SOME EXERCISES

By popular demand, I’m putting up some fun problems to solve. These are meant to give intuition for messing around with spectra.

1. THE ALGEBRAIC THICK SUBCATEGORY THEOREM

In Lecture 2, we proved that the only thick subcategories of the category Sp_ω of (p-local, always) finite spectra are the subcategories C_n (defined to be the collection of those finite spectra X such that K(n − 1)_*-acyclic finite spectra).

In this problem, we will prove an algebraic analogue of this result; this will be a somewhat different version of [Rav92, Theorem 3.4.2], although the proof is the same. If you get stuck, you can either look there, or the lecture notes for Lecture 2. Let A be the category of BP_*BP-comodules which are finitely presented as BP_*-modules. This is an abelian category.

We define a thick subcategory C of A to be a subcategory satisfying the two-out-of-three property for short exact sequences: if two of A, B, and C are in C and there is a short exact sequence

$$0 \to A \to B \to C \to 0,$$

then the third is also in C.

In analogy to the subcategories C_n of Sp_ω, we define subcategories, also denoted C_n, of A by saying that M ∈ C_n iff v_{n−1}M = 0, i.e., v_{n−1} is nilpotent in M. Our goal will be to show that any thick subcategory of A is either trivial, A itself, or C_n for some n.

Our proof will rely on the following result. Recall that I_n = (p, v_1, · · ·, v_{n−1}) is an ideal of BP_*; it turns out that this is an “invariant ideal”, in the sense that BP_*/I_n is a BP_*BP-comodule.

Theorem 1 (Landweber filtration theorem). Any object M of A has a filtration

$$0 = M_k \subset \cdots \subset M_l \subset M$$

where M_j/M_{j+1} is isomorphic as a BP_*BP-comodule to (a shift of) BP_*/I_{n_j}.

• Prove the following corollary of Theorem 1.

Corollary 2. There is a strict inclusion C_{n+1} ⊆ C_n.

Concretely, this says: if v_{n}^{-1}M = 0, then v_{n−1}M = 0. In the notation of Theorem 1, show that n_j ≥ n (prove that v_{n}^{-1}BP_*/I_{n_j} = 0). Conclude that v_{n−1}M = 0.

To prove that the inclusion is strict, find an example of a BP_*BP-comodule M such that v_{n−1}M = 0 but v_{n}^{-1}M ≠ 0.
• Let C denote a thick subcategory of A. Use Theorem 1 to prove that it suffices to show that all the quotients BP^*/I_n are in C.

• Let M be a comodule in $C \subseteq C_n$ but not in C_{n+1}. Using Corollary 2 prove that some $n_i = n$ for some i.

• Show that C contains BP^*/I_m for every $m \geq n$, hence it contains every quotient BP^*/I_{n_j}, as desired.

2. Real and complex K-theory

Let KU denote complex K-theory, and let KO denote real K-theory. Bott periodicity implies that these are “nonconnective” real spectra (in other words, they have homotopy in negative dimensions). The spectrum KU naturally admits an action of the cyclic group C_2, coming from the complex conjugation action on complex vector bundles. A theorem of Atiyah’s shows that $KU^{hC_2} \simeq KO$. In this problem, we will study KU^{hC_2}, and prove this result computationally.

Our key technical tool in this problem is the homotopy fixed point spectral sequence. Recall that if E is a spectrum and G is a finite group acting on E, the homotopy fixed points E^{hG} are defined via

$$E^{hG} = \text{Hom}_G(\Sigma^\infty EG, X);$$

here Hom is the internal hom in spectra, also known as the function spectrum. The homotopy orbits are defined via

$$E_{hG} = (\Sigma^\infty EG \wedge X)/G.$$

One can compute the homotopy of E^{hG} and E_{hG}: there are spectral sequences, appropriately called the homotopy fixed points spectral sequence and the homotopy orbits spectral sequence. These are of signature:

$$E_2^{s,t} = H^s(G; \pi_t E) \Rightarrow \pi_{t-s}(E^{hG});$$

$$E_2^{s,t} = H^s(G; \pi_t E) \Rightarrow \pi_{t-s}(E_{hG}).$$

We will prove Atiyah’s theorem through the following sequence of steps.

