
Requirement Progression in Problem Frames
Applied to a Proton Therapy System

Robert Seater, Daniel Jackson
Massachusetts Institute of Technology

{rseater,dnj}@mit.edu

Abstract

A technique is presented for obtaining a specification
from a requirement through a series of incremental steps.
The starting point is a Problem Frame description involv-
ing a requirement on the phenomena of the problem do-
main, and a decomposition of the environment into do-
mains, connected to one another and to the machine being
implemented by shared phenomena. In each step, the re-
quirement is moved towards the machine, leaving behind
a trail of ’breadcrumbs’ in the form of domain assump-
tions. Eventually, the transformed requirement references
only phenomena at the interface of the machine and can
therefore serve as a specification. Each step is justified by
an implication that can be mechanically checked, ensuring
that, if the machine obeys the derived specification and the
domain assumptions are valid, the requirement will hold.
The technique is applied to the logging subproblem of a ra-
diotherapy system.

1 Introduction

Many system failures have resulted from implicit (but
incorrect) assumptions about the system’s environment
which, when made explicit, are easily recognized and cor-
rected [2, 6, 20]. As software is increasingly deployed in
contexts in which it controls multiple, complex physical de-
vices, this issue is likely to grow in importance.

The Problem Frames approach offers a framework for
describing the interactions amongst software and other sys-
tem components [14, 15]. It helps the developer under-
stand the context in which the software problem resides,
and which of its aspects are relevant to the design of a solu-
tion [8, 13, 18]. A requirement is an end-to-end constraint
on phenomena from the problem world, which are not nec-
essarily controlled or observed by the machine. During sub-
sequent development, the requirement is typically decom-
posed into a specification (of a machine to be implemented)
and a set of domain assumptions (about the behavior of

physical devices and operators that interact directly or in-
directly with the machine).

Our work aims to create a strategy by which such a de-
composition can be performed systematically by a series of
incremental transformations. Such a process is alluded to in
the Problem Frames book and is termed ’problem progres-
sion’ or ’requirement progression’.

1.1 Context
Our research group has been involved in an ongoing col-

laboration with the Burr Proton Therapy Center (BPTC), a
radiation therapy facility associated with the Massachusetts
General Hospital in Boston, investigating improved meth-
ods for ensuring software dependability.

We are currently investigating the use of Problem Frames
for constructing dependability cases for the BPTC control
software. This work grew out of the difficulty we encoun-
tered at keeping track of a large number of domain proper-
ties and relating them appropriately to the requirements. We
illustrate our approach with a simplified view of the BPTC
system which, although redolent of some of the character-
istics of the actual system, is perhaps not sufficiently com-
plex to properly demonstrate the need for the approach. It
does, however, illustrate the key elements of our approach
in the context in which we are working, and the problem ad-
dressed – logging of dose delivered – is a real and important
one

The various constraints are formalized in the Alloy mod-
eling language, and the Alloy Analyzer [7, 12] is used to
check that the resulting specification and domain assump-
tions do indeed establish the desired system-level logging
property. The decomposition and analysis offer insight into
both the particular subject system and the transformation
strategy in general.
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2 Problem Frames
An analyst has, in hand or in mind, an end-to-end re-

quirement on the world that some machine is to enforce.
In order to implement or analyze the machine, one needs a
specification at the machine’s interface. Since the require-
ment typically references phenomena not shared by the ma-
chine, it cannot serve as a specification. The Problem Frame
notation expresses this disconnect as follows:

Machine
Problem
World

shared
phenomena

s

Requirement
R(r)

referenced
phenomena

r

Figure 1. A generic Problem Frames description.

The analyst has written a requirement (right) describing
a desired end-to-end constraint on the problem world (cen-
ter). The requirement references some subset of the phe-
nomena from the problem world (right arc). A machine
(left) is to enforce that requirement by interacting with the
problem world via shared phenomena (left arc).

