
Chapter 1

Motivation

1.1 Introduction: System Failure

Many system failures result not from component failures but from inadequate com-

ponent specifications that are correctly implemented but none-the-less lead to un-

foreseen component interactions [5, 18, 30, 31, 32, 33]. Even if the system failure

can be tracked back to a bad decision made by a software component, usually the

software component made that decision in accordance with its specification. The sys-

tem requirements were known and the software obeyed its component specification,

but the component specifications were insufficient to enforce the system requirement.

For example, a chemical engineer might provide a specification to a software engineer

writing code to control an automatic valve, but omit assumptions that all chemical

engineers take for granted. The software engineer would then provide a piece of soft-

ware in accordance with the written spec, but which violates the implicit intentions

of the chemical engineer.

These incorrect specifications stem from two sources: a shortcoming on the part of

the system engineer to decompose the system requirement into component specifica-

tions, and a failure to unambiguously communicate the specification to the software

engineers (and the other specialized engineers). As software is increasingly deployed

in contexts in which it controls multiple, complex physical devices, this issue is likely

to grow in importance. Software does not wear out and fail in the way that a physical

1

system does, and so the prevailence of software components, systems are harder to

validate in traditional methods (e.g. testing, manual inspection, redundancy). The

emphasis must shift from preventing component failure to inferring and communicat-

ing specifications.

1.1.1 Dependability, Auditability, and Traceability

To be confident that a system meets its requirements, we need something more than

skilled engineers and good process. We need an argument that is founded on concrete,

reproducible evidence that documents why a system should be trusted.

A dependability argument [9] is one that justifies the use of a particular compo-

nent for a particular role in a particular system. It is not an argument about absolute

correctness, and it is not about preventing component failures. Rather, it is about

understanding the interaction of components, and inferring sound component specifi-

cations. In this work, we are primarily concerned with the dependability of software

components.

Building a correct argument is not enough; the argument must also be auditable. It

might be reviewed by a certification authority (such as the FDA, FAA, or NRC [40,

1, 2]), a system engineer deciding if the system is suitable for a slightly different

operating context, an engineer wanting to make a change to the system, or even

an engineer new to the project. As the system evolves, the dependability argument

must be maintainable, as reconstructing a thorough dependability argument after

each change to the system is impractical.

A key part of making an argument auditable and maintainable is providing trace-

ability. Traceability takes two forms: upward and downward. Downward traceability

answers the question “Which components and what properties of those components

ensure that system requirement X is enforced?”, and provide confidence that the

system operates as desired. Upward traceability answers the question “Which system

requirements does component X help enforce, and upon what properties of X do those

requirements rely?”, and allows the system to be more safely modified.

An argument that provides both forms of traceability is termed end-to-end ; it

2

connects the high level system concerns down to the low level component properties,

based on an explicit description of the structure of the intervening layers.

The research community has approached dependability along four, largely inde-

pendent routes. Individually, these styles of approach provide insufficient breadth,

depth, confidence and/or are not economical on complex systems. Our approach

brings together techniques developed in these different contingents to build a com-

posite argument with sufficient breadth, depth, confidence, and at a manageable cost.

Requirements Engineering (RE) focuses on the task of factoring system require-

ments into component specifications. RE techniques typically considers the in-

teractions of the components, but rarely validate the assumptions made about

those components. Roughly speaking, arguments developed in the RE commu-

nity are broad but not deep.

Program Analysis (PA) focuses on establishing specifications of individual soft-

ware components. PA techniques typically do not consider why those speci-

fication are important, just whether or not they might be violated. Roughly

speaking, arguments developed in the PA communities are deep but not broad.

Testing can provide the breadth of RE and the depth of PA, but fundamentally can-

not provide the confidence needed to build a dependability argument. Testing

assures that the system operates correctly in the tested scenarios, but provides

no guarantees about scenarios not specifically tested.

Formal Methods (FM) provide ample confidence, but are too costly to economi-

cally apply to large legacy system. FM have only scaled to large systems when

the systems have been built from scratch in a controlled manner by specially

trained developers [15, 37]. Applied to an existing complex system, they do not

scale adequately to build end-to-end arguments.

Unfortunately, while RE and PA each provide sufficient confidence at acceptable

cost, the specifications generated by RE techniques often do not match up with the

types of properties that PA techniques can validate. The two halves are typically

3

connected only informally by a intuition that certain properties about the code (such

as the lack of buffer overruns) will correspond to system properties (such as the

system being protected from security attacks). There is not a systematic, auditable

argument articulated about why the properties checkable by PA are sufficient to

ensure the properties called for by RE.

1.1.2 Contributions

This research has been conducted in 4 parallel, but interwoven, tracks:

template We have developed Composite Dependability Argument Diagrams (CDAD),

a framework for constructing end-to-end dependability arguments by smoothly

integrating a collection of component arguments.

instantiation We have identified techniques for building pieces of a dependability

argument. We have applied CDAD to these techniques to produce a composite

technique suitable for building dependability arguments for a particular class of

software-intensive system properties.

development Where necessary, we have developed techniques to fill the gaps in

our instantiation. Most prominently, we developed Requirement Progression, a

technique used to connect problem diagrams with code specifications.

case study We have applied that technique to the Burr Proton Therapy Center

(BPTC), a medical system currently being used to treat cancer patients as

Massachusetts General Hospital (MGH).

1.1.3 Proton Therapy

We will evaluate our methodology by using it to build dependability arguments for

aspects of the Burr Proton Therapy Center (BPTC), and reporting the results to the

BPTC personnel.

The Burr Proton Therapy Center is a radiation therapy facility associated with

the Massachusetts General Hospital (MGH) in Boston. In contrast to other forms of

4

radiation therapy, proton therapy is more precise and thus more suitable for tumors

located in sensitive regions of the body such as eyes and brains, or for treating children.

The machine is considered to be safety critical primarily due to the potential for

overdose—treating the patient with radiation of excessive strength or duration. The

International Atomic Energy Agency lists 80 separate accidents involving radiation

therapy in the United States over the past fifty years [47]. The most famous of these

accidents are those involving the Therac-25 machine [34, 23], in whose failures faulty

software was a primary cause. More recently, software appears to have been the main

factor in similar accidents in Panama in 2001 [16].

