Desiderata: Process, analyze and learn from network data [Kolaczyk’09]
Network Science analytics

- **Desiderata:** Process, analyze and learn from network data [Kolaczyk’09]
 - Network as graph $G = (\mathcal{V}, \mathcal{E}, W)$: encode pairwise relationships
 - Interest here not in G itself, but in data associated with nodes in \mathcal{V}
 - Object of study is a graph signal x
 - Networks are common and interesting. So are graph signals?
Network of economic sectors of the United States

- Bureau of Economic Analysis of the U.S. Department of Commerce
- $\mathcal{E} = \text{Output of sector } i \text{ is an input to sector } j \ (62 \text{ sectors in } \mathcal{V})$

Oil extraction (OG), Petroleum and coal products (PC), Construction (CO)
Administrative services (AS), Professional services (MP)
Credit intermediation (FR), Securities (SC), Real state (RA), Insurance (IC)

Only interactions stronger than a threshold are shown
Network of economic sectors of the United States

- Bureau of Economic Analysis of the U.S. Department of Commerce
- $\mathcal{E} = \text{Output of sector } i \text{ is an input to sector } j$ (62 sectors in \mathcal{V})

- A few sectors have widespread strong influence (services, finance, energy)
- Some sectors have strong indirect influences (oil)
- The heavy last row is final consumption

- This is an interesting network \Rightarrow Signals on this graph are as well
Disaggregated GDP of the United States

- Signal x = output per sector = disaggregated GDP
 - Network structure used to, e.g., reduce GDP estimation noise

- Signal is as interesting as the network itself. Arguably more
Disaggregated GDP of the United States

- Signal $x = \text{output per sector} = \text{disaggregated GDP}$
 - Network structure used to, e.g., reduce GDP estimation noise

- Signal is as interesting as the network itself. Arguably more
 - Same is true on brain connectivity and fMRI brain signals, ...
 - Gene regulatory networks and gene expression levels, ...
 - Online social networks and information cascades, ...
 - Alignment of customer preferences and product ratings, ...
Graph signal processing

- **Graph SP**: broaden classical SP to graph signals [Shuman et al.'13]
 - **Our view**: GSP well suited to study network (diffusion) processes

- **As.**: Signal properties related to **topology** of G (locality, smoothness)
 - **⇒ Algorithms** that fruitfully **leverage this relational structure**

- **Q**: Why do we expect the graph structure to be useful in processing \mathbf{x}?
Importance of signal structure in time

- Signal and Information Processing is about exploiting signal structure

- Discrete time described by cyclic graph
 - Time \(n \) follows time \(n - 1 \)
 - Signal value \(x_n \) similar to \(x_{n-1} \)

- Formalized with the notion of frequency

- Cyclic structure \(\Rightarrow \) Fourier transform \(\Rightarrow \) \(\tilde{x} = F^H x \)
 \[F_{kn} = \frac{e^{j2\pi kn/N}}{\sqrt{N}} \]

- Fourier transform \(\Rightarrow \) Projection on eigenvector space of cycle
Covariances and principal components

- Random signal with mean $\mathbb{E}[x] = 0$ and covariance $C_x = \mathbb{E}[xx^H]$
 \Rightarrow Eigenvector decomposition $C_x = \mathbf{V} \Lambda \mathbf{V}^H$

- Covariance matrix C_x is a graph
 \Rightarrow Not a very good graph, but still

- Precision matrix C_x^{-1} a common graph too
 \Rightarrow Conditional dependencies of Gaussian x

- Covariance matrix structure \Rightarrow Principal components (PCA) $\Rightarrow \tilde{x} = \mathbf{V}^H x$

- PCA transform \Rightarrow Projection on eigenvector space of (inverse) covariance
Random signal with mean $\mathbb{E} [x] = 0$ and covariance $C_x = \mathbb{E} [xx^H]$

\Rightarrow Eigenvector decomposition $C_x = V \Lambda V^H$

Covariance matrix C_x is a graph

\Rightarrow Not a very good graph, but still

Precision matrix C_x^{-1} a common graph too

\Rightarrow Conditional dependencies of Gaussian x

Covariance matrix structure \Rightarrow Principal components (PCA) $\Rightarrow \tilde{x} = V^H x$

PCA transform \Rightarrow Projection on eigenvector space of (inverse) covariance

GSP: Extend principles to general graphs and corresponding (graph) signals
Part I: Fundamentals

Motivation and preliminaries

Part I: Fundamentals

 Graphs 101
 Graph signals and the shift operator
 Graph Fourier Transform (GFT)
 Graph filters and network processes

Part II: Applications

 Sampling graph signals
 Stationarity of graph processes
 Network topology inference

Concluding remarks
Formally, a graph G (or a network) is a triplet $(\mathcal{V}, \mathcal{E}, \mathcal{W})$

$\mathcal{V} = \{1, 2, \ldots, N\}$ is a finite set of N nodes or vertices

$\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is a set of edges defined as ordered pairs (n, m)
- Write $\mathcal{N}(n) = \{m \in \mathcal{V} : (m, n) \in \mathcal{E}\}$ as the in-neighbors of n

$\mathcal{W} : \mathcal{E} \to \mathbb{R}$ is a map from the set of edges to scalar values w_{nm}
- Represents the level of relationship from n to m
- Often weights are strictly positive, $\mathcal{W} : \mathcal{E} \to \mathbb{R}_{++}$

Unweighted graphs $\Rightarrow w_{nm} \in \{0, 1\}$, for all $(n, m) \in \mathcal{E}$

Undirected graphs $\Rightarrow (n, m) \in \mathcal{E}$ if and only if $(m, n) \in \mathcal{E}$ and $w_{nm} = w_{mn}$, for all $(n, m) \in \mathcal{E}$
Time, Images, and Covariances

- **Time:** Unweighted and directed graphs
 - $V = \{0, 1, \ldots, 23\}$
 - $E = \{(0, 1), (1, 2), \ldots, (22, 23), (23, 0)\}$
 - $W : (n, m) \mapsto 1$, for all $(n, m) \in E$

- **Images:** Unweighted and undirected graphs
 - $V = \{1, 2, 3, \ldots, 9\}$
 - $E = \{(1, 2), (2, 3), \ldots, (8, 9), (1, 4), \ldots, (6, 9)\}$
 - $W : (n, m) \mapsto 1$, for all $(n, m) \in E$

- **Covariances:** Weighted and undirected graphs
 - $V = \{1, 2, 3, 4\}$
 - $E = \{(1, 1), (1, 2), \ldots, (4, 4)\} = V \times V$
 - $W : (n, m) \mapsto \sigma_{nm} = \sigma_{mn}$, for all (n, m)
Adjacency matrix

- **Algebraic graph theory:** matrices associated with a graph G
 - Adjacency A and Laplacian L matrices
 - **Spectral graph theory:** properties of G using spectrum of A or L

- Given $G = (V, E, W)$, the adjacency matrix $A \in \mathbb{R}^{N \times N}$ is

\[
A_{nm} = \begin{cases}
 w_{nm}, & \text{if } (n, m) \in E \\
 0, & \text{otherwise}
\end{cases}
\]

- Matrix representation incorporating all information about G
 - For **unweighted** graphs, positive entries represent connected pairs
 - For **weighted** graphs, also denote proximities between pairs
Degree and k-hop neighbors

- If G is unweighted and undirected, the degree of node i is $|\mathcal{N}(i)|$
 - In directed graphs, have out-degree and an in-degree

- Using the adjacency matrix in the undirected case
 - For node i: $\deg(i) = \sum_{j \in \mathcal{N}(i)} A_{ij} = \sum_j A_{ij}$
 - For all N nodes: $d = A1 \rightarrow$ Degree matrix: $D := \text{diag}(d)$

- The kth power of A describes k–hop neighborhoods of each node.
 - $[A^k]_{ij}$ non-zero only if there exists a path of length k from i to j
 - Support of A^k: pairs that can be reached in k hops
Laplacian of a graph

- Given undirected G with A and D, the Laplacian matrix $L \in \mathbb{R}^{N \times N}$ is

$$L = D - A$$

- Equivalently, L can be defined element-wise as

$$L_{ij} = \begin{cases}
\deg(i), & \text{if } i = j \\
-w_{ij}, & \text{if } (i, j) \in \mathcal{E} \\
0, & \text{otherwise}
\end{cases}$$

- Normalized Laplacian: $\mathcal{L} = D^{-1/2}LD^{-1/2}$ (we will focus on L)

\[
\begin{pmatrix}
3 & -1 & 0 & -2 \\
-1 & 6 & -3 & -2 \\
0 & -3 & 4 & -1 \\
-2 & -2 & -1 & 5
\end{pmatrix}
\]
Spectral properties of the Laplacian

- Denote by λ_i and v_i the eigenvalues and eigenvectors of L

- L is positive semi-definite
 - $x^T L x = \frac{1}{2} \sum_{(i,j) \in E} w_{ij} (x_i - x_j)^2 \geq 0$, for all x
 - All eigenvalues are nonnegative, i.e. $\lambda_i \geq 0$ for all i

- A constant vector 1 is an eigenvector of L with eigenvalue 0
 \[
 [L1]_i = \sum_{j \in N(i)} w_{ij}(1 - 1) = 0
 \]
 - Thus, $\lambda_1 = 0$ and $v_1 = (1/\sqrt{N}) 1$

- In connected graphs, it holds that $\lambda_i > 0$ for $i = 2, \ldots, N$
 - Multiplicity{\(\lambda = 0\)} = number of connected components
Motivation and preliminaries

Part I: Fundamentals
- Graphs 101
- Graph signals and the shift operator
- Graph Fourier Transform (GFT)
- Graph filters and network processes

Part II: Applications
- Sampling graph signals
- Stationarity of graph processes
- Network topology inference

Concluding remarks
Graph signals

Consider graph $G = (\mathcal{V}, \mathcal{E}, \mathcal{W})$. **Graph signals** are mappings $x : \mathcal{V} \to \mathbb{R}$

\Rightarrow Defined on the vertices of the graph (data tied to nodes)

Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

\Rightarrow May be represented as a vector $x \in \mathbb{R}^N$

$\Rightarrow x_n$ denotes the signal value at the n-th vertex in \mathcal{V}

\Rightarrow Implicit ordering of vertices (same as in A or L)

\Rightarrow Data associated with links of G \Rightarrow Use line graph of G

$$
\begin{pmatrix}
 x_0 \\
 x_1 \\
 x_2 \\
 \vdots \\
 x_9
\end{pmatrix} =
\begin{pmatrix}
 0.6 \\
 0.7 \\
 0.3 \\
 \vdots \\
 0.7
\end{pmatrix}
$$
Graph signals – Genetic profiles

- Graphs representing gene-gene interactions
 - Each node denotes a single gene (loosely speaking)
 - Connected if their coded proteins participate in same metabolism

- Genetic profiles for each patient can be considered as a graph signal
 - Signal on each node is 1 if mutated and 0 otherwise

\[\mathbf{x}_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \]

Sample patient 1 with subtype 1

\[\mathbf{x}_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \]

Sample patient 2 with subtype 1

- To understand a graph signal, the structure of \(G \) must be considered
To understand and analyze \mathbf{x}, useful to account for G's structure

Associated with G is the graph-shift operator $\mathbf{S} \in \mathbb{R}^{N \times N}$

$S_{ij} = 0$ for $i \neq j$ and $(i, j) \notin \mathcal{E}$ (captures local structure in G)

\mathbf{S} can take nonzero values in the edges of G or in its diagonal

Ex: Adjacency \mathbf{A}, degree \mathbf{D}, and Laplacian $\mathbf{L} = \mathbf{D} - \mathbf{A}$ matrices
Relevance of the graph-shift operator

Q: Why is S called shift? A: Resemblance to time shifts

Set $S = A_{dc}$

What is Sx?

