A2x`B2y ď k2,

(15)

where x denotes the attacker actions; X denotes the non-
negativity and/or integrality constraints. In the subproblem
of (14), x “ ua, y “ pp, θq, X “ tu P RED : umin ď
u ď umaxu. Also, g1, B1 are zero vector and zero matrix,
respectively.

Second, we note that, for fixed attacker action x, the inner
problem is a convex minimization problem, and therefore
strong duality applies. Applying the Karush-Kuhn-Tucker
(KKT) conditions for the optimal solution of the inner prob-
lem, we can pose the overall bilevel problem as a MILP [35].
Let, for fixed attacker action x, py‹, λ‹q denote the optimal
primal-dual pair for the inner problem. Then the KKT opti-
mality conditions are as follows.

A2x`B2y
‹ ď k2 (16a)
λ‹ ě 0 (16b)

Hy‹ `B2
Tλ‹ ` h1 “ 0 (16c)

λ‹ ďMp1n ´ µq

A2x`B2y
‹ ´ k2 ďMµ (16d)

@ i P t1, 2, ¨ ¨ ¨ ,mu, µi P t0, 1u,

where m “ lengthpk2q, M is infinity (chosen as a signifi-
cantly large number). (16a), (16b), (16c) and (16d) are primal
feasibility, dual feasibility, stationarity and complementary
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slackness conditions. Note that the complementary slackness
conditions are reformulated into integrality constraints.

Thus, the bilevel subproblem can be restated as a single-
level mixed-integer linear program (MILP).

max
xPX

g1
Tx` g2

T y‹

s.t. A1x`B1y
‹ ď k1, and (16).

(17)

Third, we solve for 2 |ED| copies of the above MILP (17),
and choose the maximum over all DLR lines, the non-negative
percentage capacity bound violation, in either flow direction.

Algorithm 1 Optimal security strategy
1: pU‹

cap, u
a‹
q Ð GETOPTIMALATTACK()

2: procedure GETOPTIMALATTACK()
3: U‹

cap Ð 0, ua‹
Ð 0

4: m “ GETMILPMODEL() using (17)
5: for ti, ju P ED do Ź for each DLR line
6: for dir P t´1, 1u do Ź for each flow direction
7: SETOBJECTIVE(m, 100

`

pdir ˆ fijq{u
d
ij ´ 1

˘

)
8: SOLVE(m)
9: Ucap ÐGETOBJECTIVEVALUE(m)

10: ua
Ð GETVALUE(m,ua)

11: if Ucap ą U‹
cap then

12: pU‹
cap, u

a‹
q Ð pUcap, u

a
q Ź update values

13: end if
14: end for
15: end for
16: return U‹

cap, u
a‹

17: end procedure

Our approach is summarized in Algorithm 1. The proce-
dure GETOPTIMALATTACK() initializes the optimal attacker
strategy and optimal attacker gain to zero. It constructs the
MILP model with the KKT conditions for the inner problem
and the feasibility constraints for the outer decision variables,
by calling the procedure GETMILPMODEL(). Then, for each
DLR line and each flow direction, GETEDGEATTACK sets the
objective function as the percentage capacity violation for that
line. During each iteration, if the attacker’s gain computed is
larger than the previously computed value, then the values for
the optimal attacker’s gain and the corresponding optimal at-
tack strategy are updated. As we will see in Section IV-B, this
computational approach is indeed scalable to larger networks.

IV. COMPUTATIONAL RESULTS

We discuss the structure of optimal attacks on benchmark
power networks with DLRs, and discuss its implications on
line capacity violations and increased generation costs.

A. 3-node Example

We now illustrate the optimal attacker strategy with the help
of a benchmark example. We consider a 3-node network as
shown in Figure 3. It consists of 2 generators G1, G2 at bus
1 and 2, respectively, and a load L on bus 3.

The following assumptions enable the computation of opti-
mal attack in closed form. The nominal voltage magnitude is
V nom “ 230 kV and the upper and lower voltage bounds are
given by V “ 1.1V nom, V “ 0.9V nom, respectively. The three
lines are identical, each with impedance z “ 0.002 ` 0.05j

G1 G2

L

f12

f13 f23

β23β13
β12

p2p1
u12

u13 u23

Fig. 3: Three-bus power system.

ud
13 ud

23 ua
13 ua

23 f13 f23 Ucap (in 105$)
130 120 100 200 100 200 80
130 150 200 100 200 100 70
160 150 100 200 100 200 50
160 180 200 100 200 100 40

TABLE I: Optimal attacker strategy for three-bus test case.

in per unit system. Thus, the susceptance of each line is the
inverse of reactance given by β “ 1

0.05 . Assume that for the
given instance, the active DLR for each of the three lines is
160 MW. The generation output of the two generators must
satisfy the bounds 0 ď p1, p2 ď 300 MW. Bus 3 has a constant
power load having demand d “ 300 MW.