The BPTC system was developed in the context of a sophisticated safety program

including a detailed risk analysis. Unlike the Therac-25, the BPTC system makes

extensive use of hardware interlocks, monitors, and redundancies. The software it-

self was instrumented with abundant runtime checks, heavily tested, and manually

reviewed.

1.1.4 Evaluation

The success of this research project depends on the credibility of the dependability

analysis performed on the BPTC. We will present our findings to the BPTC personnel,

and record their responses. We will note both how important they say that our

analysis is, and what changes they actually make to the system in light of our findings.

We will produce

• A safety case for the dependability of software system to perform its required

role in the system. This will involve a description of the conditions and as-

sumptions under which the software is suitably dependable, and a structured,

verifiable, and repeatable argument for why those conditions and assumptions

are sufficient.

• A list of undocumented dependencies, assumptions, and vulnerabilities of the

system, and an analysis of their effect on safety. These assumptions will hope-

fully be added to the official BPTC documentation for the system.

5

• A list of actual bugs discovered in the system, software or otherwise.

• A record of the value that the BPTC practicioners say that they find in our

analysis.

• A description of our experience developing the dependability argument, includ-

ing analysis of which parts worked well, which need improvement, and at what

stage during the process different problems were discovered.

6

Chapter 2

Technique

2.1 Dependability Arguments

This section introduces Composite Dependability Argument Diagrams (CDAD), a

systematic means for classifying the different styles of arguments that can be used to

analyze, describe, and document pieces of a system. This classification helps to deter-

mine what properties a given argument style is appropriate for. More importantly, it

cleanly represents how component arguments can be pieced together to form a coher-

ent end-to-end argument with sufficient breadth, depth, and confidence to constitute

a dependability argument.

2.1.1 Granularities

An artifact at one granularity comprises finer grained black boxes plus additional

information about the structure of those pieces. For example, an architecture is a

collection of components plus an organization of the interactions of those components,

and each of those components is, in turn, a collection of modules plus an organization

of the interaction of those modules.

world context The coarsest granularity regards the system architecture as a black

box interacting with the surrounding world and stakeholders. For BPTC, the

world contains domains such as investors, doctors, and FDA regulators, as well

7

as the delivery system itself. The internals of the architecture are hidden from

view, but their interactions, communications, and goals are shown. Legal and

financial concerns are expressed at this granularity, although our work focuses

solely on safety concerns.

architecture The next finer granularity regards the components of the system archi-

tecture as black boxes, and examines how those components communicate and

interact. Refining our view of the BPTC architecture reveals components such

as operators, prescriptions, and the treatment manager. It is at this granularity

that we state safety concerns, such as accurate dose delivery, consistent logging,

and safe shutdown.

component At the next granularity, we regard modules within a components as

black boxes, and examine how those modules interact. In the case of a software

components, the modules might correspond to procedures that are connected

by function calls and shared data. The BPTC treatment manager component

contains modules such as messaging procedures and data structure definitions.

module/procedure At an even finer granularity, blocks within a module are treated

as black boxes, but the structure within the module that links together those

blocks is exposed. For a software module, the blocks might be linear fragments

of code, linked together by conditionals and other non-linear control flow. For

example, the “set equipment” procedure includes a block that initializes some

variables, the code inside the loop that constructs an array of data, and a block

that constructs a message from the array and sends it to the hardware device

driver.

block The finest granularity we consider for a software component is the block level:

individual statements in the code are considered to be black boxes, and we

consider the structure of those statements (according to the the semantics of

the programming language).

8

2.1.2 The Space of Arguments

In system analysis, a claim is often stated at one granularity but established at a

lower granularity. For example, a performance goal might be stated at the world

(highest) granularity but established by examining the reliability of interactions at

the component (middle) granularity. An argument relates a claim at the stated level

with a collection of claims at the established level. An argument justifies the belief

that enforcing the finer grained properties will be sufficient to enforce the coarser

grained property.

An argument’s breadth is the granularity of the stated goal, while its depth is

the granularity into which it recasts that goal. For example, a system refinement

argument might state a claim about the architecture as a whole and recast that claim

into a set of assumptions about the components of the architecture. As we will see

later, a collection of arguments can be strung together to build larger, composite

arguments that connect more varied granularities.

Figure 2-1 characterizes a wide array of argument styles that might be used when

analyzing or designing a software-intensive architecture. The x-axis position of an

argument is its breadth. The narrowest (left-most) arguments deal with goals stated

about code blocks, such as assertions and invariants. The broadest arguments deal

with goals stated about the context in which the architecture operates, such as safety

requirements imposed by regulatory agencies. The y-axis position of an argument is

its depth. The shallowest arguments are established at the world granularity, looking

at the interactions between the system and its stakeholders, but without considering

the architecture of the system. The deepest arguments are established at the code

block granularity, looking at the full semantics of the software.

Thus, an <x, y> point on the graph indicates a style of argument with breadth x

and depth y. Each point is also labeled with examples of techniques commonly used

to construct arguments of that style.

9

2.1.3 Existing Techniques

A particular technique for establishing an argument also has a cost and provides a

certain level of confidence. These characteristics are not shown in Figure 2-1, but

should be kept in mind when comparing or selecting techniques. Figure 2-1 does not

directly represent the cost (both human and computational) of building the different

kinds of arguments. In general, moving deeper (down) and broader (right) raises cost

and/or lowers confidence.

The fields of program analysis (PA) and requirements engineering (RE) are rep-

resented by clusters of argument types in Figure 2-1.

Program analysis techniques (PA) occupy the lower-left-hand region; the prop-

erties are stated and established at a low granularity. PA techniques rarely address

properties stated above the architecture granularity, as such properties are too broadly

stated to be amenable to automatic analysis. We indicate this obstacle with the verti-

cal system complexity barrier along the right-hand side of the PA region in Figure 2-1.

Requirements engineering techniques (RE) occupy the upper-right-hand region;

the properties are stated and established at a high granularity. RE techniques rarely

establish properties below the architecture granularity, as doing so produces descrip-

tions that are too large and complex to be reasoned about. We indicate this obstacle

with the horizontal component complexity barrier along the bottom of the RE region

in Figure 2-1. In fact, most RE techniques focus on establishing properties at the

architecture granularity and stay away from the complexity barrier.