• Let σ denote a generator of C_2, and let u denote the Bott element (represented by $1 - [L]$, where L is the line bundle over $\mathbb{C}P^1$ obtained by pulling back the universal line bundle via the inclusion $\mathbb{C}P^1 \subseteq \mathbb{C}P^\infty$). Show that $\sigma(u) = -u$.

• Use this to compute that the E_2-page of the homotopy fixed points spectral sequence for KU^{hC_2} is, as a bigraded ring, given by

$$E_2^{s,t} \simeq H^s(C_2; \pi_* KU) \simeq \mathbb{Z}[u^{\pm 2}, \alpha]/2\alpha,$$

where the bidegree of u and α as (s, t) is given by $|u| = (0, 4)$, and $|\alpha| = (1, 2)$.

• Suppose C_2 acts trivially on the sphere spectrum S. Show that S^{hC_2} is $\Sigma^\infty_+ \mathbb{R}P^\infty$. Conclude that the homotopy fixed point spectral sequence for S^{hC_2} is the same as the Atiyah-Hirzebruch spectral sequence for $\pi_* \Sigma^\infty_+ \mathbb{R}P^\infty$.

SOME EXERCISES

3

(the E_2-page of this spectral sequence is $H^*(\Sigma^\infty_+ \mathbb{RP}^\infty; \pi_\ast S)$). In the Atiyah-Hirzebruch spectral sequence, we have an element η in bidegree $(1,2)$.

- The unit map $S \to KU$ is equivariant for this action, so we get a map $S^{hC_2} = \Sigma^\infty_+ \mathbb{RP}^\infty \to KU^{hC_2}$. Show that under the map of homotopy fixed point spectral sequences, the element η maps to α.

- Use the attaching maps in the Atiyah-Hirzebruch spectral sequence for $\Sigma^\infty_+ \mathbb{RP}^\infty$ to write down some differentials in this spectral sequence. Use naturality to transport these differentials to the homotopy fixed point spectral sequence for KU^{hC_2}; in particular, prove that in the homotopy fixed point spectral sequence for KU^{hC_2}, we have a d_3-differential

$$d_3(u^2) = \alpha^3.$$

See the first section of https://sanathdevalapurkar.github.io/chromotopy/2017/09/06/hfpss.html if you get stuck.

- Compute the E_3-page for the homotopy fixed point spectral sequence for KU^{hC_2}, and show that there can be no more differentials (for degree reasons).

- Conclude that

$$\pi_\ast(KU^{hC_2}) \simeq \mathbb{Z}[\alpha, 2u^2, u^{\pm 4}] / (2\alpha).$$

with $|\alpha| = 1$, and $|u^2| = 4$.

- Recall that Bott periodicity gives that

$$\pi_\ast(KO) \simeq \mathbb{Z}[x, y, z^{\pm 1}] / (2x, x^3, xy, y^2 - 4z),$$

with $|x| = 1$, $|y| = 4$, and $|z| = 8$. Construct a map $KO \to KU^{hC_2}$, and show that it induces an isomorphism on homotopy groups. Conclude that $KO \simeq KU^{hC_2}$.

- Let bu denote connective complex K-theory, and bo connective real K-theory. Is it true that

$$bo \simeq bu^{hC_2}?$$

Hint: nope.

However, bo and bu still have a very close relationship. In Problem 3 we will compute the cohomology of bo using the cofiber sequence $\Sigma bo \to bo \to bu$, which arises from the cofiber sequence $O \to U \to U/O$.

- Show that the map $\Sigma bo \to bo$ can be identified with $bo \wedge \eta$, where $\eta \in \pi_1(S)$ is the first Hopf element, which is detected in the Adams spectral sequence by $h_1 = [\xi^2]$.

- Conclude that $bu \simeq \Sigma^{-2} bo \wedge \Sigma^\infty \mathbb{CP}^2$. Hint: show that $C(\eta)$, the cofiber of η, can be identified with $\Sigma^{-2} \Sigma^\infty \mathbb{CP}^2$.

- Likewise, show that $KU \simeq \Sigma^{-2} KO \wedge \Sigma^\infty \mathbb{CP}^2$.