For example, in a traffic light system, the problem world
might consist of the physical apparatus (lights and sensors)
and the cars and drivers; the phenomena it shares with the
machine might be the control and monitoring signals; the
requirement might be that cars do not collide, referencing
quite different phenomena (namely, the movement of cars);
and the specification would be the protocol by which the
machine generates control signals in response to the moni-
toring signals it receives.

In general, the problem world is broken into multiple do-
mains, each with its own assumptions. Here, for example,
there may be one domain for the cars and drivers (whose
assumptions include drivers obeying signals), and another
for the physical apparatus (whose assumptions describe the
reaction of the lights to control signals received, and the
relationship between car behaviour and monitoring signals
generated).

To ensure that the system will indeed enforce the require-
ment, it is not sufficient to verify that the machine satisfies
its specification. In addition, the developer must show that
the combination of the specification and assumptions about
the problem world imply the requirement. In general, given
a requirement R over phenomena r, a specification S over
phenomena s, and domain assumptions Di over both phe-
nomena r and s, this implication takes the form

S(s) ∧ Di(s, r) ⇒ R(r)

A problem frame is an archetypal pattern that gives a
particular structure to the domains and their relationships to
the machine and the requirement, and is accompanied by
a frame concern that structures the argument behind this
implication [15]. The traffic light system, for example,
matches the Required Behavior Frame whose frame con-
cern is shown in Figure 2.

Machine Lights Requirement

The Machine 
controls the signal 

pulses according to 
this specification, 

so...

...because the 
signal pulses 
completely 

determine the light 
observations...

...the Requirement 
on car locations and 
positions will hold, 

preventing cars from 
colliding.

signal
pulse

Lights 
Assumption

Specification

Cars
loc
pos

light
obs

...and because the 
light observations 

relate to car 
locations and 

positions like this...

Cars 
Assumption

signal pulse
signal pulse

light obs

light obs
loc
pos

Figure 2. The frame concern for the two-way
traffic light problem.

In practice, the frame concern only gives an outline of
the argument and is too general to give much detail about
the structure of the particular problem at hand. There may
be many interconnected domains, with complex proper-
ties whose relevance is unclear. A systematic approach is
needed for determining which properties of the domains are
relevant, and for obtaining a specification for the machine
that will, in concert with these properties, establish the re-
quirement.

2.1 Problem Frame Transformations

We introduce a process for systematically performing re-
quirement progression – that is, incrementally transforming
a requirement into a specification. A byproduct of the trans-
formations is a trail of domain assumptions, called bread-
crumbs, that justify the progression.

Requirements, specifications, and breadcrumbs are three
instances of domain constraints. Requirements connect
only to non-machine domains, specifications connect only
to the machine domain, and each breadcrumb connects only
to a single non-machine domain.

The only thing barring the requirement from serving as
a specification is that it references the wrong set of phe-
nomena. Of course, altering it to reference the right set of
phenomena (those at the interface of the machine domain)
is no easy matter. The transformation process we describe
is an incremental method for achieving such an alteration.
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2.2 Transformation Process
During the course of the transformation, the

specification-to-be may end up simultaneously con-
necting to both the machine domain and one or more
non-machine domains. It is thus neither a requirement nor
a specification and will be called the goal throughout the
process. At any point in the process is exactly one goal
constraint; the goal begins as the requirement and will
eventually become a specification.

There are three types of steps in the transformation pro-
cess: adding a breadcrumb permits the goal to be rephrased,
which in turn enables a push to change which domains it
connects to. Figure 3 shows an archetype of how these steps
take a goal from being a requirement to being a specifica-
tion.

(a) Add a breadcrumb constraint, representing an assump-
tion about a domain in the problem world. The bread-
crumb can only mention phenomena from a single do-
main connected to the goal (e.g. p1 and p2). It is cho-
sen so as to enable a useful rephrasing (step b). The
breadcrumb is validated by a domain expert.