S will be building block for GSP algorithms (More soon)

⇒ Same is true in the time domain (filters and delay)
Local structure of graph-shift operator

\(\mathbf{S} \) represents a *linear transformation* that can be computed locally at the nodes of the graph. More rigorously, if \(\mathbf{y} \) is defined as \(\mathbf{y} = \mathbf{S}\mathbf{x} \), then node \(i \) can compute \(y_i \) if it has access to \(x_j \) at \(j \in \mathcal{N}(i) \).

- **Straightforward** because \([\mathbf{S}]_{ij} \neq 0 \) only if \(i = j \) or \((j, i) \in \mathcal{E} \)

- **What if** \(\mathbf{y} = \mathbf{S}^2\mathbf{x} \)?
 - **⇒** Like powers of \(\mathbf{A} \): neighborhoods
 - **⇒** \(y_i \) found using values within 2-hops

\[
[S^2]_{3,5} = S_{3,2}S_{2,5} + S_{3,4}S_{4,5}
\]
Motivation and preliminaries

Part I: Fundamentals
 Graphs 101
 Graph signals and the shift operator
 Graph Fourier Transform (GFT)
 Graph filters and network processes

Part II: Applications
 Sampling graph signals
 Stationarity of graph processes
 Network topology inference

Concluding remarks
Discrete Fourier Transform (DFT)

Let \(x \) be a temporal signal, its DFT is \(\tilde{x} = F^H x \), with
\[
F_{kn} = \frac{1}{\sqrt{N}} e^{j \frac{2\pi}{N} kn}.
\]

- Equivalent description, provides insights
- Oftentimes, more parsimonious (bandlimited)
- Facilitates the design of SP algorithms: e.g., filters

- Many other transformations (orthogonal dictionaries) exist

Q: What transformation is suitable for graph signals?
Graph Fourier Transform (GFT)

- Useful transformation? ⇒ S involved in generation/description of x
 ⇒ Let $S = VΛV^{-1}$ be the shift associated with G

- The Graph Fourier Transform (GFT) of x is defined as
 \[\tilde{x} = V^{-1}x\]

- While the inverse GFT (iGFT) of \tilde{x} is defined as
 \[x = V\tilde{x}\]

 ⇒ Eigenvectors $V = [v_1, ..., v_N]$ are the frequency basis (atoms)

- Additional structure
 ⇒ If S is normal, then $V^{-1} = V^H$ and $\tilde{x}_k = v_k^Hx = <v_k, x>$
 ⇒ Parseval holds, $\|x\|^2 = \|\tilde{x}\|^2$

- GFT ⇒ Projection on eigenvector space of shift operator S
Is this a reasonable transform?

- Particularized to cyclic graphs \Rightarrow GFT \equiv Fourier transform
- Particularized to covariance matrices \Rightarrow GFT \equiv PCA transform
- But really, this is an empirical question. GFT of disaggregated GDP

- GFT transform characterized by a few coefficients
 \Rightarrow Notion of bandlimitedness: $x = \sum_{k=1}^{K} \tilde{x}_k v_k$
 \Rightarrow Sampling, compression, filtering, pattern recognition
Meaning of the eigenvalues

- Columns of V are the frequency atoms: $x = \sum_k \tilde{x}_k \mathbf{v}_k$

- Q: What about the eigenvalues $\lambda_k = \Lambda_{kk}$?
 - \Rightarrow When $S = A_{dc}$, we get $\lambda_k = e^{-j\frac{2\pi}{N}(k-1)}$
 - \Rightarrow λ_k can be viewed as frequencies!!

- In time, well-defined relation between frequency and variation
 - \Rightarrow Higher k \Rightarrow faster oscillations
 - \Rightarrow Bounds on total-variation: $TV(x) = \sum_n (x_n - x_{n-1})^2$

- Q: Does this carry over for graph signals? \Rightarrow No, only if $S = L$
 - $\Rightarrow \{\lambda_k\}_{k=1}^N$ will be very important when analyzing graph filters
Consider a graph G, let x be a signal on G, and set $S = L$.

Define the quadratic form

$$x^T L x = \frac{1}{2} \sum_{(i,j) \in E} w_{ij} (x_i - x_j)^2$$

\Rightarrow $x^T L x$ quantifies the (aggregated) local variation of signal x.

\Rightarrow Natural measure of signal smoothness w.r.t. G.

Q: Interpretation of frequencies $\{\lambda_k\}_{k=1}^N$ when $S = L$?

\Rightarrow If $x = v_k$, we get $x^T L x = \lambda_k$ \Rightarrow local variation of v_k.

\Rightarrow Frequencies account for local variation, they can be ordered.

\Rightarrow Eigenvector associated with eigenvalue 0 is constant.
Frequencies of the Laplacian

- Laplacian eigenvalue λ_k accounts for the local variation of v_k
 - Let us plot some of the eigenvectors of L (also graph signals)

- **Ex:** gene network, $N = 10$, $k = 1$, $k = 2$, $k = 9$

- **Ex:** smooth natural images, $N = 2^{16}$, $k = 2, ..., 6$
Application: Cancer subtype classification

- Patients diagnosed with the same disease exhibit different behaviors.
- Each patient has a genetic profile describing gene mutations.
- Would be beneficial to infer phenotypes from genotypes.
 - Targeted treatments, more suitable suggestions, etc.
- Traditional approaches consider different genes to be independent.
 - Not ideal, as different genes may affect the same metabolism.
- Alternatively, consider a genetic network.
 - Genetic profiles become graph signals on a genetic network.
 - We will see how this consideration improves subtype classification.
Genetic network

- **Undirected and unweighted gene-to-gene interaction graph**
 - 2458 nodes are genes in human DNA related to breast cancer
 - An edge between two genes represents interaction
 ⇒ Coded proteins participate in the same metabolic process

- **Adjacency matrix of the gene-interaction network**
Genetic profiles

- Genetic profile of 240 women with breast cancer
 - 44 with serous subtype and 196 with endometrioid subtype
 - Patient i has an associated profile $\mathbf{x}_i \in \{0, 1\}^{2458}$

- Mutations are very varied across patients
 - Some patients present a lot of mutations
 - Some genes are consistently mutated across patients

- Q: Can we use genetic profiles to classify patients across subtypes?
Improving k-nearest neighbor classification

- Distance between genetic profiles $\Rightarrow d(i,j) = \|x_i - x_j\|_2$
 $\Rightarrow N$-fold cross-validation error from k-NN classification

 $k = 3 \Rightarrow 13.3\%$, $k = 5 \Rightarrow 12.9\%$, $k = 7 \Rightarrow 14.6\%$

- Q: Can we do any better using graph signal processing?

- Each genetic profile x_i is a graph signal on the genetic network
 \Rightarrow Look at the frequency components \tilde{x}_i using the GFT ($S = L$)

Example of signal x_i

Frequency representation \tilde{x}_i
Define the **discriminative power** of frequency v_k as

$$DP(v_k) = \frac{\left| \sum_{i:y_i=1} \tilde{x}_i(k) - \sum_{i:y_i=2} \tilde{x}_i(k) \right|}{\sum_{i} \left| \tilde{x}_i(k) \right|}$$

- Normalized difference between the mean GFT coefficient for v_k

 ⇒ Among patients with serous and endometrioid subtypes

- Discriminative power is not equal across frequencies

The discriminative power defined is one of many proper heuristics
Retaining most discriminative frequencies

- Keep information in frequencies with higher discriminative power
 ⇒ Filter, i.e., multiply \tilde{x}_i by $\text{diag}(\tilde{h}^p)$ where

$$[\tilde{h}^p]_k = \begin{cases} 1, & \text{if } \text{DP}(v_k) \geq p\text{-th percentile of DP} \\ 0, & \text{otherwise} \end{cases}$$

- Perform iGFT to get the graph signal \hat{x}_i ⇒ Classify with k-NN

![Graph showing error percentage for different frequencies and k values](image)
Motivation and preliminaries

Part I: Fundamentals
- Graphs 101
- Graph signals and the shift operator
- Graph Fourier Transform (GFT)
- Graph filters and network processes

Part II: Applications
- Sampling graph signals
- Stationarity of graph processes
- Network topology inference

Concluding remarks
Linear (shift-invariant) graph filter

A graph filter $H : \mathbb{R}^N \rightarrow \mathbb{R}^N$ is a map between graph signals.

Focus on linear filters
\Rightarrow map represented by an $N \times N$ matrix

Def1: Polynomial in S of degree L, with coeff. $h = [h_0, \ldots, h_L]^T$

$$H := h_0 S^0 + h_1 S^1 + \ldots + h_L S^L = \sum_{l=0}^L h_l S^l \quad \text{[Sandryhaila13]}$$

Def2: Orthogonal operator in the frequency domain

$$H := V \text{diag}(\tilde{h}) V^{-1}, \quad \tilde{h}_k = g(\lambda_k)$$

With $[\Psi]_{k,l} := \lambda_k^{l-1}$, we have $\tilde{h} = \Psi h \Rightarrow$ Defs can be rendered equivalent
\Rightarrow More on this later, now focus on Def1
Graph filters as linear network operators

- **Def1** says \(H = \sum_{l=0}^{L} h_l S^l \)

- Suppose \(H \) acts on a graph signal \(x \) to generate \(y = Hx \)

 \[y = \sum_{l=0}^{L} h_l x^{(l)} \]

 \(y \) is a linear combination of successive shifted versions of \(x \)

- After introducing \(S \), we stressed that \(y = Sx \) can be computed **locally**

 \(x^{(l)} \) can be found locally if \(x^{(l-1)} \) is known

 \(y \) is a linear combination of successive shifted versions of \(x \)

- **A graph filter** represents a **linear** transformation that

 Accounts for local structure of the graph

 Can be implemented **distributedly** in \(L \) steps

 Only requires info in \(L \)-neighborhood [Shuman13, Sandryhaila14]
An example of a graph filter

\[\mathbf{x} = [-1, 2, 0, 0, 0, 0]^T, \quad \mathbf{h} = [1, 1, 0.5]^T, \quad \mathbf{y} = (\sum_{l=0}^{L} h_l \mathbf{S}) \mathbf{x} = \sum_{l=0}^{L} h_l \mathbf{x}^{(l)} \]

\[
\mathbf{S} = \mathbf{A} = \begin{pmatrix}
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
\end{pmatrix}
\]

\[\mathbf{y} = \sum_{l=0}^{L} h_l \mathbf{S}^l \mathbf{x} = \sum_{l=0}^{L} h_l \mathbf{x}^{(l)} \]

\[\mathbf{y} = h_0 \mathbf{x}^{(0)} + h_1 \mathbf{x}^{(1)} + h_2 \mathbf{x}^{(2)} \]