Consider, for simplicity, a linear power flow model (4)-(5),
and the linear cost of generation given by

Cppq “ b1p1 ` b2p2, (18)

where we choose b1 “ 2b2 “ 2b ą 0. Simplifying further, we
get, Cppq “ b1p1 ` b2pd ´ p1q “ bp1 ` bd.

In the “no attack” case, the optimal generation turns out
to be pp1, p2q “ p120, 180q. The power flows at this point
are f12 “ ´20, f13 “ 140, and f23 “ 160, respectively. As a
result, the most congested line among all the three lines is line
t2, 3u. This is expected as the G2 has lower cost of production,
so it generates more causing the congestion in line t2, 3u.

Assume for the sake of illustration that only the DLRs of
lines t1, 3u and t2, 3u can be manipulated. The attacker’s
strategy will be either to maximize the capacity violation
on line t2, 3u (strategy A) or that on line t1, 3u (strategy
B). The attacker’s optimal strategy is the one which leads
to larger of these two violations. Assuming that the demand
is fixed at 300, under strategy A (resp. strategy B), the
optimal manipulated DLRs will be ua13, u

a
23 “ p100, 200q

(resp. p200, 100q). Table I lists some possible combinations
for the actual DLR values of lines t1, 3u and t2, 3u, and
the corresponding optimal attacker strategies. For example, if
pud13, u

d
23q “ p120, 120q, then the optimal attacker strategy is

strategy A, i.e. pua13, u
a
23q “ p100, 200q, which yields attacker

objective value as Ucap “ 80.
Now let us use the aforementioned approach to generate

optimal DLR manipulations when the demand and DLRs vary
over time, and OPF calculations account for manipulated line
ratings to generate power flow allocations. For the 3-node
network (Figure 3), consider the demand pattern at node 3
and the representative DLR for two lines t1, 3u and t2, 3u as
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(a) Possible DLR and demand pattern over
24 hour horizon.

(b) Time of attack. The actual DLR ratings
ud are shown as lightly dashed lines in the
background for comparison.

(c) Attacker’s gain and SO’s cost of generation
as predicted by the bilevel model (14), and as
computed by MATPOWER.

Fig. 4: Results for three-node power grid.

shown in Figure 4a. We instantiate the OPF models at every
15 minutes using this demand pattern. The aggregate demand
curve has two peaks corresponding to the morning and evening
peak periods. We chose the lower and upper bounds for the
DLR values to be 100 and 200 MW. Then we varied DLRs
between these bounds to generate patterns for 24 hour period.
For the sake of illustration, we consider the two DLR curves
to have sinusoidal patterns with certain offset between the
two. The pattern also models the increased capacity due to
favorable conditions (e.g. wind) during certain parts of the
day. For these DLR and demand patterns, we determine how
the attacker strategy and the attacker’s gain varies over time
with respect to the true DLRs and the demand.

Figure 4b shows the non-linear power flows along the
DLR lines when the attacker’s DLR ratings are in effect. We
observe that the non-linear power flows are greater than the
attacker’s DLR ratings because of the presence of the reactive
power which is not accounted by the linear power flow model
assumed by the attacker in generating the optimal attack.

We also note that if the attacker targets line t2, 3u (strategy
A), then the optimal attack can reach to maximum DLR
rating, i.e., ua23 can assume the value umax23 for certain time
periods. Recall that the bilevel formulation is constrained by
the supply-demand balance in the defender’s response. This
constraint becomes tight for a range of time-periods during
which the optimal attack ua13 tracks the power flow f13 on
line t1, 3u. If the true DLRs are such that ud23 ą ud13, then
the attacker chooses ua23 “ umax23 . To ensure that the supply =
demand constraint is met ua23 is just equal to the power flow
required to flow on line t1, 3u. On the other hand if ud23 ă ud13,
then the optimal attacker strategy is to violate the capacity of
line t1, 3u (strategy B).