(b) Rephrase the goal so that it references different phe-
nomena than before (e.g. p1 instead of p2), although
it still only references phenomena from domains to
which it connects. The rephrasing is chosen so as to
enable a useful push (step c). The analyst should ver-
ify that the breadcrumb is sufficiently strong to permit
the rephrasing by establishing the following property:

(breadcrumb ∧ rephrased goal) ⇒ prior goal

(c) Push the requirement so that it connects to some do-
main d′ (e.g. the machine) instead of some domain d
(e.g. the intervening domain). A push from d to d′

is only enabled if d′ contains all phenomena from d
that are referenced by the goal. The constraint itself is
unchanged.

The analyst continues to perform transformations until the
goal connects only to the machine domain. At that point, it
only references phenomena at the interface of the machine
and is a valid specification.

Machine Domainp1
Goal

(Rephrased)
p1

Machine Domainp1

p1

Breadcrumb

p1
p2

Breadcrumb

p1
p2

Goal
(Specification)

Machine Domain
Goal

(Requirement)
p1 p2

Breadcrumb

p1
p2

(b)

(c)

(d)

Machine Domain
Goal

(Requirement)
p1 p2

(a)

Figure 3. An archetypal transformation: (a) Prior
to the transformation (b) A breadcrumb con-
straint is added, representing an assumption
about how the domain relates phenomena p1
and p2. (c) That breadcrumb permits the re-
quirement to be rephrased to reference p1 in-
stead of p2. (d) The rephrasing enables a push,
moving the requirement from the problem-world
domain onto the machine.
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3 Proton Therapy Logging
3.1 System Requirements

There are two top-priority concerns in the BPTC system:
overdose and logging.

Overdose: At no time should the radiation received by
any part the patient’s body exceed the dose stipulated
in the treatment plan.

Logging: The system should write a log that accu-
rately reflects the dose delivered to the patient.

Without an accurate log, clinicians cannot resume an inter-
rupted treatment without risking an overdose.

Each such concern is handled, in the Problem Frames
approach, as a distinct subproblem. The proton therapy de-
velopment involves several other subproblems, such as that
of positioning the patient accurately [11]. We shall consider
only the logging subproblem here.

3.2 Logging Subproblem
The challenge presented by the logging problem is that

neither the physical machine producing the beam nor the
logging disk are completely reliable. For example, the beam
equipment could be shut off by a hardware interlock, or the
logging database might reach its capacity or its disk might
crash. If the log cannot be written, the treatment must be
halted.

We assume that the TCS, however, is a reliable compo-
nent and will therefore be given the responsibility of enforc-
ing the requirement in the face of known unreliabilities of
the other components. If the TCS is found to be unreliable
in ways that prevent it from fulfilling the derived specifi-
cation, then the process must be repeated to find a looser
specification. Doing so is likely to entail making stronger
assumptions about the reliability of other components, or
weakening the requirement.

We assume a standard failure model for the disk sub-
system and the network. Disk writes are atomic – they ei-
ther complete successfully, or fail, leaving the disk unaf-
fected. Messages sent on the network may be dropped, but
are never corrupted or duplicated.

The radiation hardware may fail like a disk, but presents
a harder challenge. A disk write can be made atomic, by
regarding it as not having occurred until a single commit bit
is flipped, until which point the write can be revoked. The
delivery of radiation, in contrast, is irrevocable.

The strategy, therefore, is to deliver the beam in short
bursts, logging each burst as it is occurs. If the disk fails,
no further bursts are delivered. If the delivery mechanism
fails, no further log entries are written. Although the log
might not match the treatment exactly, we are assured that
they deviate by at most a single burst.

The analysis we perform shows how this approach is jus-
tified, and how it results in a distribution of small but subtle
assumptions across the various components of the system.

3.3 The Phenomena
Figure 4 shows a Problem Frame description for the log-

ging sub-problem. 1

A Patient is positioned under the Beam
Equipment in preparation for treatment. The
Treatment Control System (TCS) reads the
patient’s treatment plan and issues an appropriate number
of ReqBurst requests to the Beam Equipment. Each
ReqBurst instructs the equipment to deliver a single
burst of radiation to the patient, DelivBurst, which in
turn raises the total radiation delivered to the patient by one
DoseUnit. After a successful DelivBurst, the Beam
Equipment sends an AckBurst acknowledgement back
to the TCS.