- Show, using the nilpotency of η, that if \mathcal{C} is a thick subcategory of the category Sp^ω of finite spectra which contains $\Sigma^\infty \mathbb{CP}^2$, then $\mathcal{C} = \text{Sp}^\omega$.

3. Computations with the Adams spectral sequence

The goal of this problem is to lead you through the computation of the homotopy of bu, and then the homotopy of bo. For the purposes of this problem, we will always work at the prime 2. Feel free to refer to [Rog12 §6.3, 6.4].

Recall that the Adams spectral sequence runs

$$\text{Ext}^*_A(F_2, H^*(X)) \Rightarrow \pi_\bullet X^\wedge.$$

Our goal will be to use this spectral sequence for $X = bu, bo$.

Let us recall some notation: $A(n)$ is the subalgebra of A generated by Sq^1, \cdots, Sq^{2^n}, and $E(n)$ is the subalgebra generated by the Milnor primitives Q_0, \cdots, Q_n (where $Q_0 = Sq^1$ and $[Q_0^{2^k}, Q_{k-1}] = Q_k$). It’s well-known that the duals (which sit inside A^*) of these subalgebras are given by

$$A(n)_* = A_*/I(n), \quad E(n)_* = A_*/J(n),$$

where

$$I(n) = \langle \xi_1^{2n+1}, \xi_2^{2n}, \cdots, \xi_n^{2n}, \xi_{n+1}^2, \xi_k|k \geq n+2 \rangle, \quad J(n) = \langle \xi_1^2, \cdots, \xi_{n+1}^2, \xi_k|k \geq n+2 \rangle.$$

If A is a k-algebra and $B \subseteq A$ a subalgebra with an augmentation $B \to k$, we define

$$A/\!\!/B = A \otimes_B k.$$

The change-of-rings isomorphism (which you don’t need to prove; see [Rog12 Lemma 6.16]) states:

Theorem 3. Let A be an algebra. Let B be a subalgebra of A such that A is flat as a right B-module. Let N be a left A-module, and let M be a left B-module. Then:

$$\text{Ext}^s_t(A \otimes_B M, N) \simeq \text{Ext}^s_t(A, N).$$

To show this, one uses the usual isomorphism $\text{Hom}_A(A \otimes_B M, N) \simeq \text{Hom}_B(M, N)$, and the fact that A is flat over B to note that if P_* is any projective resolution of M as a B-module, then $P_* \otimes_A B$ is a projective resolution of $A \otimes_B M$ as an A-module.

As a warmup, consider the case $X = HZ_2$.

- Use the change-of-rings isomorphism to prove that the Adams E_2-page for HZ_2 is $\text{Ext}^*_A(F_2, F_2)$. (Hint: show that $H^*(HZ_2) = A/\!/A(0)$.)

- Prove that this E_2-page is given by $P(h_0)$, where $|h_0| = (0, 1)$, where the bidegree is written in the form $(t-s, s)$. This is the associated graded for Z_2.

To prove more general results, we will need the following lemma.

Lemma 4. Let k be a field. Then

$$\text{Ext}^*_{F(k)}(k, k) = P(y);$$
here, $E(x)$ is an exterior algebra on x (of possibly positive degree), and $P(y)$ is a polynomial algebra on y (of degree $1 + |x|$).

To prove this lemma, use the injective resolution of k as a $E(x)$-module given by

$$0 \to k \to E(x) \xrightarrow{d} E(x) \xrightarrow{d} E(x) \to \cdots,$$

where $d(x) = 1$ and $d(1) = 0$. Show that $\text{Hom}_{E(x)}(k, E(x)) \simeq k$, and conclude the lemma.

Let’s get on with our computation of $\pi_*bu_2^\wedge$.

- Prove that $H^*(bu) \simeq A/E(1)$. To do this, use Bott periodicity to show that there is a short exact sequence of A-modules $0 \to \Sigma^3H^*(bu) \to H^*(HZ_2) \to H^*(bu) \to 0$. Compare this with the short exact sequence $0 \to \Sigma^3A/E(1) \to A/E(0) \to A/E(1) \to 0$, and use induction on the internal degree to prove the desired result.