We evaluated the attacker’s gain (Ucap) and the defender’s
cost of generation both estimated by the bilevel formula-
tion (14) and by the nonlinear computations using MAT-
POWER (see Figure 4c). The respective curves closely follow
each other. The actual cost of generation under nonlinear
power flows is slightly larger than the cost of generation
estimated under linear power flows. The same is also true
for the attacker’s gain Ucap. Comparing the demand and DLR
variations in Figure 4a and the objective functions in Figure 4c,

we can see that the optimal attacker gain is not achieved when
the network experiences heavy demand. Rather, the optimal
gain is achieved when the network is heavily congested, i.e.,
relative to the network’s capacity, the aggregate demand is
high. This gives an important insight into the optimal time for
the attack. For e.g., during the hot summers and low windy
conditions, the lines have lower capacities than during the
winters. Also, the high temperatures lead to more aggregate
demand during the summers. Hence, the attacker is better off
manipulating the DLRs in high temperature conditions.

B. Scalability of attack

To demonstrate the scalability of our approach, we imple-
mented Algorithm 1 on an 118-node network. We choose the
DLR and demand patterns for the 118-node network similar
to the ones in 3-node network, but in contrast to the linear
generation cost (18), we adopt the more realistic convex
quadratic cost function (3). In this paper, we have used Gurobi
which is a state-of-the-art optimization toolbox and has built-
in support for solving MILP problems. Figures 5a and 5b
show the corresponding computational results for an 118 node
network. Due to the fact that actual power flows also consist
of reactive power flows in addition to real power flows, there
are higher line losses, resulting in more total power generation
that increases the cost of generation. However, we see that the
actual attacker’s gain is lower than the estimate obtained by
solving (14) (Figure 4c). This can be explained as follows.
The generators have different quadratic curves for the cost
of generation. As a result for lower network load, one set of
generators may be more contributing to the generation, but
for higher loads, other set of generators may be the more
contributing ones. This results in lower power flows along
the DLR lines during high demand conditions. Hence, in the
case of low aggregate demand, the DLR lines are violated
to a larger extent than in the case of high demand. Another
important observation is that the attacker’s gain can be high
even if the demand is low, because the actual DLRs may be
even lower.

In the next section, we describe how an attacker can
implement the optimal attack as computed by the bilevel
formulation (14), as a cyberattack targeting the EMS soft-
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(a) Time of attack for 118-node power network. (b) Loss functions for 118-node network.

Fig. 5: Results for 118-node network
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Fig. 6: Flowchart for attack implementation.

wares. Specifically, we will show how an EMS software (e.g.,
PowerWorld3) be targeted such that the values of the DLRs
in the memory of the software will change during run-time.
This will cause the ED implementation in the EMS to yield a
false ED solution.

V. IMPLEMENTATIONS

We implemented our proposed attack in real controller
software packages. Figure 6 shows the stages of the imple-
mented attack. Initially, we assume a controller executable file
(vulnerable point) and sensitive data sources (e.g., inputs such
as DLRs originating from an external source) are given. Next,
through memory taint analysis, we narrow down our search
space to identify the the memory regions where the sensitive
parameters may reside in memory during the controller exe-
cution. Accordingly, all the memory regions affected by the
target input are marked (tainted). The tainted areas are then
searched for the values of interest (e.g., target DLRs), and
candidates are shortlisted. To identify the correct candidate
from the set of candidates, we generate structural memory
pattern signatures around the correct candidates during the
offline binary analysis phase. We use our past work [26] to
extract binary-level data type and code, and data pointers and
their interdependencies (discussed below). Given the reverse
engineered logical memory layout, we create structural pat-

3We have taken the necessary responsible disclosure steps and have
informed the vendors about our research findings. It is noteworthy that we are
not reporting a security software vulnerability in this paper. Instead, assuming
there is a potential exploit, we demonstrate how the adversaries can perform
domain-specific data corruption in memory to impact the produced control
actuation commands. The steps are not specific to any commercial software
package.

terns of the memory regarding where the target parameters
reside. Those patterns are then used to generate the exploit
binary. During the attack phase the exploit searches the dy-
namic memory address space to locate the target parameters
using the patterns. Finally, it changes the identified parameter
values to the optimal attack values, as discussed in Section III.

Every control algorithm implementation by controller soft-
ware executables involve code and data. The code instructions
encode the algorithm logic (e.g., iterative optimization loops),
whereas the data stores the controller parameters such as the
OPF constraints and DLRs. Modification of the code instruc-
tions are often infeasible due to W ‘X protections. However,
the data regions should be (and are set as) writable, because
the EMS operators often update their values dynamically
according to the most recent power system configuration.