Whenever the TCS issues a ReqBurst, it attempts
to write a record of that dose to the Log by issuing a
ReqWrite request. The Log may then create an Entry
recording that a DoseUnit has been delivered to the pa-
tient. Upon successfully creating an Entry, the Log sends
an AckWrite acknowledgement back to the TCS.

Both the Beam Equipment and the Log are partially
unreliable. The Beam Equipment will never perform a
DelivBurst without first receiving a ReqBurst, but it
may ignore some ReqBursts. Similarly, the Log will
never write erroneous Entries, but it may ignore some
ReqWrite requests (if, for example, the log has reached
its capacity or the disk crashes).

3.4 The Requirement
All constraints, including the initial requirement, are ex-

pressed in the Alloy modeling language, a first-order rela-
tional logic [12, 10]. The Alloy Analyzer can check the va-
lidity of a transformation with a bounded, exhaustive anal-
ysis [7]. Our transformation technique is not tied to Al-
loy; we chose it here because it was familiar to us, be-
cause it provides automatic analysis, and because it allows
a fairly natural expression of the requirement and assump-
tions. An analysis that considered timing issues explicitly
would probably be better expressed in a different notation.

For completeness, we shall include, in addition to the
constraints, the Alloy declarations needed to complete the
model. Alloy keywords are written in boldface. From the
user’s perspective, there are two fundamental sets – a set of
dose units and a set of log entries.

1We use a slightly non-standard notation in our Problem Frame dia-
grams for the arc indicating that domain D controls phenomenon p. Rather
than labeling the arc D!p, we label it p and place an arrow head point-
ing away from D. When not all phenomena shared by two domains are
controlled by the same domain, separate arcs are used.

5



sig DoseUnit { }
sig Entry { }

The requirement is that the number of dose units delivered
to the patient matches the number of entries in the log, with
a margin of error of one unit.

pred Goal1 ( ) {
#Entry = #DoseUnit or
#Entry = #DoseUnit + 1 or
#Entry = #DoseUnit - 1 }

This requirement is loose enough to permit behaviors in
which a burst is both delivered and logged (first line),
logged but not delivered (second line), or delivered but not
logged (third line). However, in either of the latter two
cases, further logging and treatment cannot continue until
the imbalance had been corrected.

The essence of the interaction is that various messages
are exchanged about bursts delivered by the beam machine
(or requested of it). Since each message is about a particu-
lar burst, there is no need to introduce a separate notion of
messages. Rather, we simply introduce a set of bursts

sig Burst { }

and a classification into a collection of (possibly overlap-
ping) sets, consisting of bursts that are delivered, requested,
and acknowledged, and bursts associated with log entries
that are requested and acknowledged.

sig DelivBurst, ReqBurst, AckBurst,
ReqWrite, AckWrite in Burst { }

That is, a burst in the ReqWrite set is one for which a
write request has been issued. If a write acknowledgement
has been issued for that burst, then it will also be in the set
AckWrite.

Our task is to establish a connection between Entries
and DoseUnits, as per the requirement. We will intro-
duce domain assumptions about the Patient and Beam
Equipment to relate DoseUnits to ReqBurst. Do-
main assumptions about the Log will be added to relate
Entries to ReqWrite. The TCS specification will then
constrain ReqBurst and ReqWrite requests, thus indi-
rectly enforcing the original requirement.

3.5 Transformation and Derivation
Initially, the goal constraint is the requirement we want

to enforce. The derivation happens in three stages: First,
we push the goal from the Log to the TCS, and add a
breadcrumb and rephrase the goal as needed to permit that

push. Second, we push the goal from the Patient to
the Equipment, adding another breadcrumb and perform-
ing another rephrasing. Finally, we push the goal from the
Equipment to the TCS, adding a third breadcrumb and
performing a third rephrasing. At that point, the goal only
connects to (only references phenomena from) the machine
domain, and has thus been transformed into a specification.
Figure 5 shows the final state of the Problem Frame descrip-
tion, after the transformation process is complete.