Testing techniques occupy the bottom row of the diagram; they provide deep

analysis at various breadths. Testing can provide the breadth of RE and the depth of

PA, but fundamentally cannot provide the confidence needed to build a dependability

argument. Testing assures that the system operates correctly in the tested scenarios,

but provides no guarantees about scenarios not specifically tested.

The holy grail of software engineering (SE) is to develop a high-confidence eco-

nomical technique at the lower-right-hand-most corner – one that states a property

at the highest (world) granularity and establishes it at the lowest (block) granularity.

10

Unfortunately, getting anywhere near the holy grail requires crossing both complexity

barriers.

2.1.4 Dependability Arguments

Fortunately, most tasks do not require the holy grail and can make do with more

modest approaches. For example, verifying that libraries obey their contracts requires

only a <module, block> style argument, and can be established sing program analysis

techniques such as Forge [13]. Similarly, determining if a given software specification

is sufficient to enforce a given system requirement requires only <architecture, compo-

nent> or better, and can thus be satisfied by requirement progression [51]. However,

the important class of dependability arguments lie outside the ranges of conventional

PA and RE techniques, though still short of the holy grail.

Dependability arguments for software intensive systems should state properties at

the architecture granularity (or higher) and establish those properties at the module

granularity (or lower). For example, part of the BPTC dependability argument is to

establish that patients do not receive more radiation than their prescriptions indicate.

Such an argument should be grounded in the code, so that if the requirement is

changed (e.g. to say that the patient cannot receive less than their prescription

either) or if the system is changed (e.g. to include an additional firing mode), one

can determine which parts of the code need updating, if any.

The shaded region in the lower right-hand corner of Figure 2-1 is the space of

solutions that are appropriate for building this kind of dependability argument. While

we do not need the holy grail to build dependability arguments, we do need something

more than we have – neither PA nor RE techniques have sufficient breadth and

depth to land in the target region. We can, however, synthesize existing PA and RE

techniques, together with some additional work, to create a composite technique that

falls within the target region. The challenge of building synthesis techniques is to

keep the cost from rising too high without letting the confidence drop too low.

11

2.1.5 Synthesis

In order to build more powerful arguments that can address questions of system-wide

dependability, we will need to build composite arguments out of the small pieces.

Under our approach, a composite argument is an alternating sequence of glue and

transition arguments; the transition arguments make progress in refining and justify-

ing the top-level claim, and the glue arguments link the transitions together.

Synthesis is more than picking two techniques that, between them, have sufficient

breadth and depth. The composed techniques must match up (the obligations gener-

ated by one must be discharged by the next), there must be glue to bind them (the

output of one technique must be reconfigured to be a suitable input for the next),

they must be inexpensive enough to be practical, and they must be thorough enough

to provide sufficient confidence.

(a) The techniques need to match up.

We can’t reach the bottom right corner (<world, block>) with a customer inter-

view (<world, world>) and manual reviews of code fragments(<block, block>).

While they have sufficient breadth and depth, they do not connect to each

other: a customer interview produces a claim at the world level, but manual

code reviews only establish claims about individual blocks of code. Code reviews

simply cannot address the kinds of claims generated by a customer interview.

(b) There needs to be glue between the techniques.

We can’t reach <architecture, module> using just functional decomposition

(<architecture, component>) and UML (<component, module>). The claims

generated by function decomposition are at the right level to be established by

a UML analysis, but they may not be in the right form. In order to connect

up the two arguments, a glue argument must be provided (at <component,

component>) to recast the claims generated by functional decomposition with

the claims established by the UML analysis.

(c) The composed techniques must provide sufficient confidence at economical cost.

12

We can reach the bottom right corner (<world, block>) using just deployment

testing (<world, block>), but doing so will not provide sufficient confidence.

While it has sufficient breadth and depth, testing the entire system on real

patients and observing the results does not give us the confidence needed to

certify the system as dependable. Testing fundamentally cannot provide the

level of confidence needed to certify a complex system.

2.2 Structuring a Dependability Argument

Our general approach to constructing composite arguments can be applied to the

BPTC case study by instantiating it with particular component techniques. In Fig-

ure 2-2, we show the techniques we combine, as transitions and glue, to form a

composite technique for building dependability arguments.

Designations : A list of formal terms, both domains and phenomena, which will

be relevant to the argument. Each term is mapped to an informal description,

serving to ground our formality in the real world.

This piece of the argument is of the type <system, system>.

Problem Diagram : The system requirement is initially expressed with a problem

diagram, from the Problem Frames approach [23, 21]. This step recasts the

requirement from its original (possibly informal) statement into a form that is

be amenable to requirement progression. It identifies the domains relevant to

the subsystem under consideration, and the phenomena through which those

domains interact, using the formal terms introduced by the designations.

This piece of the argument is of the type <system, system>.

Requirement Progression / Argument Diagram : The system requirement is

transformed into a software specification using requirement progression [51].

The resulting diagram is called an argument diagram, which is the problem dia-

gram annotated with a collection domain assumptions (breadcrumbs) sufficient

13

to enforce the original system requirement. Domain assumptions about software

components can be used as specifications for those components.

This piece of the argument is of the type <system, component>.

Argument Validation : Along with the argument diagram is an Alloy model which

mechanically confirms that the breadcrumbs do indeed enforce the desired sys-

tem property.

This piece of the argument is of the type <system, component>.

Breadcrumb Assumption Interpretation : The domain properties inferred by

Requirement Progression are interpreted back into the languages of their do-

mains, using the designations, and decomposed into component assumptions

about its domain. Each component assumption is classified as software cor-

rectness (c), software separability (s), or non-software properties (x). The

decomposed assumptions are now amenable to domain specific analysis.

This piece of the argument is of the type <component, component>.

Phenomenon Assumption Interpretation : Problem diagrams contain implicit

assumptions, such as atomicity and inter-domain consistency. These assump-

tions are also interpreted, decomposed, and classified as (c), (s), or (x).

This piece of the argument is of the type <component, component>.

Substantiation : Each of the component assumptions derived from the breadcrumbs

and the phenomena arcs must be verified. In some cases, we discharge this task

to domain experts. In the software cases, we check it ourselves. The remaining

artifacts in this list pertain to incorporating analyses of software components

into the dependability argument.