Maintenance of control-sensitive variable values such as
DLRs by the controller software provides an attack surface
to modify them in memory space during the attack. Our
investigations of EMS software binaries showed heavy use of
data structures and class objects to store those values that are
used directly by OPF. During the offline phase, we analyzed
the EMS software binary to determine its memory’s structural
layout. We are interested in structural information such as
the allocated class instances (objects), the class hierarchy, and
the logical interdependencies between the instantiated objects
within the memory, e.g., cross-object code and data pointers.
We are not interested in exact object memory addresses,
because the addresses will likely differ during the attack due
to unpredictable (inputs and hence) dynamic execution paths.
Instead, by capturing the logical interconnections among the
instantiated memory-resident objects, we extracted invariants
about their interdependencies that remain the same across
different runs. The attacker later uses the invariants during
the attack to locate (and corrupt) the DLR values.

Search for a specific DLR value during the attack results
in several memory-resident candidates that are mostly (except
one) false positives. To identify the correct candidate, our
implementation uses the invariants, expressed as propositional
logic predicates, that capture the logical memory structural
patterns around the target DLR parameters. We use three
kinds of memory patterns: address-relative intra-class type
patterns, code pointer-instruction patterns, and data pointer-
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Intra-Class Pattern (type) Code Pointer Pattern (content) Data Pointer Pattern (relation)

 class A size(20): 
    +--- 
0   | {vfptr}  // virtual fn table* 
4   | line-rating  // target parameter 
8   | mem-var2 
12 | mem-var3 
16 | line-name  // char* string 
    +--- 

12
	b
yt
es
	

 class B size(8): 
    +--- 
0  | {vfptr}   // virtual fn table* 
4  | line-rating  // target parameter      
    +--- 

 B's vftable: 
     0  | &A::A_virt1 
     4  | &A::A_virt2 

53   |  push ebx 
56   |  push esi 
8B F2  |  mov esi, edx 

 class C size(16): 
0  | {vfptr}    
4  | linked_list_prev   // previous node 
8   | linked_list_next  // next node      
12 | lr   // target parameter      

 class C size(16): 
0  | {vfptr}    
4  | linked_list_prev   // previous node 
8   | linked_list_next  // next node      
12 | lr   // target parameter      

type(&line-rating + 0x0C) ““ string *(*(&line-rating-0x04)+0x04) ““ 0x53568BF2 *(*(&lr - 0x08) + 0x04) ““ (&lr - 0x10)

TABLE II: Logical memory structure signatures for critical parameters.

0x06410810 
0x06410820
0x06410830
0x06410840
...

0x06410870
0x06410880
…

0x06410940
0x06410950
…

30 5A A4 02 00 00 00 00  00 00 00 00 00 00 00 00
80 0E 3F 11 00 00 00 00   00 00 00 00 00 00 00 00
00 00 00 00 00 A5 35 01  10 A5 35 01 20 A5 35 01
01 00 00 00 A0 64 49 09  00 00 00 00 00 00 00 00
...
00 00 00 00 00 00 C0 3F  E1 FA C7 42 E1 FA C7 42
00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00
...
00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00
95 BF D6 33 CD CC 4C 3D 00 00 00 00 00 00 00 00

.text:02A459D8 30 5A A4 02 dd offset off_2A45A30 

.text:02A459DC 00 00 00 00 dd 0

…

.text:02A45A18 8C 5A 37 01      dd offset sub_1375A8C

.text:02A45A1C A8 AA 40 00      dd offset sub_40AAA8

.text:02A45A20 9C AA 40 00      dd offset nullsub_105

.text:02A45A24 80 A5 40 00      dd offset sub_40A580

.text:02A45A28 9C A5 40 00      dd offset sub_40A59C

.text:02A45A2C 10 2E AD 02      dd offset loc_2AD2E10

.text:02A45A30 08 29 37 01      dd offset sub_1372908 

…

.text:02A45A44 24 FE AD 02      dd offset sub_2ADFE24

.text:02A45A48 5C 3C A6 02     dd offset sub_2A63C5C

…

.text:01375A8C 53                             push    ebx

.text:01375A8D 56                             push    esi

.text:01375A8E 57                             push    edi

.text:01375A8F 8B D8                       mov ebx, eax

…

TTRLine Instance TTRLine VMT

TTRLine Function Code (fixed)

(a) Code pointer-instruction pattern.

