Computer Algebra and Elliptic Functions

Steven Finch

July 29, 2013
Let

$$
F[\phi, m]=\int_{0}^{\sin (\phi)} \frac{d \tau}{\sqrt{1-\tau^{2}} \sqrt{1-m \tau^{2}}}
$$

denote the incomplete elliptic integral of the first kind and $K[m]=F[\pi / 2, m]$; we purposefully choose formulas to be consistent with the computer algebra package MATHEMATICA. Consider the domain Ω in the complex plane with points $u+i v$ satisfying one of the four conditions:

$$
\begin{array}{llll}
u \geq 0, & v \geq 0, & (u+1)^{2}+v^{2} \leq 2, & u^{2}+(v+1)^{2} \leq 2 \\
u \leq 0, & v \geq 0, & (u-1)^{2}+v^{2} \leq 2, & u^{2}+(v+1)^{2} \leq 2 \\
u \leq 0, & v \leq 0, & (u-1)^{2}+v^{2} \leq 2, & u^{2}+(v-1)^{2} \leq 2 \\
u \geq 0, & v \leq 0, & (u+1)^{2}+v^{2} \leq 2, & u^{2}+(v-1)^{2} \leq 2
\end{array}
$$

(Figure 1). Define three complex-valued functions on Ω :

$$
\begin{gathered}
f(u, v)=\frac{1}{4}\left(-i F\left[\theta(u, v), \frac{1}{4}\right]+F\left[\theta(u, v), \frac{3}{4}\right]\right), \\
g(u, v)=\frac{1}{4}\left(i F\left[\theta(u, v), \frac{1}{4}\right]+F\left[\theta(u, v), \frac{3}{4}\right]\right), \\
h(u, v)=(2-\sqrt{3}) F\left[\arcsin \left(i(2+\sqrt{3})(u+i v)^{2}\right),(2-\sqrt{3})^{4}\right]
\end{gathered}
$$

where

$$
\theta(u, v)=\arcsin \left(\frac{2(1+i)(u+i v)}{\sqrt{1+4 i(u+i v)^{2}-(u+i v)^{4}}}\right) .
$$

Two basic Jacobi elliptic functions, characterized via

$$
u=\int_{0}^{\operatorname{sn}(u, m)} \frac{d \tau}{\sqrt{1-\tau^{2}} \sqrt{1-m \tau^{2}}}=\int_{\operatorname{cn}(u, m)}^{1} \frac{d \tau}{\sqrt{1-\tau^{2}} \sqrt{m \tau^{2}+(1-m)}}
$$

are also needed. Actually, only one is required because $\operatorname{sn}(u, m)^{2}+\operatorname{cn}(u, m)^{2}=1$.

[^0]

Figure 1: Domain Ω
0.1. Schwarz D surface. Examine the simultaneous system of 3 equations in 5 unknowns:

$$
\begin{aligned}
& x=\frac{1}{2}+\kappa \operatorname{Im}(f(u, v)) \\
& y=\frac{1}{2}+\kappa \operatorname{Im}(g(u, v)) \\
& z=-\frac{1}{2}+\kappa \operatorname{Re}(h(u, v))
\end{aligned}
$$

where

$$
\kappa=\frac{2}{K[1 / 4]}=1.1864152923 \ldots
$$

is a normalization constant. The map $\Omega \ni(u, v) \mapsto(x, y, z)$ defines a parametric surface in three-dimensional real space (Figure 2). This surface can also be given implicitly by the equation

$$
\Phi(x) \Phi(y)+1=\Phi(y) \Phi(z)+\Phi(z) \Phi(x)
$$

where

$$
\Phi(\xi)=\sqrt{\frac{1-\mathrm{cn}(\sqrt{3} \rho \xi,-1 / 3)}{1+\operatorname{cn}(\sqrt{3} \rho \xi,-1 / 3)}}
$$

and

$$
\rho=2 / \kappa=1.6857503548 \ldots
$$

Such an assertion can be verified numerically. What is missing is an algebraic proof that u, v can indeed be eliminated from the 3 equations to yield the implicit representation.
0.2. Schwarz \mathbf{P} surface. Examine the simultaneous system of 3 equations in 5 unknowns:

$$
\begin{gathered}
x=\kappa \operatorname{Re}(f(u, v)), \\
y=\kappa \operatorname{Re}(g(u, v)), \\
z=\frac{1}{2}+\kappa \operatorname{Im}(h(u, v))
\end{gathered}
$$

where

$$
\kappa=\frac{3}{2 K[1 / 9]}=0.9274219745 \ldots
$$

is a normalization constant. The map $\Omega \ni(u, v) \mapsto(x, y, z)$ defines a parametric surface in three-dimensional real space (Figure 3). Except for translation and scaling, this surface is conjugate to the preceding. What is remarkable is that an implicit representation here remains open [1]. A proof for the preceding case (Schwarz D) might carry over in some manner to here (Schwarz P).

Just as the D surface is the solution of Plateau's problem for 4 edges of a regular tetrahedron, the P surface can be shown to be the solution of Plateau's problem for 4 edges of a regular octahedron [2].

Other choices of the region Ω are possible [3] - we have not explored this avenue - and may simplify the algebra.

References

[1] J. C. C. Nitsche, Periodic surfaces that are extremal for energy functionals containing curvature functions, Statistical Thermodynamics and Differential Geometry of Microstructured Materials, Proc. 1991 Minneapolis conf., ed. H. T. Davis and J. C. C. Nitsche, Springer-Verlag, 1993, pp. 69-98; MR1226921 (94m:58052).
[2] S. R. Finch, Partitioning problem, unpublished note (2013).
[3] H. Terrones and A. L. Mackay, Negatively curved graphite and triply periodic minimal surfaces, J. Math. Chemistry 15 (1994) 183-195; MR1279755 (95b:53012).

Figure 2: D tetrahedral saddle

Figure 3: P saddle

[^0]: ${ }^{0}$ Copyright © 2013 by Steven R. Finch. All rights reserved.