This piece of the argument is of the type <component, block>.

Flow Diagram / Trace Extraction : An informal annotation of the problem di-

agram, indicating the flow of information through the system. This diagram

14

guides requirement progression and provides an overall structure for the argu-

ment, but does not have a formal semantics. It helps to guide a human in

determining the relevant portions of the code base relevant to a particular as-

sumption. The flow diagram is used to label (and thus implicitly order) the

domains and the letters assigned to arcs. These labels are purely for the sake

of bookkeeping and help us to systematically develop the argument.

This piece of the argument is of the type <component, module>.

Translation & Abstraction : The relevant portions of the code base are abstracted

and translated into the Forge Intermediate Language. This process is currently

performed manually, but full or partial automation is possible.

This piece of the argument is of the type <module, module>.

Forge Analysis : The individual pieces are discharged using existing analysis tech-

niques. Separability assumptions are addressed with impact analysis, and cor-

rectness properties are addressed using a combination of manual inspection and

automatic analysis via the Forge framework.

This piece of the argument is of the type <module, block>.

Together, these component techniques provide an argument at <system, block>,

well within our the zone for Dependability Arguments. The component techniques

provide sufficient confidence to allow the overall argument to be used to certify the

system.

2.3 Background: Problem Frames

The first step of establishing a system requirement is to articulate it. The Problem

Frames approach is a technique for describing and analyzing desired system proper-

ties. The Problem Frames approach offers a framework for describing the interactions

amongst software and other system components [21, 23]. It helps the developer under-

stand the context in which the software problem resides, and which of its aspects are

15

relevant to the design of a solution [19, 22, 28]. Once the requirement is articulated as

a problem diagram, it becomes amenable to more systematic analysis (Section 2.3.1).

The problem frames approach is an example of problem oriented software engi-

neering [27], meaning that it focuses on the context in which a system operates rather

than the internal architecture of the system. It emphasizes the distinction between

phenomena one wishes to constrain and phenomena the software can directly control.

The system requirement is written in terms of the phenomena one wishes to control,

but software specifications should be written in terms of controllable phenomena.

System analysis is a matter of understanding the indirect links between those two

sets of phenomena.

The benefit of this approach is that the analyst formulates the system requirement

in terms of whatever phenomena are most appropriate and convenient. As a result, we

have a higher confidence that the written requirements accurately reflect the intended

requirements. Attempting to directly write the requirement in terms of controllable

phenomena can be subtle and error prone. The problem frames approach separates

the articulation of the requirement from the transformation of that requirement into a

form usable as a specification. In the next section, we describe a technique for helping

the designer reformulate requirements and, in doing so, reveal the assumptions they

rely upon.

2.3.1 Requirement Progression

Requirement progression [48, 50, 51] is a strategy by which requirement progres-

sion can be performed systematically by a series of incremental transformations. For

example, given a system requirement that the log accurately reflect the radiation

delivered to the patient and a Problem Frame description of how the log and pa-

tient (indirectly) interact, an analyst can systematically derive a specification on the

Treatment Control System (TCS) that is sufficient to enforce that requirement. In the

process of performing that derivation, the analyst leaves behind a trail of breadcrumbs

in the form of domain assumptions. The analyst is guaranteed that, so long as those

assumptions hold, the derived specification for the TCS is sufficient to enforce the

16

system requirement.

2.4 Patient Identity Argument

Our technique is perhaps best explained by application to a real problem. Consider

the patient identity subproblem:

If the therapist instructs the proton beam to fire, then either the patient

under the nozzle of the beam will receive the prescription stored in the

database for that patient or the therapist will be notified of a failure.

Safe rrror handling, database initialization, and unsafe prescriptions are separate

subproblems and will not be addressed here. This argument is focused on the problem

of coordinating the therapist’s instructions (entered via a GUI), the database values,

and the hardware device drivers. As a result, we focus primarily on the treatment

manager software at the center of this coordination.

The patient identity subproblem addresses a medium to high severity hazard; it is

potentially life threatening to the patient. Delivering one patient the prescription for

a different patient could result in minor overdoses (medium severity, since treatment

will have to be delayed). Doing so repeatedly could result in a systematic unknown

underdose (high severity since the patient’s cancer will unknowling remain untreated).

Figure 2-3 shows the argument diagram derived from the application of require-

ment progression to the problem diagram. The cross cutting dose delivery property

(assumption 0 in the diagram) has been decomposed into a collection of “breadcrumb”

domain assumptions, each of which only references phenomena from a single domain.

These domain assumptions can be handed off to domain experts and independently

validated. In our work, we focus on the software-related assumptions made about the

Treatment Manager.

We then examine each breadcrumb assumption in turn; we interpet each using the

designations relevant to its domain, thus allowing domain-specific tools and experts

to be applied to validating them. For example, breadcrumb 4b is interpreted as the

following post-condition for the code:

17

pred patient_id_storage [] {

data.data__msg.mixed_array_index[0]

== SCR_A1_PATIENT_SELECTION

data.data__msg.mixed_array_index[1]

== W_PATIENT_SELECT_BTN

current_id_patient

== arg.scrCrtPatientData

.dbs_patient_type__id_patient

}

This property is checked against the code base using the Forge framework [13],

along with some accumpanying liveness checks to mitigate the chance of overcon-

straint. In order for perform these analyses, the C sourcecode must be translated

into the Forge Intermediate Language. This translation is currently performed man-

ually, but is automatable. In progress is a lightweight lexical translation aid to ease

this process.