.bss:02E7FD24    00 00 F5 
04

0x04F50000 00 00 E5 05 24 FD E7 02

…
0x050532C0
…
0x05053380
0x05053390
0x050533A0
0x050533B0
0x050533C0
0x050533D0
…
0x05053450
0x05053460
0x05053470

…
1C DE A3 02 00 00 00 00 00 00 00 00 00 00 00 00 
…
A0 6C 03 05 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 17 B7 D1 38 00 00 00 00 00 00 80 3F 
00 00 00 00 00 00 C0 40 00 00 00 00 00 00 00 00 
00 00 00 00 00 01 00 00 5C FF 79 44 00 00 C6 C2 
00 00 C0 3F 00 00 00 40 00 00 80 BF 00 00 00 00 
00 00 00 00 66 66 6F 43 C3 F5 F8 40 17 B7 D1 3A
…
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 C0 3F 00 00 C0 3F 
00 00 C0 3F 00 00 00 00 00 00 00 00 00 00 00 00

0x05E50000 00 00 32 06 00 00 F5 04

… …

0x06320000 00 00 46 06 00 00 E5 05

...
0x06410810 
0x06410820
0x06410830
0x06410840
...

0x06410870
0x06410880
…

0x06410940
0x06410950
…

...
30 5A A4 02 00 00 00 00  00 00 00 00 00 00 00 00
80 0E 3F 11 00 00 00 00   00 00 00 00 00 00 00 00
00 00 00 00 00 A5 35 01  10 A5 35 01 20 A5 35 01
01 00 00 00 A0 64 49 09  00 00 00 00 00 00 00 00
...
00 00 00 00 00 00 D3 3F  E1 FA C7 42 E1 FA C7 42
00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00
...
00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00
95 BF D6 33 CD CC 4C 3D 00 00 00 00 00 00 00 00

(b) Linked-list as data pointer-based pattern.

Fig. 7: Code and data pointer-based structural memory patterns in PowerWorld used for graphical predicate generation.

based patterns (Table II).

Address-relative intra-class type patterns. The attack ex-
tracts execution-agnostic memory structural patterns around
the target DLR values in memory. We concentrate on intra-
class patterns that capture fixed offset relations among mem-
bers of the same class as the target DLR parameter, and their
types and/or values. If the DLR parameter is stored as a
member of a class that also contains other variable(s), whose
type is (are) easy to identify, we use that information as a
local signature for the target parameter. In memory forensics,
types such as character strings, pointers [16], and fixed-value
member fields can be identified simply. We investigate the
vicinity of the target parameter within the same object looking
for addresses that store easy-to-identify data types. If one
or more of such samples are found, their type/value and
corresponding offset from the target parameter address is used
to produce the signature. The attack creates simple-to-check
logical predicates for each candidate (e.g., “candidate addr +
0x08 stores 0x00000001”). Our implementation aggregates the
produced predicates into a single conjunctive logic signature.

Code pointer-instruction patterns. We leverage the code
pointer relations within the memory regions to extract invari-
ants (logical predicates) about the structural memory layout
around the target DLR parameters. We extract such invari-
ants given the reverse engineered class object pointers, and
their logical interdependencies with the corresponding member
and virtual functions. We use the fact that code segments
(e.g., instructions of member and virtual functions) within
the controller software binary are typically set as read-only
with fixed content. Table II shows a sample code pointer-

based predicate for the illustrated pattern. The signature checks
whether the first four byte content of the target parameter’s
object’s second virtual function is equal to the corresponding
function prologue. As denoted, the signature does not depend
on the absolute address values given the target parameter
candidate’s location. The attack can automatically generate
the code pointer patterns for the object’s individual member
and virtual functions. Finally, the generated predicates are
combined into a single conjunctive logical predicate to check
against all the identified candidates within the EMS memory
space attack time.

Data pointer-based patterns. The data pointer-based patterns
do not often assume fixed data values in memory, and is purely
based on memory structure and the relations between various
objects. We perform a recursive pointer traversal among the
recognized objects on the controller’s memory space following
its earlier forensics analyses of the allocated objects and the
stored pointer values within them (member fields). The algo-
rithm implements a depth-first search starting from individual
recognized pointers within the memory space. For each pointer
under the consideration, we determine if its destination is an
memory-resident object. If so, the attack recursively traverses
all the member pointer fields within the destination object.
During its recursive search, our implementation generates the
corresponding directed graph, where nodes represent allocated
objects, and the outgoing edges indicate the member pointer
fields within the source object. The generated directed graph
represents the inter-object dependencies within the memory
space. Once the generation of the graph in completed, our
implementation searches for cycles. Such cycles are very
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Param. values #Hits #Relevant #Recognized Accuracy
0x3FC00000 143 3 3 100%
0x02A45A30 2038 4 4 100%
0x06410570 30 1 1 100%
0x06410810 30 1 1 100%
0x06410810 28 1 1 100%

TABLE III: The target parameter value recognition accuracy.

popular in widely used data structures such as linked lists
(the rightmost entry on Table II). The attack turns each cycle
within the graph into a logical predicate that corresponds to a
data pointer-based signature.