Step 1: from Log to TCS

Our first task is to push the goal from the Log domain onto
the TCS domain. We cannot yet do so because the goal ref-
erences the Entry phenomenon, which is not part of the
TCS. We will thus need to rephrase the goal to reference
phenomena shared with the TCS (ReqWrite, AckWrite)
instead of those known only to the Log (Entries). How-
ever, we first need to introduce a breadcrumb, characteriz-
ing the log, to justify such a rephrasing. That breadcrumb
needs to relate the phenomena that the goal constraint cur-
rently references to those that we would like it to reference.
To that end, we add the following breadcrumb representing
our domain assumptions about Log:

pred LogBreadcrumb ( ) {
#Entry >= #AckWrite
#Entry =< #ReqWrite }

The first constraint says that the number of entries writ-
ten is greater than or equal to the number of write ac-
knowledgments; it allows entries to be written without cor-
responding acknowledgments. The second constraint says
that the number of entries written is less than or equal to the
number of write requests; it allows write requests to be ig-
nored. With this assumption in hand, we rephrase the goal
as follows:

pred Goal2 ( ) {
lone ReqWrite - AckWrite and
(#ReqWrite = #DoseUnit or
#ReqWrite = #DoseUnit + 1) }

The Alloy keyword lone indicates that the following expres-
sion has a cardinality of zero or one.

To confirm that the new breadcrumb and the new goal
together imply the prior goal (the requirement), this is pre-
sented to the Alloy Analyzer as an assertion to be checked:

assert StepOne ( ) {
LogBreadcrumb( ) and Goal2( )
=> Goal1( ) }

check StepOne for 100
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Now that the goal only references phenomena from the re-
cipient domain, it can be pushed from Log to TCS.

Step 2: from Patient to Equipment

We repeat the process to push the goal from Patient to
Beam Equipment by characterizing the Patient do-
main. First, we add the following breadcrumb:

pred PatientBreadcrumb ( ) {
#DoseUnit = #DelivBurst }

which is motivated by the fact that each DelivBurst
event delivers exactly one DoseUnit to the patient, and
that the patient receives no DoseUnits of radiation from
other sources. The breadcrumb permits the goal to be
rephrased as follows:

pred Goal3 ( ) {
lone ReqWrite - AckWrite and
(#ReqWrite = #DelivBurst or
#ReqWrite = #DelivBurst + 1) }

To confirm that the new breadcrumb and the new goal to-
gether imply the prior goal, we present the Alloy Analyzer
with the following assertion to check:

assert StepTwo ( ) {
PatientBreadcrumb( ) and Goal3( )
=> Goal2( ) }

check StepTwo for 100

We can now push the goal from Patient to Beam
Equipment.

Step 3: from Equipment to TCS

We repeat the process a third time to push the goal from
Beam Equipment to TCS. First add the following bread-
crumb:

pred EquipBreadcrumb( ) {
DelivBurst = AckBurst
DelivBurst in ReqBurst }

which says that an acknowledgement must be sent exactly
whenever a burst is delivered, and that a burst may only
be delivered when it is requested. Limited unreliability is
permitted; some requests have no matching delivery. The
goal can now be rephrased like this:

pred Goal4 ( ) {
ReqWrite = ReqBurst
lone ReqWrite - AckWrite
lone ReqBurst - AckBurst }

The first line of the derived specification says that a write
must be requested of the log whenever the beam equipment
is requested to deliver a burst and vice versa. The second
line says that no new write requests can be made if any
write request remains unacknowledged. The third says that
no new burst request can be made if any burst request re-
mains unacknowledged. The machine must wait for both
acknowledgements before issuing another pair of requests.