18

de
pt

h!
 p

ro
pe

rty
 is

 e
st

ab
lis

he
d

at
 th

is
le

0e
l

world conte4t

system
architecture

software
component

module or
procedure

bloc8

breadth! property is stated at this le0el

whole-system
veri!cation
9deployment testing;
<= holy grail>

worl
d c

on
te4

t

sy
ste

m
arc

hit
ec

tur
e

so
ftw

are
co

mpo
ne

nt

mod
ule

 or
pro

ce
du

re

blo
c8

requirement elicitation
9customer inter0iew;
<?@AB; iC>

system speci!cation
9state in!uence diagrams;

Broblem Drames;
system EDEs>

component speci!cation
9@BF design;

sw EDEs;
sw GDEs>

system design
9functional decomp;

problem progression;
automated design analysis>

traceable system design
9H@I< re"nement;
e4hausti0e
design document>

component design:
code structuring

9dependence analysis;
design patterns;

JAKLIGK;
call trees>

proc. speci!cation
9procM signatures;

preLpost conditions>

module design:
proc. verif.
9impact analysis;
pseudoNcode;
"4 point computation;
manual re0iew of a procedure;
OAK; Harun; Dorge;
procM unit testing>

whole prog. verif.
9@strPe;
e4hausti0e manual re0iew;
regression testing>

local verif.
9manual re0iew
of a code fragment;
bloc8 unit testing>

;<

PA

design re!nement
9high le0el
haQard analysis;
IBR architectural
analysis;
DA=@>

Goal:
Eependability

@/A

component(complexity(barrier

sy
st
em
(c
om
pl
ex
ity
(b
ar
rie
r

partial system verif.
9usability testing>

Figure 2-1: A Composite Dependability Argument Diagram (CDAD) showing the
space of arguments that can be constructed about a software-intensive system and
the traceability each such argument provides. Each point represents a style of ar-
gument in which a property is stated at one level (x-axis, breadth) and established
at another (y-axis, depth). Each point is labeled with sample techniques often used
to constructed arguments of that style. Dependability arguments (Goal) are not
addressed by conventional requirements engineering (RE) or program anlaysis (PA)
techniques. Such arguments must address system level properties (or higher) and
establish those properties at the module level (or deeper).

19

res$lting
synthesis

!"#$%&'($)&#*
+,)-."/0!$'%,'/

'##1/+($)&
$&(",+,"('($)&

,"21$,"/"&(
+,)%,"##$)&

'-#(,'3($)&*
4),%"0(,'&#.'($)&

4),%"0'&'.5#$#

!)60!$'%,'/*
(,'3"0"7(,'3($)&

6),.!03)&("7(

#5#("/
',38$("3(1,"

#)9(6',"
3)/+)&"&(

/)!1."0),0
+,)3"!1,"

-.)3:

6)
,.!
03)
&("
7(

#5
#("
/

',
38
$("
3(1
,"

#)
9(6
',
"

3)
/+
)&
"&
(

/)
!1
."0
),

+,
)3
"!
1,
"

-.)
3:

!"
#$
%;
0+
,)
+"
,(5
0$#
0"
#(
'-
.$#
8"
!0
'(
0(8
$#
0."
<"
.

&'"(!$%;0+,)+",(50$#0#('("!0'(0(8$#0."<".

Figure 2-2: The components we synthesize to build a mid-cost, end-to-end depend-
ability arguments.

20

!"#
!reatment#
"anager

+,
-res/ription
+atabase

456
6nter7a/e!herapist

-atient
9:
,eam#

;<uipment

"essages#on#
>etwor@

sele/tion

<uerB+osesCe<uest
<uerB+osesCesult
<uerBDistCesult

settings
interpretationdose

read6+msg
sendD6F!msg

send6+msg
readD6F!msg

name6n7o

!"# patient is
correctly selected

name6n7o#G#sele/tion

!2b# id is interpreted and sent

mapHsele/tion#G#send6+msg

!4# message are transmitted
authentically

sendD6F!msg#G#readD6F!msg

send6+msg#G#read6+msg

!9a# queries re!ect db

<uerBDistCesult#G
names6n7o#I#ina/tiJe

<uerB+osesCesult#G#
<uerB+osesCe<uestHdoses

!;b# id from message
is sent to db

<uerB+osesCe<uest#G#
read6+msg

!;c# queried dose is used
to set equipment

settingsHinterpretation#G#
<uerB+osesCesult

!=# dose delivery

Knames6n7oHname6n7oLHdoses#
G#dose

!2a# interpretation re!ects msg

map#G#readD6F!msg

!;a# list info is sent

<uerBDistCesult#G#
sendD6F!msg

!?# @A operation

settingsHinterpretation#G#dose

all#nM#>umber#N
##one#nHinterpretation

!9b# there is only one id for
each name

all#nM#Ftring#N#one#names6n7oHn

Figure 2-3: Argument diagram for the patient identity subproblem.

21

22

Chapter 3

Feasibility

3.1 Related Work

3.1.1 Requirement Decomposition

Like our Requirement Progression technique, many approaches to system analysis

involve some kind of decomposition of end-to-end requirements into subconstraints,

often recursively.

Assurance and Safety Cases

Assurance and safety cases [3, 30], for example, decompose a critical safety property.

They tend to operate at a larger granularity than problem frames, in which the el-

ements represent arguments or large groupings of evidence, rather than constraints.

Another class of analyses focus on failures rather than requirements (such as HA-

ZOP [41]), in which decomposition is used to identify the root causes of failures. Our

work, like that of assurance cases, provides confidence that a given requirement will

hold, rather than establishing that a particular type of error will not occur.

Leveson’s STAMP approach involves decomposing design constriants, with a focus

on managerial control over the operation of a system [32, 33].

23

I*, Tropos, KAOS

More similar to our approach are frameworks, such as i* [54] and KAOS [11, 12, 8, 6],

that decompose system-level properties by assigning properties to agents that work

together to achieve the goal. For KAOS, patterns have been developed for refining

a requirement into subgoals [12]. In our approach, we have not given a constructive

method for obtaining the new constraint systematically, and the refinement strategies

of KAOS may fill this gap.

Similar to i*, Tropos [7, 17, 43] is based on actors with different goals for the

system and different measures of success. It is focused on early design stages, and

is mostly for human-human communication plus some simulation/evaluation support

for making sense of larger models.

KAOS refinements has been applied to agent-oriented policy decomposition and

applied to Systems of Systems (SoS) [20]. It is used as a means for combatting

emergent behaviors that result from independently designed systems combined into

a single system.

Four Variable Model

The four-variable model [42, 53] makes a distinction, like Problem Frames, between

the requirements, the specification, and domain assumptions. However, in Problem

Frame terminology, it assumes that a particular frame always applies, in which there

is a machine, an input device domain, an output device domain, and a domain of

controlled and monitored phenomena.