VI. EMPIRICAL ATTACK DEPLOYMENT RESULTS

To assess the proposed attack feasibility in practice, we im-
plemented it against widely-used commercial and open-source
industrial controller software packages. The implemented at-
tack involves the following steps: i) during the offline phase,
we reverse engineer the EMS software binary to locate DLR
parameters within the controller and create the corresponding
invariants that hold true regardless of their absolute memory
addresses; ii) during the online phase (attack time), the exploit
searches the controller memory for the known legitimate DLR
values and collects the candidates; iii) the attack recognizes the
only true candidate by applying the invariants on the collected
set of candidates; and iv) our implementation modifies the
value maliciously according to the optimal attack generation
algorithms discussed in the previous section. We now explain
the results for our empirical validation.

A. EMS Software Attack

We validated the proposed attack on real-world widely-used
industrial controller software packages. We first present the
detailed results on PowerWorld, and later compare the attack’s
performance for other controllers (NEPLAN, PowerFactory,
PowerTools, and SmartGridToolbox).

Figure 7a shows a generated code pointer-based memory
signature in PowerWorld. The corresponding pattern predicate
for runtime memory search was “*(*(candidate addr - 0x54)
- 0x24) == 0x5356578B”, where 0x5356578B is the
hex representation of the sub_1375A8C function’s first four
instruction bytes. The rating of every transmission line is
stored in offset 0x24 of the corresponding TTRLine object.
The information about the transmission lines of the power
system is stored as a doubly linked list of TTRLine objects
in PowerWorld memory space. The attack used “*(*(candi-
date addr - 0x24) + 0x04) == (candidate addr - 0x24)” as
the pattern predicate for line ratings. Let us call the linked
list node that stores the target line rating A. The pattern
predicate above essentially verifies the following linked list
invariant: whether A’s previous node’s next pointer points to
A. More complex patterns can be extracted if needed; however,
our empirical studies on PowerWorld shows simple patterns
always suffice to identify and isolate the exact candidate
uniquely.

Figure 7b shows another PowerWorld data pointer pat-
tern for line ratings. PowerWorld allocates linked list nodes
(0x13FFF0 sizes each) allocated by VirtualAlloc for
objects instances of different classes (e.g., TGen, TBus and

EMS Software vfTable Line Bus Gen. Accuracy
PowerWorld 8527 3 3 2 100%
NEPLAN 6549 51 30 5 100%
PowerFactory 110 34 39 10 100%
Powertools 3 185 118 53 100%
SmartGridToolbox 194 79 57 4 100%

TABLE IV: Memory layout (object) forensics accuracy. The
instances were correctly marked with their types.

TTRLine). Only three nodes are shown. If our objective
is to look for line rating 0x3FC00000, its corresponding
pattern predicate will encode the offset to get the node’s initial
member value 0x05E50000 that points to the next node
shown (summarized) on the top of the figure. The second
element of each node (0x04F50000 in the top node) points to
the previous node. A relatively more complex second-degree
predicate would be “*(*(*(*(candidate addr - 0x1033C0))
+ 0x04)+ 0x04) == candidate addr - 0x1033C0”, i.e.,
A Ñ next Ñ next Ñ previous Ñ previous ““ A,
where A represents the data structure that stores the line rating
0x3FC00000.

The attack payload checks for patterns on the identified
candidates before corrupting their values. The code searches
for the specific value in memory, and modifies the identified
candidate. Table III shows how many hits our implementation
finds for individual target power system parameter values on
PowerWorld memory space. The number empirically proves
the infeasibility of memory corruption attacks without the use
of signature predicates. The next column shows how well
the signatures dismiss the irrelevant candidates and identify
the true target values. Table IV shows the forensics analysis
accuracy for five different EMS software packages. Through
the use of the code pointer signatures and its extracted knowl-
edge about the class hierarchies, our implementation was able
to correctly recognize the class types of all object instances
within the EMS memory. The payload initializes the OPF al-
gorithm in its corresponding thread. Once it changes the iden-
tified memory addresses, it restarts the control loop through
the call to CreateThread function within kernel32.dll
that is loaded by almost all windows processes.