- Use the change-of-rings isomorphism to prove that the Adams E_2-page for bu is given by $F_2[h_{1,0}, h_{2,0}]$, where $|h_{1,0}| = (0, 1)$ and $|h_{2,0}| = (2, 1)$. Again, the bidegree is written in the form $(t - s, s)$.

- Show that the spectral sequence collapses at the E_2-page, and that $\pi_*bu_2^\wedge \simeq \mathbb{Z}_2[\beta]$, where the class of $2 \in \pi_*bu_2^\wedge$ is $h_{1,0}$ (hint: use the map $bu_2^\wedge \to H\mathbb{Z}_2$, and then use the computation for HZ_2), and the class of β is $h_{2,0}$.

We can now move on to the harder case of $\pi_*bo_2^\wedge$.

- Show that there is a cofiber sequence $\Sigma bo \to bo \to bu$. (Hint: use the cofiber sequence of spaces $O \to U \to U/O$ and real Bott periodicity.) This is called the Wood cofiber sequence.

- Prove that $H^*(bo) \simeq A/A(1)$. To do this, use the above result to show that there is a short exact sequence of A-modules $0 \to \Sigma^2H^*(bo) \to H^*(bu) \to H^*(bo) \to 0$. Compare this with the short exact sequence $0 \to \Sigma^2A/A(1) \to A/A(1) \to A/A(1) \to 0$, and use induction on the internal degree to prove the desired result. This is hard to write down rigorously — for details, see section 7 of Catherine Ray’s masters thesis.

- Use the change-of-rings isomorphism to compute the Adams E_2-page. In particular, show that

$$E_2^{s,*} \simeq F_2[h_0, h_1, v, w_1]/(h_0h_1, h_1^3, h_1v, v^2 = h_0^2w_1),$$

where $|h_0| = (0, 1)$, $|h_1| = (1, 1)$, $|v| = (4, 3)$, and $|w_1| = (8, 4)$. Again, the bidegree is written in the form $(t - s, s)$. This spectral sequence collapses for degree reasons, so this gives the computation of $\pi_*bo_2^\wedge$.

What about π_*KO and π_*KU? Well, the Adams spectral sequence isn’t of much help here, because:

- Show that $KO \wedge H\mathbb{F}_p$ and $KU \wedge H\mathbb{F}_p$ are contractible for any prime p.

4. The Chern character

Let L_1, \ldots, L_n be line bundles over a space X. Suppose ξ is a rank n vector bundle such that $\xi = L_1 \oplus \cdots \oplus L_n$. Define $c(\xi) = \sum_{i=1}^{n} \exp(c_1(L_i))$.

- Show that the ith Chern class $c_i(\xi)$ of ξ can be written as $e_i(c_1(L_1), \ldots, c_1(L_n))$.
- Use the above result and Newton’s identities to write $c(\xi)$, with ξ still as above, in terms of the Chern classes of ξ. Namely, prove that

$$c(\xi) = \text{rank}(\xi) + \sum_{i=1}^{n} \frac{1}{i!} p_i,$$

where the p_i are the power sums.

- Show that $c(\xi \otimes \eta) = c(\xi)c(\eta)$, and that $c(\xi \oplus \eta) = c(\xi) + c(\eta)$.

This allows us to extend the definition of the Chern character to all vector bundles; this begets a ring homomorphism $\text{ch} : KU(X) \rightarrow \bigoplus_{i=0} H^{2i}(X; \mathbb{Q})$.

It turns out that we can define the Chern character using the theory of formal group laws:

- Show that $KU \wedge H\mathbb{Q}$ is homotopy equivalent to $\bigvee_{i \in \mathbb{Z}} \Sigma^{2i} H\mathbb{Q}$.
- Prove that $\pi_0(KU \wedge H\mathbb{Q})$ is the ring which is “universal” for maps from KU^0 to rings over which the multiplicative formal group is isomorphic to the additive formal group.
- Conclude that the Chern character can be viewed as the map of cohomology theories coming from the map of spectra $KU \rightarrow KU \wedge H\mathbb{Q}$, induced by the unit map $S \rightarrow H\mathbb{Q}$.

References