We present the Alloy Analyzer with the following asser-
tion to check that the final rephrasing was justified by the
breadcrumb:

assert StepThree ( ) {
EquipBreadcrumb( ) and Goal4( )
=> Goal3( ) }

check StepThree for 100

Finally, we push the goal from Beam Equipment to
TCS. At this point, the goal references only phenomena
from TCS and has become a specification.

4 Discussion

One of the primary benefits of the Problem Frames ap-
proach is to force analysts to be explicit about domain as-
sumptions. The strategy we have presented gives some
structure to the process by which such assumptions are ob-
tained and used, in the process of deriving a specification
strong enough to enforce the desired requirement.

4.1 Significance

The BPTC system is considered to be safety critical pri-
marily due to the potential for overdose — treating the pa-
tient with radiation of excessive strength or duration. The
International Atomic Energy Agency lists 80 separate acci-
dents involving radiation therapy in the United States over
the past fifty years [27]. The most famous of these acci-
dents are those involving the Therac-25 machine [20, 21], in
whose failures faulty software was a primary cause. More
recently, software appears to have been the main factor in
similar accidents in Panama in 2001 [5].

The BPTC system was developed in the context of a so-
phisticated safety program including a detailed risk analy-
sis. Unlike the Therac-25, the BPTC system makes exten-
sive use of hardware interlocks, monitors, and redundan-
cies. The software itself is instrumented with abundant run-
time checks, heavily tested, and manually reviewed.
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4.2 Role of the Analyst

The transformation process is systematic but not auto-
matic. The decisions of what breadcrumbs to add, how to
rephrase the goal, and which enabled pushes to enact are
qualitative assessments by the analyst based on experience
or a catalog of patterns and heuristics.

The approach is incremental, and justified by assertions
that involve, in any step, at most the assumptions about a
single domain.

It is not necessary to combine this approach with auto-
matic analysis tools (such as Alloy), although in practice
it is extremely difficult to construct valid arguments with-
out tool support. The same process could be performed us-
ing informal reasoning or a different formal logic and still
be helpful for structuring the argument, making domain as-
sumptions explicit, and providing a trace of the analyst’s
reasoning. The language for representing domain properties
and the method for discharging the rephrasing implications
should be chosen based on the analyst’s experience, the type
of requirement being analyzed, and the level of confidence
desired.

4.3 Mistakes

The power and limitations of our technique can be appre-
ciated by considering some mistakes an analyst might make
while performing the transformations. How each mistake
manifests itself reveals both strengths of our current work
and indicates challenges for future work.

(1) A breadcrumb might be added that is insufficient to
permit the desired rephrasing. In such a case, the an-
alyst would be unable to discharge the required impli-
cation and the rephrasing would not be permitted.

(2) A breadcrumb might be added that represents an in-
valid assumption. At the very least, stating that as-
sumption explicitly will increase the likelihood that it
will be corrected by a domain expert.

(3) A breadcrumb might be added that is correct but which
is stronger than necessary to justify the rephrasing.
There will be no ill effect on the specification, but a
stronger breadcrumb places additional burden on the
domain expert attempting to validate it.

(4) A breadcrumb might be added that is weaker that nec-
essary, forcing the rephrased goal to be stronger that
necessary. The resulting specification will be stronger
than it could have been, making it harder (or impossi-
ble) to implement. The analyst would review the trail
of breadcrumbs to find opportunities for weakening the
goal by strengthening the breadcrumbs.

(5) The original requirement might be too strong to be en-
forced by any (realistically) implementable specifica-
tion. In such a case, the analyst will derive an unrea-
sonably (but necessarily) strong specification, and the
requirement will have to be rethought.

5 Related Work
5.1 Requirement Decomposition

Many approaches to system analysis involve some kind
of decomposition of end-to-end requirements into subcon-
straints, often recursively. Assurance and safety cases [1,
20], for example, decompose a critical safety property.
They tend to operate at a larger granularity than problem
frames, in which the elements represent arguments or large
groupings of evidence, rather than constraints. Analyses
that focus on failures rather than requirements (such as HA-
ZOP [25]) are duals of these approaches, in which decom-
position is used to identify the root causes of failures.