B. Case-study Demonstration

As a concrete example, we show how the state of underlying
power system (the same model used in Section IV) gets
affected once the memory corruption is completed (Figure 84).
Before the corruption (Figure 8a), the EMS GUI visualizes the
safe state of power system operation, where the transmission
lines are mostly fully utilized; however, no line rating (ca-
pacity constraints) are violated. The optimal attack generation
algorithm computes the adversary-optimal values for the line
ratings, and chooses to i) modify the B1 ´ B3 transmission
line to 120MW from 150MW ; and ii) modify the line rating
for the B2´B3 transmission line to 240MW from 150MW .
While implementing the optimal attacker strategies that we
obtain from the maximin solution, we need to translate the
line rating values to higher values using basic power flow

4The pie charts on the transmission lines represent the used percentages of
the line power flow capacities in that particular state.
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06410AE0 0001 0000 65C0 0949 0000 0000 0000 0000
06410AF0 0000 0000 0000 0000 0000 0000 FE00 0000
06410B00 0000 0000 0000 0000 0001 0000 0000 0000
06410B10 0000 0000 0000 3FC0 FAE1 42C7 FAE1 42C7

06410840 0001 0000 64A0 0949 0000 0000 0000 0000
06410850 0000 0000 0000 0000 0000 0000 FE00 0000
06410860 0000 0000 0000 0000 0001 0000 0000 0000
06410870 0000 0000 0000 3FC0 FAE1 42C7 FAE1 42C7

(a) PowerWorld pre-attack power system state (safe).

06410AE0 0001 0000 65C0 0949 0000 0000 0000 0000
06410AF0 0000 0000 0000 0000 0000 0000 FE00 0000
06410B00 0000 0000 0000 0000 0001 0000 0000 0000
06410B10 0000 0000 999A 4019 FAE1 42C7 FAE1 42C7

06410840 0001 0000 64A0 0949 0000 0000 0000 0000
06410850 0000 0000 0000 0000 0000 0000 FE00 0000
06410860 0000 0000 0000 0000 0001 0000 0000 0000
06410870 0000 0000 999A 3F99 FAE1 42C7 FAE1 42C7

(b) PowerWorld post-attack power system state (unsafe).
fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax

1 3 0.0 0.05 0.0 150.0 9999.0 9999.0 0.0 0.0 1 -30.0 30.0

1 2 0.0 0.05 0.0 150.0 9999.0 9999.0 0.0 0.0 1 -30.0 30.0

2 3 0.0 0.05 0.0 150.0 9999.0 9999.0 0.0 0.0 1 -30.0 30.0

016B2AE0 0001 0000 0000 0000 2AC8 016B 0000 0000 
016B2AF0 0000 0000 0000 3FF8 0000 0000 0000 0000 
016B2B00 0000 0000 0000 3FF0 0000 0000 0000 0000 
016B2B10 0000 0000 0000 0000 999A 9999 9999 3FA9 
016B2B20 0000 0000 0000 0000 FFFF FFFF FFFF C033 
016B2B30 0000 0000 0000 3FF0 0000 0000 0000 0000

016C0500 0003 0000 0000 0000 95B8 016B 0000 0000 
016C0510 0000 0000 0000 3FF8 0000 0000 0000 0000 
016C0520 0000 0000 0000 3FF0 0000 0000 0000 0000 
016C0530 0000 0000 0000 0000 999A 9999 9999 3FA9 
016C0540 0000 0000 0000 0000 FFFF FFFF FFFF C033 
016C0550 0000 0000 0000 3FF0 0000 0000 0000 0000

(c) Powertools memory image of the sensitive parameters.

Fig. 8: PowerWorld and Powertools controller software attack
results as the result of targeted adversary-optimal line rating
manipulation.

calculations. For example, for the implementation of optimal
attack, we use pu13 “ 120MVA and pu23 “ 240MVA. These
values are higher than the values pu13 “ 100 and pu23 “ 200
calculated by the bilevel optimization.