Given \(\mathbf{x} = [-1, 2, 0, 0, 0, 0]^T \) and \(\mathbf{h} = [1, 1, 0.5]^T \) \(\Rightarrow \) Find \(\{\mathbf{x}^{(0)}, \mathbf{x}^{(1)}, \mathbf{x}^{(2)}\} \) \(\Rightarrow \) Find \(\mathbf{y} \)

\[
\mathbf{x}^{(0)} = \mathbf{x} = \begin{pmatrix} -1 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{x}^{(1)} = \mathbf{S} \mathbf{x}^{(0)} = \begin{pmatrix} 2 \\ -1 \\ 2 \\ 0 \\ 1 \\ 0 \end{pmatrix} \quad \mathbf{x}^{(2)} = \mathbf{S} \mathbf{x}^{(1)} = \begin{pmatrix} 0 \\ 3 \\ -1 \\ 3 \\ 1 \\ 0 \end{pmatrix}
\]

\[\mathbf{y} = 1 \mathbf{x}^{(0)} + 1 \mathbf{x}^{(1)} + 0.5 \mathbf{x}^{(2)} = \begin{pmatrix} 1.0 \\ 2.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 0.0 \end{pmatrix} \]
Def 2 says $H = V \text{diag}(\tilde{h}) V^{-1}$

\Rightarrow Since $S = V \Lambda V^{-1}$, Def 1 $H = \sum_{l=0}^{L} h_l S^l$ yields

$$H = \sum_{l=0}^{L} h_l S^l = \sum_{l=0}^{L} h_l V \Lambda^l V^{-1} = V \left(\sum_{l=0}^{L} h_l \Lambda^l\right) V^{-1}$$

The application $H \mathbf{x}$ of filter H to \mathbf{x} can be split into three parts

\Rightarrow V^{-1} takes signal \mathbf{x} to the graph freq. domain $\tilde{\mathbf{x}}$

\Rightarrow $\tilde{H} := \sum_{l=0}^{L} h_l \Lambda^l$ modulates the freq. coefficients $\tilde{\mathbf{x}}$ to obtain $\tilde{\mathbf{y}}$

\Rightarrow V brings the signal $\tilde{\mathbf{y}}$ back to the graph domain \mathbf{y}
Def2 says $H = V \text{diag}(\tilde{h}) V^{-1}$

⇒ Since $S = V \Lambda V^{-1}$, Def1 $H = \sum_{l=0}^{L} h_{l} S^{l}$ yields

$$H = \sum_{l=0}^{L} h_{l} S^{l} = \sum_{l=0}^{L} h_{l} V \Lambda^{l} V^{-1} = V \left(\sum_{l=0}^{L} h_{l} \Lambda^{l} \right) V^{-1}$$

The application $H x$ of filter H to x can be split into three parts

⇒ V^{-1} takes signal x to the graph freq. domain \tilde{x}

⇒ $\tilde{H} := \sum_{l=0}^{L} h_{l} \Lambda^{l}$ modulates the freq. coefficients \tilde{x} to obtain \tilde{y}

⇒ V brings the signal \tilde{y} back to the graph domain y

Since \tilde{H} is diagonal, define $\tilde{H} := \text{diag}(\tilde{h})$

⇒ \tilde{h} is the frequency response of the filter H

⇒ Output at frequency k depends only on input at frequency k

$$\tilde{y}_{k} = \tilde{h}_{k} \tilde{x}_{k}$$
Relation between \tilde{h} and h in a more friendly manner?

⇒ Since $\tilde{h} = \text{diag}(\sum_{l=0}^{L} h_l \Lambda^l)$, we have that $\tilde{h}_k = \sum_{l=0}^{L} h_l \lambda_k^l$

⇒ Define the Vandermonde matrix Ψ as

$$\Psi := \begin{pmatrix}
1 & \lambda_1 & \ldots & \lambda_1^L \\
\vdots & \vdots & & \vdots \\
1 & \lambda_N & \ldots & \lambda_N^L
\end{pmatrix}$$

Frequency response of a graph filter

If h are the coefficients of a graph filter, its frequency response is $\tilde{h} = \Psi h$.
Frequency response and filter coefficients

Relation between \tilde{h} and h in a more friendly manner?
⇒ Since $\tilde{h} = \text{diag}(\sum_{l=0}^{L} h_l \Lambda^l)$, we have that $\tilde{h}_k = \sum_{l=0}^{L} h_l \lambda_k^l$
⇒ Define the Vandermonde matrix Ψ as

$$
\Psi := \begin{pmatrix}
1 & \lambda_1 & \ldots & \lambda_1^L \\
& \vdots & \ddots & \vdots \\
& & \lambda_N & \ldots & \lambda_N^L \\
1 & \lambda_1 & \ldots & \lambda_1^L \\
\end{pmatrix}
$$

Frequency response of a graph filter

If h are the coefficients of a graph filter, its frequency response is

$$
\tilde{h} = \Psi h
$$

Given a desired \tilde{h}, we can find the coefficients h as

$$
h = \Psi^{-1} \tilde{h}
$$
⇒ Since Ψ is Vandermonde, invertible as long as $\lambda_k \neq \lambda_{k'}$ for $k \neq k'$
More on the frequency response

- Since $h = \psi^{-1} \tilde{h}$ ⇒ If all $\{\lambda_k\}_{k=1}^N$ distinct, then
 ⇒ Any \tilde{h} can be implemented with at most $L+1 = N$ coefficients

- Since $\tilde{h} = \psi h$ ⇒ If $\lambda_k = \lambda_k'$, then
 ⇒ The corresponding frequency response will be the same $\tilde{h}_k = \tilde{h}_k'$

- For the particular case when $S = A_{dc}$, we have that $\lambda_k = e^{-j \frac{2\pi}{N} (k-1)}$

$$
\psi = \begin{pmatrix}
1 & 1 & \cdots & 1 \\
1 & e^{-j \frac{2\pi}{N} (1)(1)} & \cdots & e^{-j \frac{2\pi}{N} (1)(N-1)} \\
\vdots & \vdots & \ddots & \vdots \\
1 & e^{-j \frac{2\pi}{N} (N-1)(1)} & \cdots & e^{-j \frac{2\pi}{N} (N-1)(N-1)}
\end{pmatrix} = F^H
$$

⇒ The frequency response is the DFT of the impulse response

$$
\tilde{h} = F^H h
$$
Frequency response for graph signals and filters

- Suppose that we have a signal x and filter coefficients h

- For time signals, it holds that the output y is
 \[
 \tilde{y} = \text{diag}(F^H h) F^H x
 \]

- For graph signals, the output y in the frequency domain is
 \[
 \tilde{y} = \text{diag}(\Psi h) V^{-1} x
 \]

- The GFT for filters is different from the GFT for signals
 - Symmetry is lost, but both depend on spectrum of S
 - Some of the properties are not true for graphs
 - Several options to generalize operations
Deltas and system identification

- In time, given canonical delta $\delta_1 = e_1 = [1, 0, ..., 0]^T$
 - Any other delta e_i is a shifted version of e_1
 - Fourier transform is constant: $\tilde{e}_1 = 1$ (all freqs. are excited)
 - Output to e_1 characterizes the filter, in fact output to e_1 is h

- In graph SP none of the above is true!

- Shifting is not translation $\Rightarrow e_j$ is not a shifted version of e_i

- GFT $\tilde{e}_i = V^{-1}e_i \Rightarrow$ how strongly node i expresses each freq.
 - \tilde{e}_i is not an eigenvector, $\tilde{e}_i \neq 1$, and entries of \tilde{e}_i can be zero

- System id? \Rightarrow Let y_i be filter output when $x = e_i$, then we have
 \[
 h = \Psi^{-1}\text{diag}^{-1}(V^{-1}e_i)V^{-1}y_i = \Psi^{-1}\text{diag}^{-1}(\tilde{e}_i)V^{-1}y_i
 \]

 \Rightarrow More involved, works if $[\tilde{e}_i]_k$ are non-zero (see [Segarra16] for blind id)
Implementing graph filters: frequency or space

- Frequency or space?

\[y = \mathbf{V} \text{diag}(\mathbf{h}) \mathbf{V}^{-1} \mathbf{x} \quad \text{vs.} \quad y = \sum_{l=0}^{L} h_l \mathbf{S}^l \mathbf{x} \]

- In space: leverage the fact that \(\mathbf{S} \mathbf{x} \) can be computed locally
 - Signal \(\mathbf{x} \) is percolated \(L \) times to find \(\{\mathbf{x}^{(l)}\}_{l=0}^{L} \)
 - Every node finds its own \(y_i \) by computing \(\sum_{l=0}^{L} h_l [\mathbf{x}^{(l)}]_i \)

- Frequency implementation useful for processing if, e.g.,
 - Filter bandlimited and eigenvectors easy to find
 - Low complexity [Anis16, Tremblay16]

- Space definition useful for modeling
 - Diffusion, percolation, opinion formation, ... (more on this soon)
Implementing graph filters: frequency or space

- Frequency or space?
 \[y = V \text{diag}(\tilde{h}) V^{-1} x \quad \text{vs.} \quad y = \sum_{l=0}^{L} h[l] S[l] x \]

- In space: leverage the fact that \(Sx \) can be computed locally
 \(\Rightarrow \) Signal \(x \) is percolated \(L \) times to find \(\{x^{(l)}\}_{l=0}^{L} \)
 \(\Rightarrow \) Every node finds its own \(y_i \) by computing \(\sum_{l=0}^{L} h[l][x^{(l)}]_i \)

- Frequency implementation useful for processing if, e.g.,
 \(\Rightarrow \) Filter bandlimited and eigenvectors easy to find
 \(\Rightarrow \) Low complexity [Anis16, Tremblay16]

- Space definition useful for modeling
 \(\Rightarrow \) Diffusion, percolation, opinion formation, ... (more on this soon)

- More on filter design
 \(\Rightarrow \) Chebyshev polyn. [Shuman12]; AR-MA [Isufi-Leus15]; Node-var. [Segarra15]; Time-var. [Isufi-Leus16]; Median filters [Segarra16]
Linear network processes via graph filters

- Consider linear dynamics of the form
 \[x_t - x_{t-1} = \alpha J x_{t-1} \Rightarrow x_t = (I - \alpha J)x_{t-1} \]

- If \(x \) is network process \(\Rightarrow [x_t]_i \) depends only on \([x_{t-1}]_j, j \in \mathcal{N}(i)\)

\[
[S]_{ij} = [J]_{ij} \Rightarrow x_t = (I - \alpha S)x_{t-1} \Rightarrow x_t = (I - \alpha S)^t x_0
\]

\(\Rightarrow x_t = H x_0 \), with \(H \) a polynomial of \(S \) \(\Rightarrow \) linear graph filter
Consider linear dynamics of the form

\[x_t - x_{t-1} = \alpha J x_{t-1} \Rightarrow x_t = (I - \alpha J)x_{t-1} \]

If \(x \) is network process \(\Rightarrow \) \([x_t]_i \) depends only on \([x_{t-1}]_j, j \in \mathcal{N}(i)\)

\[[S]_{ij} = [J]_{ij} \Rightarrow x_t = (I - \alpha S)x_{t-1} \Rightarrow x_t = (I - \alpha S)^t x_0 \]

\(\Rightarrow x_t = Hx_0, \) with \(H \) a polynomial of \(S \) \(\Rightarrow \) linear graph filter

If the system has memory \(\Rightarrow \) output weighted sum of previous exchanges (opinion dynamics) \(\Rightarrow \) still a polynomial of \(S \)

\[y = \sum_{t=0}^{T} \beta^t x_t \Rightarrow y = \sum_{t=0}^{T} (\beta I - \beta \alpha S)^t x_0 \]

Everything holds true if \(\alpha_t \) or \(\beta_t \) are time varying
Diffusion dynamics and AR (IIR) filters

- Before finite-time dynamics (FIR filters)

- Consider now diffusion dynamics \(x_t = \alpha S x_{t-1} + w \)

\[
x_t = \alpha^t S^t x_0 + \sum_{t'=0}^{t} \alpha^{t'} S^{t'} w
\]

