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denote the incomplete elliptic integral of the first kind and [] =  [2]; we

purposefully choose formulas to be consistent with the computer algebra package

MATHEMATICA. Consider the domain Ω in the complex plane with points  + 

satisfying one of the four conditions:

 ≥ 0  ≥ 0 (+ 1)2 + 2 ≤ 2 2 + ( + 1)2 ≤ 2;
 ≤ 0  ≥ 0 (− 1)2 + 2 ≤ 2 2 + ( + 1)2 ≤ 2;
 ≤ 0  ≤ 0 (− 1)2 + 2 ≤ 2 2 + ( − 1)2 ≤ 2;
 ≥ 0  ≤ 0 (+ 1)2 + 2 ≤ 2 2 + ( − 1)2 ≤ 2

(Figure 1). Define three complex-valued functions on Ω:
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where

( ) = arcsin
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Two basic Jacobi elliptic functions, characterized via
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are also needed. Actually, only one is required because sn()2 + cn()2 = 1.
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Figure 1: Domain Ω

0.1. Schwarz D surface. Examine the simultaneous system of 3 equations in 5

unknowns:
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2
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is a normalization constant. The map Ω 3 ( ) 7→ (  ) defines a parametric

surface in three-dimensional real space (Figure 2). This surface can also be given

implicitly by the equation

Φ()Φ() + 1 = Φ()Φ() + Φ()Φ()

where
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and

 = 2 = 16857503548

Such an assertion can be verified numerically. What is missing is an algebraic

proof that ,  can indeed be eliminated from the 3 equations to yield the implicit

representation.
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0.2. Schwarz P surface. Examine the simultaneous system of 3 equations in 5

unknowns:

 = Re(( ))

 = Re(( ))
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2[19]
= 09274219745

is a normalization constant. The map Ω 3 ( ) 7→ (  ) defines a parametric

surface in three-dimensional real space (Figure 3). Except for translation and scaling,

this surface is conjugate to the preceding. What is remarkable is that an implicit

representation here remains open [1]. A proof for the preceding case (Schwarz D)

might carry over in some manner to here (Schwarz P).

Just as the D surface is the solution of Plateau’s problem for 4 edges of a regular

tetrahedron, the P surface can be shown to be the solution of Plateau’s problem for

4 edges of a regular octahedron [2].

Other choices of the region Ω are possible [3] — we have not explored this avenue

— and may simplify the algebra.
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Figure 2: D tetrahedral saddle

Figure 3: P saddle