This increase in optimal line rating manipulations is neces-
sary to account for the fact that the AC OPF implementation
is constrained by the line rating bounds on apparent power
flows (with both real and reactive power components) while
the optimal attack generation procedure calculates manipulated
line rating assuming that only real power flows are subject to
line ratings. As the consequence, the power system enters an
unsafe state after the OPF control algorithm uses the corrupted
line ratings and hence produces wrong control outputs to the
power generators; see Figure 8b. Optimal and physics-aware
corruption of the sensitive values through a controller attack
allows the intruders to maximize the physical impact on the
power system operations without having to compromise a
large number of sensors as required in false data injection
attacks. We also performed the same memory data corruption

attack on Powertools [1] package. In this scenario, the attacker
changed the line rating for two of the branches as shown
in Figure 8c. Similar to the PowerWorld case, the exploit
locates the sensitive parameters (line ratings) and modifies
them during the program execution. As the result, the memory
corruption impacted the power flow iterations of DC-OPF
performed by the Powertools software that consumed the
modified memory regions, and made it converge to a different
wrong value. In terms of the attack implementation approach,
the attacks against PowerWorld and powertools were identical.

VII. DISCUSSIONS AND POTENTIAL MITIGATION

Our attack and similar domain-specific memory data cor-
ruption attacks can be mitigated through several potential
solutions: i) Protection of sensitive data: fine-grained data
isolation mechanisms such as hardware supported Intel SGX
can be leveraged to store and process sensitive data such as
power system parameters within protection enclave regions.
This protects sensitive data against access requests by other
irrelevant instructions in the same memory space. A more
fine-grained version of such memory-based data protection can
distinguish between data that are often fixed during the opera-
tion (e.g., power system topological information) vs. regularly
updated data regions (e.g., sensor measurements) to facilitate
lower-overhead protection such as read-only memory pages
for the fixed data once they are loaded on memory initially.
ii) Control command verification: controller output verification
mechanisms such as an extended version of TSV [19] can be
used to ensure the safety of the (maliciously) issued control
commands by an infected control system software before they
are allowed to reach the actuators. Monitoring of the control
channel, however, does not ensure the correct functionality
of the control system software. Instead it just ensures its
outputs (even though corrupted) are within the safety margins
of the physical plant. iii) Intrusion-tolerant replication: a more
traditional approach is to use redundancy such as N-version
programming by maintaining a redundant controller software
that is different from the main one used. The replica controller
can monitor the dynamic behavior of the physical plant (e.g.,
power system) as well as the main controller’s output to
the actuators. The replica can rerun the control algorithm to
calculate and compare its calculated control outputs with those
of the main controller. Hence, the main controller infection
(misbehavior) can be identified if a mismatch is detected;
iv) Algorithmic redundancy: Carefully designed algorithmic
tools (e.g., attack-aware optimal dispatch) can provide safe
operating regimes to limit the impact of successful attacks.
Indeed, this is a topic of future research.

VIII. RELATED WORK

We review the most related recent work on control system
security. The existing solutions to protect the control networks’
trusted computing base (TCB) are insufficient as software
patches are often applied only months after release [22], and
new vulnerabilities are discovered on a regular basis [21], [28].
The traditional perimeter-security tries to keep adversaries out
of the protected control system entirely. Attempts include
regulatory compliance approaches such as the NERC CIP
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requirements [31] and access control [11]. Despite the promise
of information-security approaches, thirty years of precedence
have shown the near impossibility of keeping adversaries out
of critical systems [13] and less than promising results for
the prospect of addressing the security problem from the
perimeter [14], [15], [20]. Embedded controller software from
most major vendors [14], [32] and popular human machine
interfaces [20] have been shown to have fundamental security
flaws. Offline control verification solutions [19] implement
formal methods using symbolic execution of the controller
program to verify the safety of the code before it is let execute
on the controller device. Not surprisingly, those methods face
scalability problem, caused by state-space explosion.

One specific related line of research is proposed false
data injection (FDI) attacks [17], [30], [33] that have been
explored over the past few years. FDI assumes compromised
set of sensors and make them send corrupted measurements to
electricity grid control centers to mislead the state estimation
procedures. The authors propose a system observability [17]
analysis to determine the required minimal subset of com-
promised sensors to evade the electricity grid’s bad data
detection algorithms [18]. The power system stability has also
been studied under corrupted real-time pricing signals [29].
As a fundamental domain-specific monitoring tool for cyber-
physical platforms, state estimation is to fit sensor data to a
system model and determine the current state [2], [3]. Existing
real-world solutions to analyze power system stability [12]
run every few minutes [25]. These solution do not consider
the cyber-side controllers and/or adversarial settings [4], [34];
hence they may miss malicious incidents such as the con-
troller code execution attacks. Risk assessment techniques,
e.g., contingency what-if analyses [27] investigate potential
power system failures speculatively. However, enumeration of
all possible incidents is a combinatorial problem and does not
scale up efficiently in practical settings [7].
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