⇒ When \(t \to \infty \):
\[
x_\infty = (I - \alpha S)^{-1} w \Rightarrow \text{AR graph filter}
\]
Before finite-time dynamics (FIR filters)

Consider now diffusion dynamics \(x_t = \alpha S x_{t-1} + w \)

\[
x_t = \alpha^t S^t x_0 + \sum_{t'=0}^{t} \alpha^{t'} S^{t'} w
\]

⇒ When \(t \to \infty \): \(x_\infty = (I - \alpha S)^{-1} w \) ⇒ AR graph filter

Higher orders [Isufi-Leus16]

⇒ \(M \) successive diffusion dynamics ⇒ AR of order \(M \)

⇒ Process is the sum of \(M \) parallel diffusions ⇒ ARMA order \(M \)

\[
x_\infty = \prod_{m=1}^{M} (I - \alpha_m S)^{-1} w \quad x_\infty = \sum_{m=1}^{M} (I - \alpha_m S)^{-1} w
\]
General linear network processes

- Combinations of all the previous are possible

\[x_t = H_t^a(S)x_{t-1} + H_t^b(S)w \Rightarrow x_t = H_t^A(S)x_0 + H_t^B(S)w \]

\[\Rightarrow y = x_t, \text{ sequential/parallel application, linear combination} \]

- Expands range of processes that can be modeled via GSP
- Coefficients can change according to some control inputs

- A number of linear processes can be modeled using graph filters
 - Theoretical GSP results can be applied to distributed networking
 - Deconvolution, filtering, system id, ...
 - Beyond linearity possible too (more at the end of the talk)

- Links with control theory (of networks and complex systems)
 - Controllability, observability
Graph filters: Summary

- **Linear** graph-signal operators that account for the structure of G
 \Rightarrow Polynomials of S, orthogonal operators on the frequency domain

- A few take-home messages
 \Rightarrow Output is weighted sum of shifted inputs
 \Rightarrow Shifting is not a translation, but a local diffusion
 \Rightarrow Distributed implementation across L-hop neighborhood
 \Rightarrow GFT given by Vandermonde matrix Ψ, different from V^{-1}
 \Rightarrow System identification more involved

- Graph filter design
 \Rightarrow Designing h, designing \tilde{h}, and... designing S?

- Useful to process signals, but also to model networked phenomena
Why do some people learn faster than others?
⇒ Can we answer this by looking at their brain activity?

Brain activity during learning of a motor skill in 112 cortical regions
⇒ fMRI while learning a piano pattern for 20 individuals

Pattern is repeated, reducing the time needed for execution
⇒ Learning rate = rate of decrease in execution time

Define a functional brain graph
⇒ Based on correlated activity

fMRI outputs a series of graph signals
⇒ \(x(t) \in \mathbb{R}^{112} \) describing brain states

Does brain state variability correlate with learning?
We propose three different measures capturing different time scales
⇒ Changes in micro, meso, and macro scales

- **Micro**: instantaneous changes higher than a threshold α
 \[
 m_1(x) = \sum_{t=1}^{T} \mathbf{1}\left\{ \frac{\|x(t) - x(t-1)\|_2}{\|x(t)\|_2} > \alpha \right\}
 \]

- **Meso**: Cluster brain states and count the changes in clusters
 \[
 m_2(x) = \sum_{t=1}^{T} \mathbf{1}\{c(t) \neq c(t-1)\}
 \]
 ⇒ where $c(t)$ is the cluster to which $x(t)$ belongs.

- **Macro**: Sample entropy. Measure of complexity of time series
 \[
 m_3(x) = -\log \left(\frac{\sum_t \sum_{s \neq t} \mathbf{1}\{\|\bar{x}_3(t) - \bar{x}_3(s)\|_\infty > \alpha\}}{\sum_t \sum_{s \neq t} \mathbf{1}\{\|\bar{x}_2(t) - \bar{x}_2(s)\|_\infty > \alpha\}} \right)
 \]
 ⇒ Where $\bar{x}_r(t) = [x(t), x(t+1), \ldots, x(t+r-1)]$
Diffusion as low-pass filtering

- We diffuse each time signal $x(t)$ across the brain graph

$$x_{\text{diff}}(t) = (I + \beta L)^{-1} x(t)$$

⇒ Laplacian $L = \mathbf{V} \Lambda \mathbf{V}^{-1}$ and β represents the diffusion rate

- Analyzing diffusion in the frequency domain

$$\tilde{x}_{\text{diff}}(t) = (I + \beta \Lambda)^{-1} \mathbf{V}^{-1} x(t) = \text{diag}(\tilde{h}) \tilde{x}(t)$$

⇒ Freq. response $\tilde{h}_k = 1/(1 + \beta \lambda_k)$

- Diffusion acts as low-pass filtering
- High freq. components are attenuated
- β controls the level of attenuation
Computing correlation for three signals

- **Variability** measures consider the order of brain signal activity
- As a control, we include in our analysis a null signal time series x_{null}

$$x_{null}(t) = x_{diff}(\pi_t)$$

$\Rightarrow \pi_t$ is a random permutation of the time indices

- Correlation between variability (m_1, m_2, and m_3) and learning?
- We consider three time series of brain activity
 - The original fMRI data x
 - The filtered data x_{diff}
 - The null signal x_{null}
Low-pass filtering reveals correlation

- Correlation coeff. between learning rate and brain state variability

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>Filtered</th>
<th>Null</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>0.211</td>
<td>0.568</td>
<td>0.182</td>
</tr>
<tr>
<td>m_2</td>
<td>0.226</td>
<td>0.611</td>
<td>0.174</td>
</tr>
<tr>
<td>m_3</td>
<td>0.114</td>
<td>0.382</td>
<td>0.113</td>
</tr>
</tbody>
</table>

- Correlation is clear when the signal is filtered
 ⇒ Result for original signal similar to null signal

- Scatter plots for original, filtered, and null signals (m_2 variability)
Part II: Applications

Motivation and preliminaries

Part I: Fundamentals
 - Graphs 101
 - Graph signals and the shift operator
 - Graph Fourier Transform (GFT)
 - Graph filters and network processes

Part II: Applications
 - Sampling graph signals
 - Stationarity of graph processes
 - Network topology inference

Concluding remarks
Application domains

- Design graph filters to approximate desired network operators

- **Sampling bandlimited graph signals**

- Blind graph filter identification
 - Infer diffusion coefficients from observed output

- **Statistical GSP: understanding random graph signals**

- **Network topology inference**
 - Infer shift from collection of network diffused signals

- Many more (glad to discuss or redirect):
 - Filter banks
 - Windowing, convolution, duality...
 - Nonlinear GSP
Motivation and preliminaries

Part I: Fundamentals
- Graphs 101
- Graph signals and the shift operator
- Graph Fourier Transform (GFT)
- Graph filters and network processes

Part II: Applications
- Sampling graph signals
- Stationarity of graph processes
- Network topology inference

Concluding remarks
Sampling and interpolation are cornerstone problems in classical SP
⇒ How to recover a signal using only a few observations?
⇒ Need to limit the degrees of freedom: subspace, smoothness
⇒ What are reasonable observation models for graph signals?

Subset selection model ⇒ Static graph signal
⇒ Have access to a subset of the nodes
Motivation and preliminaries

▶ **Sampling and interpolation** are cornerstone problems in classical SP
 ⇒ How to recover a signal using only a few observations?
 ⇒ Need to limit the degrees of freedom: subspace, smoothness
 ⇒ What are reasonable observation models for graph signals?

▶ **Subset selection** model ⇒ Static graph signal
 ⇒ Have access to a subset of the nodes

▶ **Node aggregation** model
 ⇒ Incorporate local graph structure into the observation model
 ⇒ Recover signal from local observations at one node
How to find $x \in \mathbb{R}^N$ using $P < N$ observations?

⇒ Our focus on **bandlimited** signals, but other models possible

⇒ $\tilde{x} = V^{-1}x$ sparse

⇒ $x = \sum_{k \in K} \tilde{x}_k v_k$, with $|K| = K < N$

⇒ S involved in generation of x

⇒ Agnostic to the particular form of S
How to find $\mathbf{x} \in \mathbb{R}^N$ using $P < N$ observations?

⇒ Our focus on bandlimited signals, but other models possible

⇒ $\tilde{\mathbf{x}} = \mathbf{V}^{-1} \mathbf{x}$ sparse
⇒ $\mathbf{x} = \sum_{k \in \mathcal{K}} \tilde{x}_k \mathbf{v}_k$, with $|\mathcal{K}| = K < N$
⇒ \mathbf{S} involved in generation of \mathbf{x}
⇒ Agnostic to the particular form of \mathbf{S}

Two sampling schemes were introduced in the literature

⇒ Correspond to the previous two observation models
⇒ Selection [Anis14, Chen15, Tsitsvero15, Puy15, Wang15]
⇒ Aggregation [Segarra15], [Marques15]
⇒ Hybrid scheme combining both ⇒ Space-shift sampling
Revisiting sampling in time

- There are **two** ways of interpreting sampling of time signals
- We can either **freeze** the signal and **sample** values at **different times**

- We can fix a point (**present**) and **sample** the **evolution** of the signal

- Both strategies **coincide** for time signals but **not** for general graphs
 \[\Rightarrow\] Give rise to **selection** and **aggregation** sampling
Intuitive generalization to graph signals
\[C \in \{0, 1\}^{P \times N} \text{ (matrix } P \text{ rows of } I_N) \]
\[\text{Sampled signal is } \bar{x} = Cx \]

Goal: recover \(x \) based on \(\bar{x} \)

Assume that the support of \(\mathcal{K} \) is known (w.l.o.g. \(\mathcal{K} = \{ k \}_{k=1}^K \))

Since \(\bar{x}_k = 0 \) for \(k > K \), define \(\tilde{x}_K := [\bar{x}_1, ..., \bar{x}_K]^T = E^T_K \bar{x} \)

Approach: use \(\bar{x} \) to find \(\tilde{x}_K \), and then recover \(x \) as

\[x = V(E_K \tilde{x}_K) = (VE_K) \tilde{x}_K = V_K \tilde{x}_K \]
Selection sampling: Recovery

- Number of samples $P \geq K$

\[\tilde{x} = Cx = CV_K \tilde{x}_K \]

\[\Rightarrow (CV_K) \text{ submatrix of } V \]
Selection sampling: Recovery

- Number of samples $P \geq K$

\[\tilde{x} = Cx = CV_K \tilde{x}_K \]

\[\Rightarrow (CV_K) \text{ submatrix of } V \]

Recovery of selection sampling

If $\text{rank}(CV_K) \geq K$, x can be recovered from the P values in \tilde{x} as

\[x = V_K \tilde{x}_K = V_K (CV_K)^\dagger \tilde{x} \]

- With $P = K$, hard to check invertibility (by inspection)

\[\Rightarrow \text{Columns of } V_K(CV_K)^{-1} \text{ are the interpolators} \]
Selection sampling: Recovery

- Number of samples $P \geq K$

$$\tilde{x} = Cx = CV_K \tilde{x}_K$$

$$\Rightarrow (CV_K) \text{ submatrix of } V$$

Recall of selection sampling

If $\operatorname{rank}(CV_K) \geq K$, x can be recovered from the P values in \tilde{x} as

$$x = V_K \tilde{x}_K = V_K(CV_K)^\dagger \tilde{x}$$

- With $P = K$, hard to check invertibility (by inspection)
 $$\Rightarrow \text{Columns of } V_K(CV_K)^{-1} \text{ are the interpolators}$$

- In time ($S = A_{dc}$), if the samples in C are equally spaced
 $$\Rightarrow (CV_K) \text{ is Vandermonde (DFT) and } V_K(CV_K)^{-1} \text{ are sincs}$$
Aggregation sampling: Definition

- Idea: incorporating S to the sampling procedure
 - Reduces to classical sampling for time signals

- Consider shifted (aggregated) signals $y^{(l)} = S'x$
 - $y^{(l)} = Sy^{(l-1)}$ → found sequentially with only local exchanges

- Form $y_i = [y_i^{(0)}, y_i^{(1)}, ..., y_i^{(N-1)}]^T$ (obtained locally by node i)

- The sampled signal is
 \[\tilde{y}_i = Cy_i \]

- Goal: recover x based on \tilde{y}_i
Aggregation sampling: Recovery

- **Goal:** recover x based on $\bar{y}_i \Rightarrow$ Same approach than before
 - Use \bar{y}_i to find \tilde{x}_K, and then recover x as $x = V_K \tilde{x}_K$

- Define $\bar{u}_i := V_K^T e_i$ and recall $\psi_{kl} = \lambda_k^{l-1}$

Recovery of aggregation sampling

Signal x can be recovered from the first K samples in \bar{y}_i as

$$x = V_K \tilde{x}_K = V_K \text{diag}^{-1}(\bar{u}_i)(C\psi^T E_K)^{-1} \bar{y}_i$$

provided that $[\bar{u}_i]_k \neq 0$ and all $\{\lambda_k\}_{k=1}^K$ are distinct.

