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Let

sin(¢)
dr

V1—72V1—mr?

denote the incomplete elliptic mtegral of the first kind and K[m] = F[r/2,m]; we
purposefully choose formulas to be consistent with the computer algebra package
MATHEMATICA. Consider the domain €2 in the complex plane with points u + iv
satisfying one of the four conditions:

u>0, v>0, (u+12+0*<2 W+ (v+1)>2<2
u<0, v>0, (u—12+0v2<2 W+ (w+1)?2<2;
u<0, ©v<0, (u—172+0v2<2 W+ ((v—1)2<2;
u>0, v<0, (u+1P+0*<2, w4+ @w-12<2

(Figure 1). Define three complex-valued functions on €
I 1 3
o) = 1 (<7 o3|+ F oo 3))

g(u,v):i(iF[é’(u,v),ﬂ { 2])
h(u,v):(2—\/§)Flarcsin<i<2+\/§) (u+iv?), (2 \/5”

where

2(1+1 ;
0(u,v) = arcsin ( + Z)(u +iv) | |
V1+4i(u+iv)?— (u+iv)?
Two basic Jacobi elliptic functions, characterized via

sn(u,m)

" / dr dr
Vi-2Vi-mre \/1—7'2\/7717'2 (1—m)’

are also needed. Actually, only one is requlred because sn(u, m)? + cn(u, m)? = 1.

0Copyright (© 2013 by Steven R. Finch. All rights reserved.

1



COMPUTER ALGEBRA AND ELLIPTIC FUNCTIONS 2

nar

0o-

-02

_04F

1 1 L I I
-0.4 -0.2 0.0 0.2 0.4

Figure 1: Domain €2

0.1. Schwarz D surface. FExamine the simultaneous system of 3 equations in 5
unknowns:

. % + K Im(f(u,v)),
y = % + kIm(g(u,v)),

1
Z=—3 + k Re(h(u,v))

where
= 1.1864152923...

K =
K[1/4]
is a normalization constant. The map 3> (u,v) — (z,y,2) defines a parametric
surface in three-dimensional real space (Figure 2). This surface can also be given
implicitly by the equation

(z)(y) +1 = 2(y)2(2) + 2(2)P(x)

where

o(E) =

\/1 —cn (\/§p£, —1/3)
1+cn (V3p& —1/3)
and

p=2/k = 1.6857503548....

Such an assertion can be verified numerically. =~ What is missing is an algebraic
proof that u, v can indeed be eliminated from the 3 equations to yield the implicit
representation.
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0.2. Schwarz P surface. Examine the simultaneous system of 3 equations in 5
unknowns:

x = kRe(f(u,v)),
y = r Re(g(u,v)),

z= % + k Im(h(u,v))

where 3

K= RIS 0.9274219745....
is a normalization constant. The map > (u,v) — (z,y,2) defines a parametric
surface in three-dimensional real space (Figure 3). Except for translation and scaling,
this surface is conjugate to the preceding. What is remarkable is that an implicit
representation here remains open [1]. A proof for the preceding case (Schwarz D)
might carry over in some manner to here (Schwarz P).

Just as the D surface is the solution of Plateau’s problem for 4 edges of a regular
tetrahedron, the P surface can be shown to be the solution of Plateau’s problem for
4 edges of a regular octahedron [2].

Other choices of the region 2 are possible [3] — we have not explored this avenue
— and may simplify the algebra.
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Figure 2: D tetrahedral saddle
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Figure 3: P saddle