Requirement Elicitation

Letier and Lamsweerde show how a goal (requirement) produced from requirement

elicitation can be transformed into a specification that is formal and precise enough to

guide implementation [29]. That approach is centered around producing operational

specifications from requirements expressed in temporal logic, and focuses on proving

the correctness of a set of inference patterns. Such inference patterns are correct

24

regardless of context, in contrast to our approach in which transformations are only

justified by context-specific domain assumptions.

Refinement

Johnson made an early use of the phrase “deriving specifications from requirements”

in 1988 when he showed how requirements written in the relational logic language

Gist can be transformed into specifications through iterative refinement [26]. Each

refinement step places limits on what domains may know and on their ability to

control the world, and exceptions are added to global constraints. A specification

is not guaranteed to logically imply the requirement it grew out of, and the two

descriptions may even be logically inconsistent with each other. In contrast, as we

refine (transform) a requirement, the breadcrumbs we add expand our assumptions

about the domains rather than restricting them, and a specification will always be

consistent with the requirement it enforces.

3.1.2 Problem Frames

Problem Progression

Michael Jackson sketches out a notion of problem progression in the Problem Frames

book [23]. A problem progression is a sequence of Problem Frame descriptions, be-

ginning with the full description (including the original requirement) and ending with

a description containing only the machine and its specification. In each successive

description, the domains connected to the requirement are eliminated and the re-

quirement is reconnected and altered as needed. He does not work out the details of

how one would derive the successive descriptions, but it seems that he had a similar

vision to our own. However, rather than eliminating elements (domains) from the

diagram at each step, our approach adds elements (domain assumptions), providing

a trace of the analyst’s reasoning in a single diagram.

Jackson and Zave use a coin-operated turnstyle to demonstrate how to turn a

requirement into a specification by adding appropriate environmental properties (do-

25

main assumptions) [24]. Their approach is quite similar to our own, and uses a logical

constraint language to express domain assumptions. Our work strives to generalize

the process to be applicable in broader and more complex circumstances, and to

help guide the analyst through the process with the visual notion of pushing the

requirement towards the machine.

Problem Reduction

Rapanotti, Hall, and Li recently introduced problem reduction, a technique that uses

causal logic to formalize problem progression in Problem Frames [46]. Like our own

work, they seek to formalize and generalize problem progression in a way that provides

traceability as well as a guarantee of sufficiency. Problem reduction follows the style

of problem progression described in the Problem Frames book [23], in which the

requirement is moved closer to the machine by eliminating intervening domains.

Calculus of Requirements Engineering

Hall, Rapanotti, Li, and M. Jackson are developing a calculus of requirements en-

gineering based on the Problem Frames approach [27, 35, 36, 45]. They examine

how problems and solutions can be restructured to fit known patterns. Part of their

technique involves transformation rules for problem progression, in which a require-

ment (expressed in CSP) is replaced by an equivalent requirement in an alternate

form. In contrast, our technique is a form of requirement progression, in which the

transformations only change the constraints, not the underlying domain structure.

Furthermore, our transformations are not semantics-preserving; they are justified by

a set of explicit assumptions rather than proofs of equivalence.

3.1.3 Analysis of the BPTC

Jackson and Jackson have examined the gantry creep in the BPTC, in which the angle

of delivery slowly shifts over the course of many treatments of the same patient [10].

Rae et al have used lightweight code analysis to determine conditions under which

26

the BPTC emergency stop button would not operate correctly [44].

Dennis et al have shown how commutitivity analysis can be used to detect race

conditions between operators of a system, even when that system uses atomic single

threaded operations. They apply the technique to the automatic beam scheduler

currently employed in the BPTC [14]

In earlier work, we have used the BPTC to motivate the development of a tech-

nique for performing requirement progression [48, 49, 50, 51].

3.2 Research Schedule

2008 IAP

- select thesis committee

- submit proposal

2008 Spring

- get BPTC feedback on patient id problem

- polish patient id preservation argument

- revisit monitor units & logging case studies

- lightweight C-to-Forge lexical translation, use Toshiba’s implementation?

2008 Summer

- read related work in more detail, write up comparison

- case study expansion and polishing

2008 Fall

- show work to Jay Flanz at BPTC and get final feedback

- defend thesis

- finalize thesis document

27

3.2.1 Flexibility

opportunities to cut
- reduce the extent of monitor units case study (in light of Doug Miller’s exit, the

prior and only real expert on the BPTC code). That case study is a compelling

one, so I hope to push it through despite his absence.

- reduce the extent of the automated support for C-to-Forge translation. Au-

tomating this to some extend is important for being able to handle larger case

studies (such as monitor units), but the tool does not need to be as powerful as

it can be; this thesis is about the technique, not the particular tool support for

that technique.

- focus less on program analysis and more on the requirements engineering. The

contributions of this work are twofold (a) synthesis of techniques into an end-

to-end argument, and (b) the development of requirement progression in order

to enable that synthesis. Since (b) is complete, one option is to focus more on

those aspects of (a).

potential bottlenecks

- time delay in getting feedback from BPTC

- sorting out the complexities of the monitor units example, given that Doug

Miller (an expert on the system) is no longer working at the BPTC

- automating the translation of C to Forge, either with a lightweight syntatic

translation that I write myself or by integrating Toshiba’s implementation

Acknowledgments

This work is part of an ongoing collaboration between the Software Design Group

at MIT and the Burr Proton Therapy Center (BPTC) of the Massachusetts General

Hospital. We appreciate the assistance of Jay Flanz and Doug Miller at the BPTC.

This research was supported, in part, by grants 0086154 (‘Design Conformant

Software’) and 6895566 (‘Safety Mechanisms for Medical Software’) from the ITR

program of the National Science Foundation.

28

!"#$%&#&'$&($#$%)$#*$#+*,,#-&#*(.,/0&0#
*(#$%&#$%&1*12#$%*1#$)13#*1444
!!!!!!"#$%
!!&!!!'()*+,!"#$%
!!-!!!$#*!"#$%!./*!01++!.%
!!2-3!0#$4*!.%!1$5+/"%"

-
+167*0%167*!

8,$*(5*15!*)($89

!!