- If $C = E_K^T$, node i can recover x with info from $K - 1$ hops!
 - Node i has to be able to capture frequencies in \mathcal{K}
 - The frequencies have to distinguishable
Aggregation sampling: Recovery

- Goal: recover \mathbf{x} based on $\bar{\mathbf{y}}_i$ ⇒ Same approach than before
 ⇒ Use $\bar{\mathbf{y}}_i$ to find $\tilde{\mathbf{x}}_K$, and then recover \mathbf{x} as $\mathbf{x} = \mathbf{V}_K \tilde{\mathbf{x}}_K$

- Define $\bar{\mathbf{u}}_i := \mathbf{V}_K^T \mathbf{e}_i$ and recall $\Psi_{kl} = \frac{1}{\lambda_k - 1}$

Recovery of aggregation sampling

Signal \mathbf{x} can be recovered from the first K samples in $\bar{\mathbf{y}}_i$ as

$$\mathbf{x} = \mathbf{V}_K \tilde{\mathbf{x}}_K = \mathbf{V}_K \text{diag}^{-1}(\bar{\mathbf{u}}_i)(\mathbf{C} \Psi^T \mathbf{E}_K)^{-1} \bar{\mathbf{y}}_i$$

provided that $[\bar{\mathbf{u}}_i]_k \neq 0$ and all $\{\lambda_k\}_{k=1}^K$ are distinct.

- If $\mathbf{C} = \mathbf{E}_K^T$, node i can recover \mathbf{x} with info from $K - 1$ hops!
 ⇒ Node i has to be able to capture frequencies in \mathcal{K}
 ⇒ The frequencies have to be distinguishable

- Bandlimited signals: Signals that can be well estimated locally
In time ($S = A_{dc}$), selection and aggregation are equivalent
\[\Rightarrow \text{Differences for a more general graph?} \]

Erdős-Rényi
\[p = 0.2, \, S = A, \]
\[K = 3, \]
non-smooth

First 3 observations at node 4:
\[y_4 = [-0.55, 1.27, -2.94]^T \]
\[\Rightarrow [y_4]_1 = x_4 = -0.55, \quad [y_4]_2 = x_2 + x_3 + x_5 + x_6 + x_7 = 1.27 \]
\[\Rightarrow \text{For this example, any node guarantees recovery} \]
\[\Rightarrow \text{Selection sampling fails if, e.g.,} \{1, 3, 4\} \]
Sampling: Discussion and extensions

- Discussion on aggregation sampling
 - Observation matrix: diagonal times Vandermonde
 - Very appropriate in distributed scenarios
 - Different nodes will lead to different performance (soon)
 - Types of signals that are actually bandlimited (role of S)

- Three extensions:
 - Sampling in the presence of noise
 - Unknown frequency support
 - Space-shift sampling (hybrid)
Presence of noise

- Linear observation model
 \[\Rightarrow \text{additive noise } w_i \]
 \[\Rightarrow \text{covariance } R_w^{(i)} \]
- BLUE interpolation

\[
\hat{x}_K^{(i)} = [\Psi_i^H C^H (R_w^{(i)})^{-1} C \Psi_i]^{-1} \Psi_i^H C^H (R_w^{(i)})^{-1} \bar{z}_i
\]

- If \(P = K \), then \(\hat{x}^{(i)} = V_K (C \Psi_i)^{-1} \bar{z}_i \)
Presence of noise

- **Linear observation model**
 ⇒ additive noise \(w_i \)
 ⇒ covariance \(R^{(i)}_w \)

- **BLUE interpolation**

\[
\hat{x}^{(i)}_K = \left[\Psi_i^H C^H (\tilde{R}^{(i)}_w)^{-1} C \Psi_i \right]^{-1} \Psi_i^H C^H (\tilde{R}^{(i)}_w)^{-1} \tilde{z}_i
\]

- If \(P = K \), then \(\hat{x}^{(i)} = V_K (C \Psi_i)^{-1} \tilde{z}_i \)

- Error covariances \((R_e^{(i)}, \tilde{R}_e^{(i)}) \) in closed form ⇒ Noise covariances?
 ⇒ Colored, different models: white noise in \(z_i \), in \(x \), or in \(\tilde{x}_K \)

- **Metric to optimize**?

 ⇒ \(\text{trace}(R_e^{(i)}), \lambda_{\text{max}}(R_e^{(i)}), \log \det(\tilde{R}_e^{(i)}), \left[\text{trace} \left(\tilde{R}_e^{(i)}^{-1} \right) \right]^{-1} \)

- Select \(i \) and \(C \) to min. error ⇒ Depends on metric and noise [Marques16]
Unknown frequency support

- Falls into the class of sparse reconstruction: **observation matrix?**
 - **Selec.** \Rightarrow submatrix of unitary \mathbf{V}_K
 - **Aggr.** \Rightarrow Vander. \times diag
 - $[\mathbf{u}_i]_k \neq 0$ and $\lambda_k \neq \lambda_{k'}$ \Rightarrow full-spark

\[\tilde{\mathbf{x}}^* = \arg \min_{\tilde{\mathbf{x}}} \| \tilde{\mathbf{x}} \|_0 \quad \text{s.t.} \quad \mathbf{C}_i \tilde{\mathbf{x}} = \mathbf{C}_\Psi \tilde{\mathbf{x}} \]

- If full spark \Rightarrow $2K$ samples suffice
- Different relaxations are possible \Rightarrow Conditioning will depend on Ψ_i (e.g., how different $\{\lambda_k\}$ are)

- Noisy case: sampling nodes critical
Unknown frequency support

- Falls into the class of sparse reconstruction: observation matrix?
 - Selec. ⇒ submatrix of unitary V_K
 - Aggr. ⇒ Vander. \times diag
 - $[u_i]_k \neq 0$ and $\lambda_k \neq \lambda_{k'}$ ⇒ full-spark

- Joint recovery and support identification (noiseless)
 \[
 \tilde{x}^* := \arg \min_{\tilde{x}} \|\tilde{x}\|_0 \\
 \text{s. to} \quad C y_i = C \Psi, \tilde{x},
 \]

- If full spark ⇒ $P = 2K$ samples suffice
 - Different relaxations are possible
 - Conditioning will depend on Ψ_i (e.g., how different $\{\lambda_k\}$ are)

- Noisy case: sampling nodes critical
Recovery with unknown support: Example

- Erdős-Rényi
 \(p = 0.15, 0.20, 0.25, \)
 \(K = 3, \) non-smooth

- Three different shifts: \(A, (I - A) \) and \(\frac{1}{2}A^2 \)
Space-shift sampling

- **Space-shift** sampling (hybrid) ⇒ Multiple nodes and multiple shifts

Selection: 4 nodes, 1 sample
Space-shift: 2 nodes, 2 samples
Aggregat.: 1 node, 4 samples

- Section and aggregation sampling as particular cases
- With $\tilde{U} := [\text{diag}(\tilde{u}_1), ..., \text{diag}(\tilde{u}_N)]^T$, the sampled signal is

$$\tilde{z} = C \left(I \otimes (\Psi^T E_K) \right) \tilde{U} \tilde{x}_K + Cw$$

- As before, BLUE and error covariance in closed-form
- Optimizing sample selection more challenging
- More structured schemes easier: e.g., message passing

⇒ Node i knows $y_i^{(l)}$ ⇒ node i knows $y_j^{(l')}$, for all $j \in \mathcal{N}_i$ and $l' < l$
Sampling the US economy

- 62 economic sectors in USA + 2 artificial sectors
 - Graph: average flows in 2007-2010, $S = A$
 - Signal x: production in 2011
 - x is approximately bandlimited with $K = 4$
Sampling the US economy: Results

- **Setup 1:** we add different types of noise

 \Rightarrow Error depends on sampling node: better if more connected

- **Setup 2:** we try different shift-space strategies

<table>
<thead>
<tr>
<th>Sampling strategy</th>
<th>Min. error</th>
<th>Median error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[x]_i$</td>
<td>$[Sx]_i$</td>
<td>$[S^2x]_i$</td>
</tr>
<tr>
<td>$[x]_i$</td>
<td>$[x]_j$</td>
<td>$[x]_k$</td>
</tr>
<tr>
<td>$[Sx]_i$</td>
<td>$[Sx]_j$</td>
<td>$[Sx]_k$</td>
</tr>
<tr>
<td>$[S^2x]_i$</td>
<td>$[S^2x]_j$</td>
<td>$[S^2x]_k$</td>
</tr>
<tr>
<td>$[S^3x]_i$</td>
<td>$[S^3x]_j$</td>
<td>$[S^3x]_k$</td>
</tr>
<tr>
<td>$[x]_i$</td>
<td>$[Sx]_i$</td>
<td>$[x]_j$</td>
</tr>
</tbody>
</table>
More on sampling graph signals

- **Beyond bandlimitedness**
 - Smooth signals [Chen15]
 - Parsimonious in kernelized domain [Romero16]

- **Strategies to select the sampling nodes**
 - Random (sketching) [Varma15]
 - Optimal reconstruction [Marques16, Chepuri-Leus16]
 - Designed based on posterior task [Gama16]

- **And more...**
 - Low-complexity implementations [Tremblay16, Anis16]
 - Local implementations [Wang14, Segarra15]
 - Unknown spectral decomposition [Anis16]
Motivation and preliminaries

Part I: Fundamentals
- Graphs 101
- Graph signals and the shift operator
- Graph Fourier Transform (GFT)
- Graph filters and network processes

Part II: Applications
- Sampling graph signals
- Stationarity of graph processes
- Network topology inference

Concluding remarks
Motivation and context

- We frequently encounter stochastic processes
- Statistical SP \Rightarrow tools for their understanding

- Stationarity facilitates the analysis of random signals in time
 \Rightarrow Statistical properties are time-invariant

- We seek to extend the concept of stationarity to graph processes
 \Rightarrow Network data and irregular domains motivate this
 \Rightarrow Lack of regularity leads to multiple definitions