More similar to our approach are frameworks, such as
i* [30] and KAOS [3], that decompose system-level prop-
erties by assigning properties to agents that work together
to achieve the goal. For KAOS, patterns have been devel-
oped for refining a requirement into subgoals [4]. In our ap-
proach, we have not given a constructive method for obtain-
ing the new constraint systematically, and the refinement
strategies of KAOS may fill this gap.

The four-variable model [26, 29] makes a distinction,
like Problem Frames, between the requirements, the spec-
ification, and domain assumptions. However, in Problem
Frame terminology, it assumes that a particular frame al-
ways applies, in which there is a machine, an input device
domain, an output device domain, and a domain of con-
trolled and monitored phenomena.

Letier and Lamsweerde show how a goal (requirement)
produced from requirement elicitation can be transformed
into a specification which is formal and precise enough
to guide implementation [19]. That approach is centered
around producing operational specifications from require-
ments expressed in temporal logic, and focuses on proving
the correctness of a set of inference patterns. Such infer-
ence patterns are correct regardless of context, in contrast
to our approach in which transformations are only justified
by context-specific domain assumptions.

Johnson made an early use of the phrase “deriving spec-
ifications from requirements” in 1988 when he showed how
requirements written in the relational logic language Gist
can be transformed into specifications through iterative re-
finement [17]. Each refinement step places limits on what
domains may know and on their ability to control the world,
and exceptions are added to global constraints. A specifica-
tion is not guaranteed to logically imply the requirement it
grew out of, and the two descriptions may even be logi-
cally inconsistent with each other. In contrast, as we refine
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(transform) a requirement, the breadcrumbs we add expand
our assumptions about the domains rather than restricting
them, and a specification will always be consistent with the
requirement it enforces.

5.2 Problem Frames
Michael Jackson sketches out a notion of problem pro-

gression in the Problem Frames book [15]. A problem pro-
gression is a sequence of Problem Frame descriptions, be-
ginning with the full description (including the original re-
quirement) and ending with a description containing only
the machine and its specification. In each successive de-
scription, the domains connected to the requirement are
eliminated and the requirement is reconnected and altered
as needed. He does not work out the details of how one
would derive the successive descriptions, but it seems that
he had a similar vision to our own. However, rather than
eliminating elements (domains) from the diagram at each
step, our approach adds elements (domain assumptions),
providing a trace of the analyst’s reasoning in a single di-
agram.

Jackson and Zave use a coin-operated turnstyle to
demonstrate how to turn a requirement into a specification
by adding appropriate environmental properties (domain as-
sumptions) [16]. Their approach is quite similar to our own,
and uses a logical constraint language to express domain as-
sumptions. Our work strives to generalize the process to be
applicable in broader and more complex circumstances, and
to help guide the analyst through the process with the visual
notion of pushing the requirement towards the machine.

Rapanotti, Hall, and Li recently introduced problem re-
duction, a technique that uses causal logic to formalize
problem progression in Problem Frames [24]. Like our own
work, they seek to formalize and generalize problem pro-
gression in a way that provides traceability as well as a guar-
antee of sufficiency. Problem reduction follows the style
of problem progression described in the Problem Frames
book [15], in which the requirement is moved closer to the
machine by eliminating intervening domains (as opposed to
our approach in which we instead add domain assumptions).

Hall, Rapanotti, and Li are developing a calculus of re-
quirements engineering based on the Problem Frames ap-
proach [9, 23, 22]. They examine how problems and solu-
tions can be restructured to fit known patterns. Part of their
technique involves a form of requirement progression, in
which a requirement is replaced by an equivalent require-
ment in an alternate form. In contrast, our form of re-
quirement progression is not semantics-preserving and the
transformations are justified by a set of explicit assumptions
rather than proofs of equivalence.
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