&
(/*#:(*15!
8(;%*,!57%5<

&
5#$*%=*!;#)!
)%>/1)%:%$*8

2-3

& &! -

*%57$1>/%

'(*1%$*!1"
%$"?*#?%$"
%=(:'+%

*7%#),!($"
81"%')##;8

)%+(*%"
0#)<!@

(+*%)$(*1A%8

%$"?*#?%$"
1$*%6)(*1#$

BCDEF
1$*%6)(*1#$

F)#.+%:
G)(:%8!@
F)#6)%881#$

H#"%!D$(+,818
2G#)6%3

##+!8/''#) !
(++#,!8,$*7%818!

:#"%+

2-3

2-3 &
4.("!8:%++84!1$!
BCDEF!:#"%+

G/*/)%!I#)<J
$#*!*#!.%!1$5+/"%"!1$!C7%818

H/))%$*!I#)<J
*#!.%!1$5+/"%"!1$!C7%818

&
5#:'+%*%$%88K!
'(**%)$8

2-3
+(,#/*K!57%5<K!
8/66%8*1#$

!!

! !

Figure 3-1: Thesis research progress.

29

30

Bibliography

[1] United States Federal Aviation Administration. FAA: Federal aviation adminis-
tration. website, 2008. http://www.faa.gov/.

[2] United States Nuclear Regulatory Agency. U.S. NRC: Protecting people and the
environment. website, 2008. http://www.nrc.gov/.

[3] Air Force, Space Division. System safety handbook for the acquisition manager,
January 1987. SDP 127-1.

[4] Issa Bass. Failure mode and effects analysis - FMEA. website, 2007.
http://www.sixsigmafirst.com/FMEA.htm.

[5] T. E. Bell and T. A. Thayer. Software requirements: are they really a prob-
lem? In Proceedings of the 2nd International Conference on Software Engineer-
ing (ICSE’67), pages 61–68. IEEE Society Press, 1967.

[6] P. Bertrand, Robert Darimont, E. Delor, Philippe Massonet, and Axel van Lam-
sweerde. Grail/kaos: an environment for goal driven requirements engineering.
In Proceedings of the 20th International Conference on Software Engineering
(ICSE’98), Kyoto, Japan, April 1998.

[7] Jaelson Castro, Paolo Giorgini, Stefanie Kethers, and John Mylopoulos.
A requirements-driven methodology for agent-oriented software. In Brian
Henderson-Sellers and Paoli Giorgini, editors, Agent-Oriented Methodologies .
Idea Group Pub, NY, USA, 2005.

[8] Christophe Damas, Bernard Lambeau, P. Dupont, and Axel van Lamsweerde.
Generating annotated behavior models from end-user scenarios. In IEEE Trans-
actions on Software Engineering, Special Issue on Interaction and State-based
Modeling, volume 31, pages 1056–1073, 2005.

[9] Lynette I. Millett Daniel Jackson, Martyn Thomas. Software for Dependable
Systems: Sufficient Evidence? National Academies, Washington, DC, May 2007.

[10] Michael Jackson Daniel Jackson. Separating Concerns in Requirements Analysis:
An Example. Springer-Verlag, 2006.

[11] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed re-
quirements acquisition. Science of Computer Programming, 20(1-2):3–50, 1993.

31

[12] Robert Darimont and Axel van Lamsweerde. Formal refinement patterns for
goal-driven requirements elaboration. In Proceedings of the 4th International
Symposium on the Foundations of Software Engineering (FSE’96), pages 179–
190, San Francisco, Oct 1996.

[13] Greg Dennis. Forge: Bounded program verification. website, 2008.
http://sdg.csail.mit.edu/forge/.

[14] Greg Dennis, Robert Seater, Derek Rayside, and Daniel Jackson. Automating
commutativity analysis at the design level. Proceedings of the International Sym-
posium on Software Testing and Analysis (ISSTA’04), July 2004. Boston, MA,
USA.

[15] Praxis Engineering. Praxis engineering. website, 2008.
http://www.praxiseng.com/.

[16] Food and Drug Administration. FDA statement on radiation overexposures in
panama. www.fda.gov/cdrh/ocd/panamaradexp.html.

[17] Paolo Giorgini, John Mylopoulos, and Roberto Sebastiani. Goal-oriented re-
quirements analysis and reasoning in the Tropos methodology. In Engineering
Applications of Artificial Intelligence, volume 18/2, march 2005.

[18] Sol Greenspan, John Mylopoulos, and Alex Borgida. On formal requirements
modeling languages: RML revisited. In Proceedings of the 16th International
Conference on Software Engineering (ICSE’94), pages 135–147. IEEE Computer
Society Press, 1994.

[19] Charles B. Haley, Robin C. Laney, and Bashar Nuseibeh. Using Problem Frames
and projections to analyze requirements for distributed systems. In Proceedings
of the 10th International Workshop on Requirements Engineering: Foundation
for Software Quality (REFSQ’04), volume 9, pages 203–217. Essener Informatik
Beiträge, 2004. Editors: B. Regnell, E. Kamsties, and V. Gervasi.

[20] Martin Hall-May and Tim Kelly. Defining and decomposing safety policy for sys-
tems of systems. In 24th international conference on computer safety, reliability,
and security (SAFECOMP’05), volume 3688, Fredrikstad, Norway, September
2005. ISBN 3-540-29200-4.

[21] Michael Jackson. Software Requirements and Specifications: a lexicon of practice,
principles and prejudice. Addison-Wesley, 1995.

[22] Michael Jackson. Problem analysis using small Problem Frames. South African
Computer Journal, 22:47–60, March 1999.

[23] Michael Jackson. Problem Frames: analyzing and structuring software develop-
ment problems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2001.

32

[24] Michael Jackson and Pamela Zave. Deriving specifications from requirements:
an example. In Proceedings of the 17th International Conference on Software
Engineering (ICSE’95), pages 15–24, New York, NY, USA, 1995. ACM Press.

[25] Chris W. Johnson. Failure in Safety-Critical Systems: A Handbook of Incident
and Accident Reporting. Glasbow University Press, October 2003.

[26] W. Lewis Johnson. Deriving specifications from requirements. In Proceedings
of the 10th International Conference on Software Engineering (ICSE’88), pages
428–438. IEEE Computer Society, 1988.