- Classical SSP can be generalized: spectral estimation, periodograms,...
 \Rightarrow Better understanding and estimation of graph processes
 \Rightarrow Related works: [Girault 15], [Perraudin 16]
Prelimaries: Weak stationarity in time

(1) **Correlation** of stationary discrete time signals is invariant to shifts

\[C_x := \mathbb{E}[xx^H] = \mathbb{E}[x^H(n-l)x(n-l)] = \mathbb{E}[S^lx(S^lx)^H] \]

(2) Signal is the output of a LTI filter \(H \) excited with white noise \(w \)

\[x = Hw, \quad \text{with} \quad \mathbb{E}[ww^H] = I \]

(3) The covariance matrix \(C_x \) is **diagonalized** by the Fourier matrix

\[C_x = F\text{diag}(p)F^H \]

- The process has a **power spectral density** \(\Rightarrow p := \text{diag}(F^HC_xF) \)
- Each of these definitions can be generalized to graph signals
Definition (shift invariance)

Process \mathbf{x} is weakly stationary with respect to \mathbf{S} if and only if $(b > c)$

$$
\mathbb{E}\left[(\mathbf{S}^a \mathbf{x}) ((\mathbf{S}^H)^b \mathbf{x})^H\right] = \mathbb{E}\left[(\mathbf{S}^{a+c} \mathbf{x}) ((\mathbf{S}^H)^{b-c} \mathbf{x})^H\right]
$$

- Use a and b shifts as reference. Shift by c forward and backward
 - Signal is stationary if these shifts do not alter its covariance
- It reduces to $\mathbb{E}[\mathbf{x}\mathbf{x}^H] = \mathbb{E}[(\mathbf{S}'\mathbf{x})(\mathbf{S}'\mathbf{x})^H]$ when \mathbf{S} is a directed cycle
- Time shift is orthogonal, $\mathbf{S}^H = \mathbf{S}^{-1}$ ($a = 0$, $b = N$ and $c = l$)
- Need reference shifts because \mathbf{S} can change energy of the signal
Definition (filtering of white noise)

Process \(x \) is weakly stationary with respect to \(S \) if it can be written as the output of linear graph filter \(H \) with white input \(w \)

\[
x = Hw, \quad \text{with } \mathbb{E} \left[ww^H \right] = I
\]

- The filter \(H \) is linear shift invariant if \(\Rightarrow H(Sx) = S(Hx) \)
- Equivalently, \(H \) polynomial on the shift operator \(\Rightarrow H = \sum_{l=0}^{L} h_l S^l \)
- Filter \(H \) determines color \(\Rightarrow C_x = \mathbb{E} \left[(Hw)(Hw)^H \right] = HH^H \)
Definition (Simultaneous diagonalization)

Process x is weakly stationary with respect to S if the covariance C_x and the shift S are simultaneously diagonalizable.

$$S = V \Lambda V^H \implies C_x = V \text{diag}(p) V^H$$

- Equivalent to time definition because F diagonalizes cycle graph
- The process has a power spectral density $\Rightarrow p := \text{diag}(V^H C_x V)$
Definition (Simultaneous diagonalization)

Process x is weakly stationary with respect to S if the covariance C_x and the shift S are simultaneously diagonalizable.

$$S = V \Lambda V^H \quad \Rightarrow \quad C_x = V \text{diag}(p) V^H$$

- Equivalent to time definition because F diagonalizes cycle graph.
- The process has a power spectral density $\Rightarrow p := \text{diag}(V^H C_x V)$
Equivalence of definitions and PSD

- Have introduced three equally valid definitions of weak stationarity
 - They are different but, under mild conditions, equivalent

Proposition

Process \mathbf{x} has shift invariant correlation matrix \Leftrightarrow it is the output of a linear shift invariant filter \Leftrightarrow Covariance jointly diagonalizable with shift

- Shift and Filtering \Rightarrow How stationary signals look like (local invariance)
- Simultaneous Diagonalization \Rightarrow A PSD exists \Rightarrow $\mathbf{p} := \text{diag}(\mathbf{V}^H \mathbf{C}_x \mathbf{V})$ \Rightarrow The PSD collects the eigenvalues of \mathbf{C}_x and is nonnegative

Proposition

Let \mathbf{x} be stationary in \mathbf{S} and define the process $\tilde{\mathbf{x}} := \mathbf{V}^H \mathbf{x}$. Then, it holds that $\tilde{\mathbf{x}}$ is uncorrelated with covariance matrix $\mathbf{C}_{\tilde{\mathbf{x}}} = \mathbb{E} [\tilde{\mathbf{x}} \tilde{\mathbf{x}}^H] = \text{diag}(\mathbf{p})$.
Weak stationary graph processes examples

Example (White noise)

- White noise w is stationary in any graph shift $S = VΛV^H$
- Covariance $C_w = \sigma^2 I$ simultaneously diagonalizable with all S

Example (Covariance matrix graphs and Precision matrices)

- Every process is stationary in the graph defined by its covariance matrix
- If $S = C_x$, shift S and covariance C_x diagonalized by same basis
- Process is also stationary on precision matrix $S = C_x^{-1}$

Example (Heat diffusion processes and ARMA processes)

- Heat diffusion process in a graph $\Rightarrow x = \alpha_0(I - \alpha L)^{-1}w$
- Stationary in L since $\alpha_0(I - \alpha L)^{-1}$ is a polynomial on L
- Any autoregressive moving average (ARMA) process on a graph
Power spectral density examples

Example (White noise)

- Power spectral density \(\Rightarrow p = \text{diag}(V^H(\sigma^2 I)V) = \sigma^2 I \)

Example (Covariance matrix graphs and Precision matrices)

- Power spectral density \(\Rightarrow p = \text{diag}(V^H(V\Lambda V^H)V) = \text{diag}(\Lambda) \)

Example (Heat diffusion processes and ARMA processes)

- Power spectral density \(\Rightarrow p = \text{diag}\left[\alpha_0^2 (I - \alpha \Lambda)^{-2}\right] \)
Given a process x, the covariance of $\tilde{x} = V^H x$ is given by

$$C_{\tilde{x}} := \mathbb{E} [\tilde{x}\tilde{x}^H] = \mathbb{E} [(V^H x)(V^H x)^H] = \text{diag}(p)$$

Periodogram ⇒ Given samples $\{x_r\}_{r=1}^R$, average GFTs of samples

$$\hat{p}_{pg} := \frac{1}{R} \sum_{r=1}^R |\tilde{x}_r|^2 = \frac{1}{R} \sum_{r=1}^R |V^H x_r|^2$$

Correlogram ⇒ Replace C_x in PSD definition by sample covariance

$$\hat{p}_{cg} := \text{diag} \left(V^H \hat{C}_x V \right) := \text{diag} \left(V^H \left[\frac{1}{R} \sum_{r=1}^R x_r x_r^H \right] V \right)$$

Periodogram and correlogram lead to identical estimates $\hat{p}_{pg} = \hat{p}_{cg}$
Theorem

If the process x is Gaussian, periodogram estimates have bias and variance

- **Bias** $\Rightarrow b_{pg} := E[\hat{p}_{pg}] - p = 0$

- **Variance** $\Rightarrow \Sigma_{pg} := E[(\hat{p}_{pg} - p)(\hat{p}_{pg} - p)^H] = \frac{2}{R} \text{diag}^2(p)$

- The periodogram is **unbiased** but the **variance** is not too good
 \Rightarrow **Quadratic in** p. Same as time processes

- Alternative nonparametric methods to reduce variance
 \Rightarrow **Average windowed periodogram**
 \Rightarrow **Filterbanks**
 \Rightarrow Bias - variance tradeoff characterized [Marques16, Segarra16]
Until now non-parametric estimators: parametric estimation?

View \mathbf{x} as output of a graph filter with $P \ll N$ parameters

$$
\mathbf{p} = \text{diag} \left(\mathbb{E} \left[(\mathbf{V}^H \mathbf{x})(\mathbf{V}^H \mathbf{x})^H \right] \right) = \text{diag} \left(\mathbf{V}^H (\mathbf{C}_x) \mathbf{V} \right)
$$

Use \mathbf{x} to obtain $\widehat{\mathbf{C}}_x$

$$
\widehat{\rho}_{cg} = \text{diag} \left(\mathbf{V}^H \widehat{\mathbf{C}}_x \mathbf{V} \right)
$$
Parametric PSD estimation

- Until now non-parametric estimators: parametric estimation?
 ⇒ View x as output of a graph filter with $P \ll N$ parameters

$$p = \text{diag} \left(\mathbb{E} \left[(V^H x)(V^H x)^H \right] \right) = \text{diag} \left(V^H (C_x) V \right)$$

Use x to obtain \hat{C}_x ⇒ $\hat{p}_{cg} = \text{diag} \left(V^H \hat{C}_x V \right)$

$$p = \text{diag} \left((\Psi h)(\Psi h)^H \right) = \text{diag} \left(\Psi (hh^H) \Psi^H \right)$$

Use x to obtain \hat{h} ⇒ $\hat{p}_{par} = \text{diag} \left(\Psi (\hat{h}\hat{h}^H) \Psi^H \right)$

- Key how to use x to estimate \hat{h}
Parametric PSD estimation: finding h

- How to use realization x to estimate \hat{h}
 - Input w white and x stationary ⇒ Rely on correlations
 - Problem can be formulated in the vertex or in the frequency domain

- Vertex domain: $\hat{h} = \arg\min_h d(C(h), \hat{C}(x))$
 - $C(h) = H(h, S)H(h, S)^H$
 - $\hat{C}(x) = xx^H$

- Frequency domain: $\hat{h} = \arg\min_h d(p(h), \hat{p}(x))$
 - $p(h) = \text{diag}(\Psi(hh^H)\Psi^H)$
 - $\hat{p}(x) = \text{diag}(V^H(xx^H)V)$

- $C(\cdot)$ and $p(\cdot)$ quadratic on h
 - General estimation nonconvex ⇒ If $d(\cdot, \cdot)$ quadratic, phase retrieval
 - Particular cases ($S \succeq 0$ and $h \succeq 0$) tractable ⇒ Not in time
Parametric PSD estimation: an example

- Intuition on parametric estimation
 - Better performance because less parameters must be estimated
 - Give rise to smoother PSD estimates

- Example: Laplacian diffusion with positive coefficients
 - Diffusion will favor exponential spectral decay

\[p = \text{diag}(\mathbf{V}^H(C_x)\mathbf{V}) \]
Parametric PSD estimation: an example

- Intuition on parametric estimation
 - Better performance because less parameters must be estimated
 - Give rise to smoother PSD estimates

- Example: Laplacian diffusion with positive coefficients
 - Diffusion will favor exponential spectral decay
Parametric PSD estimation: an example

► Intuition on parametric estimation
 ⇒ Better performance because less parameters must be estimated
 ⇒ Give rise to smoother PSD estimates

► Example: Laplacian diffusion with positive coefficients
 ⇒ Diffusion will favor exponential spectral decay

\[p = \text{diag} \left(\mathbf{V}^H (\mathbf{C}_x) \mathbf{V} \right) \]
\[\hat{p}_{\text{par}} = \text{diag} \left(\psi (\hat{\mathbf{h}}^H \hat{\mathbf{h}}) \psi^H \right) \]
\[\hat{p}_{\text{cg}} = \text{diag} \left(\mathbf{V}^H \hat{\mathbf{C}}_x \mathbf{V} \right) \]
Alternative parametric formulations

- Chose vertex or frequency based on the type of filter
 ⇒ MA, AR, ARMA can be generalized

- If the number of parameters (filter degree) not known
 ⇒ Use regularizers so that \mathbf{h} is sparse

- Alternative parametric models
 ⇒ \mathbf{x} sum of frequency basis ⇒ $\tilde{\mathbf{x}} = \mathbf{V}^H \mathbf{x}$ is sparse
 ⇒ \mathbf{x} is diffusion of a sparse initial state ⇒ \mathbf{w} is sparse
Average periodogram

- MSE of periodogram as a function of the nr. of observations R

- Baseline ER random graph ($N = 100$ and $p = 0.05$) and $S = A$

- Observe filtered white Gaussian noise and estimate PSD

- Normalized MSE evolves as $2/R$ as expected
 ⇒ Invariant to size, topology, and PSD

- Same behavior observed in non-Gaussian processes (theory not valid)
Windowed average periodogram

- Performance of local windows and random windows
- Block stochastic graph ($N = 100$, 10 communities) and small world
- Process filters white noise with different number of taps

- The use of windows introduces bias but reduces total error (MSE)
- Local windows work better than random windows
 ⇒ Advantage of local windows is larger for local processes
Opinion source identification

- **Opinion diffusion** in Zachary’s karate club network \((N = 34)\)
- **Observed opinion** \(x\) obtained by diffusing sparse white rumor \(w\)

- Given \(\{x_r\}_{r=1}^R\) generated from unknown \(\{w_r\}_{r=1}^R\)
 \(\Rightarrow\) Diffused through filter of unknown nonnegative coefficients \(\beta\)
- **Goal** \(\Rightarrow\) **Identify the support** of each rumor \(w_r\)
- **First** \(\Rightarrow\) **Estimate** \(\beta\) from Moving Average PSD estimation
- **Second** \(\Rightarrow\) **Solve** \(R\) sparse linear regressions to recover \(\text{supp}(w_r)\)

![Graph showing source identification error versus number of observations]

- Source identification error
- Number of observations
PSD of face images

- PSD estimation for spectral signatures of faces of different people
- 100 grayscale face images \(\{x_i\}_{i=1}^{100} \in \mathbb{R}^{10304} \) (10 images \(\times \) 10 people)
- Consider \(x_i \) as realization graph process that is Stationary on \(\hat{C}_x \)
- Construct \(\hat{C}_x^{(j)} = \mathbf{V}(j) \Lambda_c^{(j)} \mathbf{V}^H(j) \) based on images of person \(j \)

- Process of person \(j \) approximately stationary in \(\hat{C}_x \) (left)
- Use windowed average periodogram to estimate PSD of new face
Stationarity: Takeaways

► Extended the notion of weak stationarity for graph processes
► **Three definitions** inspired in stationary time processes
 ⇒ Shown all of them to be **equivalent**

► Defined **power spectral density** and studied its estimation
► Generalized classical **non-parametric estimation** methods
 ⇒ Periodogram and correlogram where shown to be equivalent
 ⇒ Windowed average periodogram, filter banks
► Generalized classical ARMA **parametric estimation** methods
 ⇒ Particular cases tractable

► **Extensions**
 ⇒ Other parametric schemes
 ⇒ **Space-time** variation
Network topology inference

Motivation and preliminaries

Part I: Fundamentals
 Graphs 101
 Graph signals and the shift operator
 Graph Fourier Transform (GFT)
 Graph filters and network processes

Part II: Applications
 Sampling graph signals
 Stationarity of graph processes
 Network topology inference

Concluding remarks
Motivation and context

- **Network topology inference** from nodal observations [Kolaczyk’09]
 ⇒ Approaches use Pearson correlations to construct graphs [Brovelli04]
 ⇒ Partial correlations and conditional dependence [Friedman08, Karanikolas16]

- **Key in neuroscience** [Sporns’10]
 ⇒ Functional net inferred from activity
Motivation and context

- Network **topology inference** from nodal observations [Kolaczyk’09]
 - Approaches use **Pearson correlations** to construct graphs [Brovelli04]
 - Partial correlations and conditional dependence [Friedman08, Karanikolas16]

- Key in neuroscience [Sporns’10]
 - Functional net inferred from activity

- Most GSP works: How known graph S affects signals and filters

- Here, reverse path: How to use **GSP to infer the graph topology**?
 - Gaussian graphical models [Egilmez16]
 - Smooth signals [Dong15], [Kalofolias16]
 - Stationary signals [Segarra16], [Pasdeloup16]
 - Directed graphs [Mei-Moura15], [Shen16]

†Segarra, Marques, Mateos, Ribeiro, *Network Topology Identification from Spectral Templates*, IEEE SSP16
‡Segarra, Marques, Mateos, Ribeiro, *Network Topology Inference from Spectral Templates*, JSTSP (sub.)
We propose a **two-step approach** for graph topology identification.

STEP 1: Identify the eigenvectors of the shift

STEP 2: Identify eigenvalues to obtain a suitable shift

- Beyond diffusion ⇒ alternative sources for **spectral templates** V
 ⇒ Graph sparsification, network deconvolution,…
Step 1: Eigenvectors from graph stationarity

- Given a set of signals \(\{x_r\}_{r=1}^R \) find \(S \)
 - We view signals as samples of random graph process \(x \)
 - \(AS. x \) is stationary in \(S \)

- Equivalent to “\(x \) is the linear diffusion of a white input”

\[
x = \alpha_0 \prod_{l=1}^{\infty} (I - \alpha_l S)w = \sum_{l=0}^{\infty} \beta_l S^l w
\]

- i.e. \(x = Hw \) ⇒ Examples: heat diffusion, structural equation models

\[
x = (I - \alpha L)^{-1}w \quad x = Ax + w
\]

- We say the graph shift \(S \) explains the structure of signal \(x \)

- Key point after assuming stationarity: eigenvectors of the covariance
Step 1: Eigenvectors from covariance

- The covariance matrix of the stationary signal $x = Hw$ is

$$C_x = E[xx^T] = HE[(ww^T)]H^T = HH^T$$

\Rightarrow Since H is diagonalized by V, so is the covariance C_x

$$C_x = V|\sum_{l=0}^{L-1} h_l \Lambda^l|^2 V^T = V \text{diag}(p) V^T$$

- Any shift with eigenvectors V can explain x

\Rightarrow G and its specific eigenvalues have been obscured by diffusion

Observations

(a) Identifying $S \rightarrow$ identifying the eigenvalues

(b) Correlation methods \rightarrow eigenvalues are kept unchanged

(c) Precision methods \rightarrow eigenvalues are inverted
Step 1: Other sources of spectral templates

1) Graph sparsification
 - Goal: given S_f find sparser S with same eigenvectors
 $$S_f = V_f \Lambda_f V_f^T$$ and set $V = V_f$
 $$\Rightarrow$$ Otentimes referred to as network deconvolution problem
Step 1: Other sources of spectral templates

1) Graph sparsification
 - Goal: given S_f find sparser S with same eigenvectors
 - Find $S_f = V_f \Lambda_f V_f^T$ and set $V = V_f$
 - Sometimes referred to as network deconvolution problem

2) Nodal relation assumed by a given transform
 - GSP: decompose $S = V \Lambda V^T$ and set V^T as GFT
 - SP: some transforms T known to work well on specific data
 - Goal: given T, set $V^T = T$ and identify S ⇒ intuition on data relation

DCTs: i–iii
Step 1: Other sources of spectral templates

1) **Graph sparsification**
 - Goal: given S_f find sparser S with same eigenvectors
 - Find $S_f = V_f \Lambda_f V_f^T$ and set $V = V_f$
 - Often times referred to as network deconvolution problem

2) **Nodal relation assumed by a given transform**
 - GSP: decompose $S = V \Lambda V^T$ and set V^T as GFT
 - SP: some transforms T known to work well on specific data
 - Goal: given T, set $V^T = T$ and identify S ⇒ intuition on data relation

3) **Implementation of linear network operators**
 - Goal: distributed implementation of linear operator B via graph filter
 ⇒ Feasible if B and S share eigenvectors ⇒ Like 1) with $S_f = B$
Step 2: Obtaining the eigenvalues

- Given \(V \), there are many possible \(S = V \text{diag}(\lambda)V^T \)
 - We can use extra knowledge/assumptions to choose one graph
 - Of all graphs, select one that is optimal in some sense

\[
S^* := \arg\min_{S,\lambda} f(S, \lambda) \quad \text{s. to} \quad S = \sum_{k=1}^{N} \lambda_k v_k v_k^T, \quad S \in S
\]

- Set \(S \) contains all admissible scaled adjacency matrices

\[
S := \{S \mid S_{ij} \geq 0, \ S \in \mathcal{M}^N, \ S_{ii} = 0, \ \sum_j S_{1j} = 1\}
\]
 - Can accommodate Laplacian matrices as well

- Problem is convex if we select a convex objective \(f(S, \lambda) \)
 - Minimum energy \((f(S) = \|S\|_F), \) Fast mixing \((f(\lambda) = -\lambda_2)\)
Size of the feasibility set

- Feasible set in (1) small ⇒ helps optimization
 ⇒ Search over $\lambda \in \mathbb{R}^N$
 ⇒ N linear constraints $S_{ii} = 0$
- To be rigorous define
 ⇒ $W := \mathbf{V} \odot \mathbf{V}$ (Khatri-Rao)
 ⇒ \mathcal{D} index set diagonal elements

Assume that (1) is feasible, then it holds that $\text{rank}(W_D) \leq N - 1$. If $\text{rank}(W_D) = N - 1$, then the feasible set of (1) is a singleton.

- Take-aways
 ⇒ Convex and small feasibility set ⇒ Exhaustive search affordable
 ⇒ $\text{rank}(W_D) = N - 1$ arises in practice
Non-convex objective: Sparse recovery

- Whenever the feasibility set of (1) is non-trivial
 \(\Rightarrow f(S, \lambda) \) determines the features of the recovered graph

 Ex: Identify the sparsest shift \(S_0^* \) that explains observed signal structure
 \(\Rightarrow \) Set the cost \(f(S, \lambda) = \|S\|_0 \)

 \[
 S_0^* = \arg\min_{S, \lambda} \|S\|_0 \quad \text{s. to} \quad S = \sum_{k=1}^{N} \lambda_k v_k v_k^T, \quad S \in S
 \]

- Non-convex problem, relax to \(\ell_1 \) norm minimization (e.g. [Tropp06])

 \[
 S_1^* := \arg\min_{S, \lambda} \|S\|_1 \quad \text{s. to} \quad S = \sum_{k=1}^{N} \lambda_k v_k v_k^T, \quad S \in S
 \]

- Does the solution \(S_1^* \) coincide with the \(\ell_0 \) solution \(S_0^* \)?
Recovery guarantee for ℓ_1 relaxation

- Recall that $W := V \otimes V$
- Build $M := (I - WW^\dagger)_{D^c}$ the orthogonal projector onto $\text{range}(W)$
 - Construct $R := [M, e_1 \otimes 1_{N-1}]$
 - Denote by K the indices of the support of $s_0^* = \text{vec}(S_0^*)$

S_1^* and S_0^* coincide if the two following conditions are satisfied:
1) $\text{rank}(R_K) = |K|$; and
2) There exists a constant $\delta > 0$ such that

$$\psi_R := \|I_{K^c}(\delta^{-2}RR^T + I_{K^c}^T I_{K^c})^{-1}I_{K^c}^T\|_{\infty} < 1.$$

- Cond. 1) ensures uniqueness of solution S_1^*
- Cond. 2) guarantees existence of a dual certificate for ℓ_0 optimality
Robust shift identification

- So far, two-step algorithm based on perfect spectral templates
 ⇒ However, perfect knowledge of \mathbf{V} may not be available
 ⇒ Robust designs?