[27] Michael A. Jackson Jon G. Hall, Lucia Rapanotti. Problem oriented software
engineering. Technical Report 2006/10, Department of Computing, The Open
University, 2006.

[28] Robin C. Laney, Leonor Barroca, Michael Jackson, and Bashar Nuseibeh. Com-
posing requirements using Problem Frames. In Proceedings of the 12th IEEE In-
ternational Requirements Engineering Conference (RE’04), pages 121–131. IEEE
Computer Science Press, 2004.

[29] Emmanuel Letier and Axel van Lamsweerde. Deriving operational software spec-
ifications from system goals. In Proceedings of the 10th International Symposium
on Foundations of Software Engineering (FSE’02), pages 119–128, 2002.

[30] Nancy G. Leveson. Safeware: system safety and computers. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[31] Nancy G. Leveson. Intent specifications: An approach to building human-
centered specifications. IEEE Transactions on Software Engineering, 26(1):15–
35, January 2000.

[32] Nancy G. Leveson. A new approach to hazard analysis for complex systems. In
International Conference of the System Safety Society, August 2003.

[33] Nancy G. Leveson. A systems-theoretic approach to safety in software-intensive
systems. 1:66–86, 2004.

[34] Nancy G. Leveson and C. Turner. An investigation of the Therac-25 accidents.
IEEE Computer, 7(26):18–41, 1993.

[35] Zhi Li, Jon G. Hall, and Lucia Rapanotti. A constructive approach to Problem
Frame semantics. Technical Report 2004/26, Department of Computing, The
Open University, 2005.

[36] Zhi Li, Jon G. Hall, and Lucia Rapanotti. From requirements to specifications: a
formal approach. In Proceedings of the 2nd International Workshop on Applica-
tions and Advances in Problem Frames (IWAAPF’06), co-located with the 28th
International Conference on Software Engineering (ICSE’06), page 65, Shang-
hai, China, May 2006. ACM Press.

33

[37] S. Liu and R. Adams. Limitations of formal methods and an approach to im-
provement. In APSEC’95: Proceedings of the Second Asia Pacific Software En-
gineering Conference, page 498, Washington, DC, USA, 1995. IEEE Computer
Society.

[38] R. R. Mohr. Failure modes and effect analysis. presentation slides, January 1994.
8th edition, Sverdrup.

[39] Donald A. Norman. Design rules based on analyses of human error. Commun.
ACM, 26(4):254–258, 1983.

[40] United States Department of Health and Human Services. FDA: U.s. food and
drug administration. website, 2008. http://www.fda.gov/.

[41] Henry Ozog. Hazard identification, analysis, and control. Hazard Prevention,
pages 11–17, May-June 1985.

[42] David L. Parnas and Jan Madey. Functional documentation for computer sys-
tems engineering, vol. 2. Technical Report Technical Report CRL 237, McMaster
University, Hamilton, Ontario, Sept 1991.

[43] Tropos Project. Tropos: requirements-driven development for agent software.
website, 2006. http://www.troposproject.org/.

[44] Andrew Rae, Prasad Ramanan, Daniel Jackson, and Jay Flanz. Critical fea-
ture analysis of a radiotherapy machine. In International Conference of Com-
puter Safety, Reliability and Security (SAFECOMP 2003), Edinburgh, Septem-
ber 2003. http://sdg.lcs.mit.edu.

[45] Lucia Rapanotti, Jon G. Hall, and Zhi Li. Deriving specifications from require-
ments through problem reduction. In IEE Proceedings – Software, volume 153:
Issue 5, pages 183–198, October 2006. ISSN: 1462-5970.

[46] Lucia Rapanotti, Jon G. Hall, and Zhi Li. Problem reduction: a systematic tech-
nique for deriving specifications from requirements. Technical Report 2006/02,
Department of Computing, The Open University, Feb 2006. ISSN 1744-1986.

[47] Robert C. Ricks, Mary Ellen Berger, Elizabeth C. Holloway, and Ronald E.
Goans. REACTS Radiation Accident Registry: Update of Accidents in the United
States. International Radiation Protection Association, 2000.

[48] Robert Seater and Daniel Jackson. Problem Frame transformations: Deriving
specifications from requirements. In Proceedings of the 2nd International Work-
shop on Applications and Advances in Problem Frames (IWAAPF’06), co-located
with the 28th International Conference on Software Engineering (ICSE’06),
pages 65–70, Shanghai, China, May 2006. ACM Press.

34

[49] Robert Seater and Daniel Jackson. Problem Frame transformations in the
context of a proton therapy system. Unpublished manuscript. Unpublished
manuscript, 2006.

[50] Robert Seater and Daniel Jackson. Requirement progression in problem frames
applied to a proton therapy system. In Proceedings of the 14th IEEE In-
ternational Requirements Engineering Conference (RE’06), Minneapolis, MN,
September 2006.

[51] Robert Seater, Daniel Jackson, and Rohit Gheyi. Requirement progression in
problem frames: Deriving specifications from requirements. 2007.

[52] Elizabeth A. Strunk and John C. Knight. The essential synthesis of problem
frames and assurance cases. In Proceedings of the 2nd International Workshop
on Applications and Advances in Problem Frames (IWAAPF’06), co-located with
the 28th International Conference on Software Engineering (ICSE’06), pages 81–
86, Shanghai, China, May 2006. ACM Press.

[53] Jeffrey M. Thompson, Mats P. E. Heimdahl, and Steven P. Miller. Specification
based prototyping for embedded systems. In Proceedings of the 6th European
Software Engineering Conference / Proceedings of the 7th ACM SIGSOFT Sym-
posium on the Foundations on Software Engineering (ESEC/FSE’99), number
1687 in LNCS, pages 163–179, September 1999.

[54] Eric S. K. Yu. Towards modelling and reasoning support for early-phase require-
ments engineering. In Proceedings of the 3rd IEEE International Symposium on
Requirements Engineering (RE’97), pages 226–235, Washington DC, USA, Jan
1997.

[55] Marc Zimmerman, Mario Rodriguez, Benjamin Ingram, Masafummi Katahira,
Maxime de Villepin, and Nancy G. Leveson. Making formal methods practical.
In Proceedings of the 19th Digital Avionics Systems Conferences, October 2000.

35