Q1: How to modify the optimization in step 2?
 ⇒ Distance for noise, orthogonal subspace for incomplete

Q2: Recovery guarantees?
Noisy spectral templates

We might have access to \hat{V}, a noisy version of the spectral templates.

With $d(\cdot, \cdot)$ denoting a (convex) distance between matrices:

$$\min_{\{S, \lambda, \hat{S}\}} \|S\|_1 \quad \text{s. to} \quad \hat{S} = \sum_{k=1}^{N} \lambda_k \hat{v}_k \hat{v}_k^T, \quad S \in S, \quad d(S, \hat{S}) \leq \epsilon$$

How does the noise in \hat{V} affect the recovery?
Noisy spectral templates

We might have access to \(\hat{V} \), a noisy version of the spectral templates.

With \(d(\cdot, \cdot) \) denoting a (convex) distance between matrices,

\[
\min \{ S, \lambda, \hat{S} \} \quad \text{subject to} \quad \hat{S} = \sum_{k=1}^{N} \lambda_k \hat{v}_k \hat{v}_k^T, \quad S \in S, \quad d(S, \hat{S}) \leq \epsilon
\]

How does the noise in \(\hat{V} \) affect the recovery?

Stability (robustness) can be established.

Conditions 1) and 2) but based on \(\hat{R} \), guaranteed \(d(S^*, S_0^*) \leq C \epsilon \)

\(\Rightarrow \) \(\epsilon \) large enough to guarantee feasibility of \(S_0^* \)

\(\Rightarrow \) Constant \(C \) depends on \(\hat{V} \) and the support \(\mathcal{K} \)
Incomplete spectral templates

- Partial access to \mathbf{V} ⇒ Only K known eigenvectors $\mathbf{V}_K = [\mathbf{v}_1, \ldots, \mathbf{v}_K]$

⇒ E.g., if (sample) covariance is rank-deficient

$$\min_{\{\mathbf{S}, \mathbf{S}_\tilde{K}, \lambda\}} \|\mathbf{S}\|_1 \quad \text{s. to} \quad \mathbf{S} = \mathbf{S}_\tilde{K} + \sum_{k=1}^{K} \lambda_k \mathbf{v}_k \mathbf{v}_k^T, \quad \mathbf{S} \in \mathcal{S}, \quad \mathbf{S}_\tilde{K} \mathbf{v}_k = 0$$
Incomplete spectral templates

Partial access to \mathbf{V} ⇒ Only K known eigenvectors $\mathbf{V}_K = [\mathbf{v}_1, \ldots, \mathbf{v}_K]$

⇒ E.g., if (sample) covariance is rank-deficient

$$\min_{\{\mathbf{S}, \mathbf{S}_\bar{K}, \lambda\}} \|\mathbf{S}\|_1 \text{ s. to } \mathbf{S} = \mathbf{S}_\bar{K} + \sum_{k=1}^{K} \lambda_k \mathbf{v}_k \mathbf{v}_k^T, \quad \mathbf{S} \in \mathcal{S}, \quad \mathbf{S}_\bar{K} \mathbf{v}_k = 0$$

How does the (partial) knowledge of \mathbf{V} affect the recovery?

⇒ A bit more involved, conditions 1) and 2) depend now on \mathbf{V}_K

⇒ For $K = N$, guarantees boil down to the noiseless case

Incomplete and noisy scenarios can be combined
Topology inference in random graphs

- Erdős-Rényi graphs of varying size \(N \in \{10, 20, \ldots, 50\} \)
 \(\Rightarrow \) Edge probabilities \(p \in \{0.1, 0.2, \ldots, 0.9\} \)
- Recovery rates for adjacency (left) and normalized Laplacian (mid)

- Recovery is easier for intermediate values of \(p \)
- Rate of recovery related to the \(\text{rank}(W_D) \) (histogram \(N=10, p=0.2 \))
 \(\Rightarrow \) When rank is \(N - 1 \), recovery is guaranteed
 \(\Rightarrow \) As rank decreases, there is a detrimental effect on recovery
Sparse recovery guarantee

- Generate 1000 ER random graphs \((N = 20, p = 0.1)\) such that
 - Feasible set is not a singleton
 - Cond. 1) in sparse recovery theorem is satisfied

- Noiseless case: \(\ell_1\) norm guarantees recovery as long as \(\psi_R < 1\)

- Condition is sufficient but not necessary
 - Tightest possible bound on this matrix norm
Inferring brain graphs from noisy templates

- Identification of structural brain graphs $N = 66$
- Test recovery for noisy spectral templates \hat{V}
 - Obtained from sample covariances of diffused signals

Recovery error decreases with increasing number of observed signals
 - More reliable estimate of the covariance
 - Less noisy \hat{V}

- Brain of patient 1 is consistently the hardest to identify
 - Robustness for identification in noisy scenarios

- Traditional methods like graphical lasso fail to recover S
Inferring social graphs from incomplete templates

- Identification of multiple social networks $N = 32$
 - Defined on the same node set of students from Ljubljana
- Test recovery for incomplete spectral templates $\hat{\mathbf{V}} = [\mathbf{v}_1, \ldots, \mathbf{v}_K]$
 - Obtained from a low-pass diffusion process
 - Repeated eigenvalues in \mathbf{C}_x introduce rotation ambiguity in \mathbf{V}

![Graph showing recovery error vs. number of spectral templates](image)

- Recovery error decreases with increasing nr. of spectral templates
 - Performance improvement is sharp and precipitous
Performance comparisons

- Comparison with graphical lasso and sparse correlation methods
 - Evaluated on 100 realizations of ER graphs with $N = 20$ and $p = 0.2$

- Graphical lasso implicitly assumes a filter $H_1 = (\rho I + S)^{-1/2}$
 - For this filter spectral templates work, but not as well (MLE)

- For general diffusion filters H_2 spectral templates still work fine
Inferring direct relations

- Our method can be used to sparsify a given network
- Keep direct and important edges or relations
 - Discard indirect relations that can be explained by direct ones
- Use eigenvectors \hat{V} of given network as noisy templates
- Infer contact between amino-acid residues in BPT1 BOVIN
 - Use mutual information of amino-acid covariation as input

Network deconvolution assumes a specific filter model [Feizi13]
 - We achieve better performance by being agnostic to this
Network topology inference cornerstone problem in Network Science

Most GSP works analyze how S affect signals and filters

Here, reverse path: How to use GSP to infer the graph topology?

Our GSP approach to network topology inference

Two step approach: i) Obtain V; ii) Estimate S given V
Network topology inference cornerstone problem in Network Science

- Most GSP works analyze how S affect signals and filters
- Here, reverse path: How to use GSP to infer the graph topology?

Our GSP approach to network topology inference

⇒ Two step approach: i) Obtain V; ii) Estimate S given V

How to obtain the spectral templates V

⇒ Based on covariance of diffused signals
⇒ Other sources too: net operators, data transforms
Topology ID: Takeaways

- Network topology inference cornerstone problem in Network Science
 - Most GSP works analyze how S affect signals and filters
 - Here, reverse path: How to use GSP to infer the graph topology?

- Our GSP approach to network topology inference
 ⇒ Two step approach: i) Obtain V; ii) Estimate S given V

- How to obtain the spectral templates V
 ⇒ Based on covariance of diffused signals
 ⇒ Other sources too: net operators, data transforms

- Infer S via convex optimization
 ⇒ Objectives promotes desirable properties
 ⇒ Constraints encode structure a priori info and structure
 ⇒ Formulations for perfect and imperfect templates
 ⇒ Sparse recovery results for both adjacency and Laplacian
Motivation and preliminaries

Part I: Fundamentals
- Graphs 101
- Graph signals and the shift operator
- Graph Fourier Transform (GFT)
- Graph filters and network processes

Part II: Applications
- Sampling graph signals
- Stationarity of graph processes
- Network topology inference

Concluding remarks
Concluding remarks

- **Network science** and big data pose new challenges
 - GSP can contribute to **solve** some of those challenges
 - Well suited for **network (diffusion) processes**

- **Central elements in GSP**: graph-shift operator and Fourier transform

- **Graph filters**: operate graph signals
 - Polynomials of the shift operator that can be implemented **locally**

- **Network diffusion/percolations processes via graph filters**
 - Successive/parallel combination of **local linear dynamics**
 - Possibly time-varying diffusion coefficients
 - Accurate to model certain setups
 - GSP yields insights on how those processes behave
Concluding remarks

- **GSP results** can be applied to solve practical problems
 - Sampling, interpolation *(network control)*
 - Input and system ID *(rumor ID)*
 - Shift design *(network topology ID)*

Interpolate a brain signal from local observations

Compress a signal in an irregular domain

Localize the source of a rumor

Smooth an observed network profile

Predict the evolution of a network process

Infer the topology where the signals reside
Reflections of a reluctant convert

- 2014: GSP \equiv projecting on the eigenvector space of the graph shift
 \Rightarrow An interesting idea, but can’t be much useful

- 2015: GSP is also about generalizing the notion of a time shift
 \Rightarrow More interesting, but still, can’t be that much useful

- 2016: This is actually much more interesting than I thought
 \Rightarrow **Theory** questions are more interesting than they look at first
 \Rightarrow **Analogies** are powerful. Yield good questions and solutions
 \Rightarrow **Graph signals** exist and they have to be analyzed
Interesting theory questions

- Sampling of graph signals ⇒ There’s more than one generalization
 ⇒ Selection of optimal sampling sets

- Statistical signal processing on graphs ⇒ Generalizes PCA
 ⇒ Estimation of power spectral densities
 ⇒ Ergodic (law of large numbers) theorems for graph signals
 ⇒ Strict sense stationarity

- Topology identification ⇒ A graph that explains a signal
 ⇒ There’s more than one graph and more than one solution
 ⇒ Graph prior knowledge ⇒ E.g., small number of links
 ⇒ Filter prior knowledge ⇒ E.g., graphical lasso

- Nonlinear processing. Wavelets. Algebraic and Topological SP
The power of analogies in applications of GSP

- Bandlimited representations \sim compression \sim sampling \sim filtering
 \Rightarrow These analogies have not been exploited in irregular domains

- Dimensionality reduction \Rightarrow Signal is low pass on covariance graph
 \Rightarrow Then, sampling should work as well. It does \Rightarrow Sketching

- Collaborative filtering \Rightarrow Ratings low pass on user preference graph
 \Rightarrow Explicit in latent factor models \Rightarrow Low rank
 \Rightarrow Implicit in nearest neighbors rules \Rightarrow Ratings $\hat{x} = Ax$
 \Rightarrow Improve ratings using (graph) filter design
Application domains

- Gene regulatory networks
 - Interactions between genes and between genes and environment

- Brain signal analysis
 - Very large and very strong literature on brain network analysis
 - Classifying neural disorders, predicting learning ability.
 - They analyze networks because they can’t analyze signals

- Economics, finance, social sciences
 - Relationships between actors used more often than apparent
 - Does bank a fail if bank b does?
 - GDP estimation
 - Disaggregate election outcomes per state / county / district

- An orthogonal observation: Not all data is big
Questions? Feel free to contact us.

- Santiago segarra@mit.edu,
- Antonio: antonio.garcia.marques@urjc.es,
- Alejandro: aribeiro@seas.upenn.edu.

Slides and references: