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Abstract

A method is introduced for structuring and guiding the development of end-to-end
dependability arguments. The goal is to establish high-level requirements of complex
software-intensive systems, especially properties that cross-cut normal functional
decomposition. The resulting argument documents and validates the justification
of system-level claims by tracing them down to component-level substantiation, such
as automatic code analysis or cryptographic proofs. The method is evaluated on case
studies drawn from the Burr Proton Therapy Center, operating at Massachusetts
General Hospital, and on a cryptographic voting system, developed at the University
of Newcastle.
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Chapter 3

Requirement Progression

3.1 Discussion

3.1.1 Role of the Analyst

The transformation process is systematic but not automatic. The decisions of what

breadcrumbs to add, how to rephrase the requirement, and which enabled pushes

to enact are subjective assessments by the analyst based on experience or a related

frame concern.

This approach is incremental, and justified by assertions that involve, in any step,

at most assumptions about a single domain. While the process involves mostly local

reasoning, the resulting guarantee is a global one – that the specification together

with all the domain assumptions together imply the requirement.

Perhaps the biggest shortcoming of requirement progression is the burden placed

on the analyst to come up with breadcrumbs that are both useful for moving forward

with the progression but also consistent with existing knowledge of the domains.

The task of deciding what responsibilities to assign to each domain is a

fundamentally a judgement call and thus not automatable. However, we envision the

analyst being aided by a catalogue of common transformation patterns to help guide

her in the right directions. That is, given the local structure of a problem diagram

and a desired push, what are the right kinds of breadcrumbs and rephrasings to
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perform? Such heuristics are likely to take into account which domains control which

phenomena and the type of each domain (biddable, causal, lexical) – information

which we currently ignore. Such heuristics can only be properly developed over the

course of many applications, although we will allude to some potential guides as we

discussion the BPTC and Voting case studies in later chapters.

3.1.2 Source of Breadcrumbs

Central to this approach is the introduction of breadcrumb constraints representing

assumptions about the domain behaviors. However, coming up with domain

characterizations that are both useful in moving the progression forward and which

will be certified by an expert can be quite an onerous task. We have considered four

potential sources of breadcrumbs:

analyst’s intuition – The analyst introduces whatever breadcrumbs are useful to

the progression, as long as they seem reasonable. They are later checked by a

domain expert and hopefully validated. If not, the progression will have to be

reworked with a substitute assumption. For this method to be practical, the

analyst must usually generate correct assumptions, as may be the case if the

analyst is one of the system experts or if the system is simple.

explicit list – In a safety critical system, it is may be reasonable to explicitly list all

of the available assumptions for each domain. Such a list might already exist,

or it might be cost effective to generate. The analyst can then browse the list

for useful breadcrumbs. If the list is very large, this method will not be much

different from the first.

implicit encoding – Even if the explicit list of all domain assumptions is large,

there may be a compact encoding of those properties. For example, a state

machine might be an effective way to describe a domain, as opposed to explicitly

describing all of the properties of that state machine. The analyst could use the

compact encoding both as a source of inspiration and as a means of verifying

desired assumptions without consulting the actual domain expert.
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informal description – Full formal encodings of each of the domains is often an

unfulfilled wish. Rather, the analyst faces an informal, although perhaps very

detailed and precise, description of the system components. These informal

descriptions might be in the form of natural language documentation or expert

interviews. They suggest to the analyst what sorts of domain assumptions are

likely to be validated by the experts, although, due to their informality, they

will still produce some false positives.

Any of these options can be appropriate depending on the type of component in

question. Cutting edge designs are most amenable to using analysts intuition, as they

are not nailed down and can be adapted to fit different sets of assumptions. Simple

mechanical components are likely to be amenable to explicit lists, as they have a

short but well-understood set of relevant properties. Mode-based components (such

as a car’s gearshift) are best described with implicit state machine encodings that

reflect the modal nature of the domain. Human operators are best suited to informal

descriptions, since formal statements about human behavior are deceptively certain.

Our experience has been primarily with the fourth case – informal descriptions based

on expert interviews – and that is how we will present the examples in this thesis.

3.1.3 Progression Mistakes

The power and limitations of our technique can be appreciated by considering some

mistakes an analyst might make while performing the transformations. How each

mistake manifests itself reveals both strengths of our current work and indicates

challenges for future work.

(1) A breadcrumb might be added that is insufficient to permit the desired

rephrasing. In such a case, the analyst would be unable to discharge the required

implication and the rephrasing would not be permitted.

(2) A breadcrumb might be added that represents an invalid assumption. At the

very least, stating that assumption explicitly will increase the likelihood that it

will be corrected by a domain expert.
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(3) A breadcrumb might be added that is correct but which is stronger than necessary

to justify the rephrasing. There will be no ill effect on the specification, but a

stronger breadcrumb places additional burden on the domain expert attempting

to validate it.

(4) A breadcrumb might be added that is weaker than necessary, forcing the

rephrased requirement to be stronger than necessary. The resulting specification

will be stronger than it could have been, making it harder (or impossible)

to implement. The analyst would review the trail of breadcrumbs to find

opportunities for weakening the requirement by strengthening the breadcrumbs.

(5) The original requirement might be too strong to be enforced by any (realistically)

implementable specification. In such a case, the analyst will derive an

unreasonably (but necessarily) strong specification, and the requirement will

have to be rethought.

Points 3 and 4 get at the fundamental tradeoff between the strength of the domain

assumptions and the strength of the specification. If a domain assumption is weakened

(thus permitting more behaviors), then typically the specification will have to be

strengthened (thus permitting fewer behaviors). Conversely, weaking the specification

typically requires strengthening the domain assumptions.

3.1.4 Reacting to Rejected Breadcrumbs

If a domain assumption (including a specification that resulted from progressing a

requirement) is rejected by domain experts, there are four actions that might be

taken:

Rework System An extreme option is to drop the assumption entirely and re-

negotiate the requirement so that a different assumption is made upon the

domain in question. This option is typically unavailable as it is costly and

probably exceeds the authority of the analyst and scope of the system project.
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Alter Assumption The best case is that a similar assumption can be written

that will satisfy the domain expert and still provide the needed guarantee for

the argument. This might happen because the domain assumption was too

prescriptive and not sufficient general. Loosening the constraint may allow it to

play the needed role in the argument but to still be consistent with the current

implementation of the domain. This option is often too optimistic and there

really is a fundamental clash between the assumption made and the capabilities

of the domain.

Shift Assumption It may be that the assumption in question is enforceable, just

not by the domain to which it connects. In that case, requirement progression

can be used to shift the assumption to another domain. In doing so a new

(weaker) breadcrumb will be added to the old domain, the old breadcrumb

will be rephrased, and the rephrased breadcrumb will be pushed onto another

(adjacent) domain.

For example, this is the case in the traffic light example given earlier in this

chapter, in figure ??. The requirement states that cars will not collide –

an assumption which connects only to the Cars domain. According to our

progressions rules, no more need be done since the requirement already is in

the form of a domain assumption. However, the expert on the Cars domain will

tell us that the cars domain cannot enforce the non-collision assumption. In

response, we shift the offending assumption over to the Light Unit domain (using

requirement progression, as shown in Figure ??). In doing so, we leave behind

a new breadcrumb that is much weaker and is confirmed by the domain expert.

However, now the Light Unit expert tells us that the rephrased requirement is

not enforceable by the Light Unit domain. We repeat the process, adding a

weaker breadcrumb to the Light Unit and shifting the requirement on to the

Control Unit. Finally, the Control Unit expert tells us that the Control Unit

can enforce that constraint, so we can stop.

By shifting the assumption to a different domain, we have satisfied the domain
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experts but we have increased the traceability footprint of the requirement. Our

argument now shows that the correctness of the requirement depends on three

domains (Cars, Light Unit, Control Unit). If the system cannot be altered, then

this sort of sacrifice must be made.

Change Domain If the domain is a designed or machine domain (in the problem

frames notation) then there is a possibility of changing the domain to match

the requirement, rather than the other way around. This can be the right

option if the requirement is a safety- or mission-critical property, and thus it

is especially important that it have a simple and concise argument (one with a

small traceability footprint). In this case, one may wish to redesign the domain

rather than expand the footprint by shifting the property elsewhere.

For example, back in our traffic light example, we might decide that we cannot

afford to have a footprint that includes all three domains, and that we are willing

to redesign the Cars domain to keep the argument simple. We might install

computer chips into the cars that prevent them from entering an intersection

at the same time. We have increased the complexity of the cars domain and

required that it be redesigned, but we have kept the requirement’s traceability

footprint contained to a single domain.

3.1.5 Progression Uniqueness

One consequence of a human-guided process is that not all humans will produce the

same argument when applying the process. Roughly speaking, deviations can happen

through the selection of different breadcrumbs or through the selection of different

global heuristics.

Adding Different Breadcrumbs

Requirement progression guarantees that the derived breadcrumbs will be sufficient to

enforce the original requirement, but it does not guarantee that they will be necessary

or minimal. In the course of performing progression, it is legal to add breadcrumbs
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that are stronger than what is necessary to proceed. Doing so does not violate the

guarantee that the breadcrumbs are strong enough, but it can introduce undesired

implementation bias and more expensive validation.

It is important that a human be permitted to add assumptions that are stronger

than needed, as a slightly stronger assumption might be much simpler to express and

therefore easier to interpret by a domain specialist. A logically minimal constraint

may not be minimal in complexity or length, and may not form a coherent statement

to a human reader. Our assumptions are only as good as our ability to discharge

them, so it is acceptable to sacrifice minimality in order to improve clarity.

However, within the set of clear and meaningful assumptions, it is better to

pick the weakest, as that incurs less validation work and less implementation bias.

Requirement progression encourages more minimal statements, even though it permits

stronger ones. When adding a breadcrumb, the analyst is not asking “What do I know

about this domain?” but rather “What would let me push the requirement onward?”.

In general, one should assume that a human will apply as little (intellectual) effort

as possible to complete the argument. If the task is phrased as listing facts that are

true of the domain, then it is less effort to just list everything known. If the task

is phrased as making progress pushing the goal towards the machine, then it is less

effort to just list the facts needed to make one more step.

We saw this happen in the traffic light example. The first time through, we omitted

assumptions about the red lights, since we found that we only needed assumptions

about green lights in order to make progress. If one believes the assumptions we

introduced (challenged in Section ??), then the reduced assumptions only mentioning

green lights are easier to enforce, understand, and validate.

Choosing Different Targets Domains

In this chapter, we have guided progression with the heuristic of shifting the

requirement towards the machine domain. The correct execution of progressions

does not rely on that heuristic. There need not be a (unique) machine domain, and

one could pick any target domain to guide progression. For example, in the BPTC
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logging example, we chose the TCS as the target. We could instead have chosen any

of the other domains as the target and still have performed progression.

Having a target articulates the task in the form “Make assumptions that these

domains will handle the parts of the requirement that the target domain cannot

handle”, thus helping to determine what sorts of domain assumptions are likely to be

helpful. Different choices of targets will not change what steps are legal but may affect

which ones are selected by the analyst. From a logical standpoint, given any target,

it is possible to produce the same set of breadcrumbs on the domains. However, from

a process standpoint, different targets may bias humans towards introducing different

assumptions and performing different rephrasings.

Our experience is that it is best to target the domain under design, especially

if it is a software domain. One tends to produce relatively weak breadcrumbs, and

leave much of the strength of the requirement in the goal itself. Breadcrumbs are

often equivalence claims of the form “phenomenon p carries the same information as

phenomenon q if interpreted in this manner...”. Such breadcrumbs lends themselves

to easy rephrasings – just replace references to p in the goal with references to the

indicated interpretation of q. The breadcrumbs introduced in this chapter and in our

later case studies are almost entirely equivalence statements.

Because of this tendency, the harder and more complex parts of the requirement

end up being left over in the final specification constraint (on our target domain),

rather than being spun off as breadcrumbs. This works well if the target is the

domain under design, so that we can ensure the tricky parts are enforced, while only

making weak assumptions about the environment.

3.1.6 Automatic Analysis

It is not necessary to combine this approach with automatic analysis tools (such

as Alloy), although in practice it is extremely difficult to construct valid arguments

without tool support. The same process could be performed using informal reasoning

or a different formal logic and still be helpful for structuring the argument, making

domain assumptions explicit, and providing a trace of the analyst’s reasoning. The
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language for representing domain properties and the method for discharging the

rephrasing implications should be chosen based on the analyst’s experience, the type

of requirement being analyzed, and the level of confidence desired.

3.1.7 Are These Examples Too Small?

One might think that requirement progression will only work on small examples such

as the ones shown in this section. Our experience is that most problems, even very

complex ones, can be represented by relatively simple problem diagrams but that

those diagrams do not quite fit existing frames and frame concerns. For example, in

our work with the BPTC, we have never needed a problem diagram with more than

a dozen domains. As we will see in Chapters 4 and 5, even very complex systems

can have small problem frame diagrams for critical cross-cutting concerns. While

these technique may well scale to more complex diagrams, our experience is that

simple diagrams are preferable and provide sufficient detail to build dependability

arguments.

3.1.8 Related Techniques

Central to our efforts to build dependability cases is the use of problem progression

to derive checkable specifications from system requirements. While progression

has proved to be the right technique in the context of the other techniques we

are composing, other techniques might better fill that gap in the context of other

component techniques. In a different context, one might use similar work that has

been done on synthesizing problem frames with assurance cases [13, 9, 8]. That

work does not integrate as well with relational code analysis tools (like Forge [2]),

and we find it to permit less intuitively phrased requirements (during elicitation and

designation). As such, it does not fill the niche we need filled in our end-to-end

argument.
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Chapter 4

Case Study: BPTC Dose Delivery

4.1 Discoveries

In the course of our analysis, we identified both current and future vulnerabilities

– undocumented assumptions that are critical to system safety. Some of these were

discovered directly by our analysis, and other were discovered simply through the

act of articulating the system architecture and requirements. Our experience is that

much of the safety gains from building a dependability argument come from the mere

act of building the argument, apart from the actual results of the analysis itself. Here,

we make a more general assessment of the primary vulnerabilities of the system.

Current vulnerabilities represent assumptions made in the dependability argument

which are not properly enforced by the relevant components.

SQL injection: While performing separability analysis on the dose information
stored in the database, we discovered that the system is vulnerable to SQL-
injection attacks. The comment field of a patient entry in the database is
permitted to contain arbitrary text, and provides a place for doctors and other
hospital personnel to write free-form comments about the prescribed treatment.
If the comment field contains fragments of SQL syntax, those fragments will be
executed when a query is made of the patient, in turn causing arbitrary changes
to the prescription database.

Such an attack is unlikely, since the system is on a closed network, does not
have public terminals or access points, and is operated by non-malicious users.
Were a hospital employee malicious, there would be easier forms of sabotage.
An attack could be accidentally introduced if a programmer used the patient
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comment field to jot down a note about how to query that patient. However,
the existence of such an attack is more of a concern because it indicates a lack
of care in checking the effects of queries before they are executed. For example,
one might want to include access control to the database, so that only certain
employees can overwrite prescriptions. Doing so would protecting against the
scenario in which the treatment manager generates a bad query that overwrites
prescriptions, as the treatment manager would not have write access and thus
could not corrupt the database.

network delays: If a message is delayed on the network and delivered an hour or
more later, then it might arrive during a different treatment session. If this
happens to a message carrying the current patient’s ID, then the system might
load the last patient’s dose to the next patient.

We were not able to ascertain from the network documentation whether or not
it guaranteed timely delivery of messages: The network is proprietary, so we
cannot directly analyze its sourcecode. The network is no longer commercially
supported, so we cannot ask the network providers. The race conditions and
cache heuristics present in networks make blackbox testing of the system of
limited value.

One could address this concern by adding additional information to each
message, so that old messages can be discarded by the receiver. For example,
messages could include the session ID, and recipients would discard any message
from a prior session. Simply having messages expire after a short time on the
network would help, but would provide less confidence than a direct check –
it would not, for example, protect against expert operators who can send and
resend messages very rapidly.

patient identification: Our largest concern lies in the process by which the human
therapist identifies a patient and selects that patient from a list displayed by
the GUI. As described earlier in this chapter, there are a number of scenarios
whereby a therapist might select the wrong patient, especially if there are a
large number of active patients and if several patients have similar names.

Protecting against such errors is difficult, but there are safeguards that could be
added to the GUI itself. For example, the GUI might recognize similar patient
names (especially ones that are currently not visible on screen), and raise a
warning to the therapist to double check the selection. Alternatively, one might
have an automatic scan of a barcode on the patient ID tag, in parallel to the
human identification process, and halt if the two do not agree.

Future vulnerabilities represent assumptions made in the dependability argument that

were not previously documented, but which turned out to hold when inspected. They

represent properties that might be violated when the system is modified, and thus

should be properly documented in order to permit safe maintenance. For example:
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network: We assume that the network does not drop messages, or that it detects
and resends dropped messages. We assume that the network does not corrupt
messages, or that it has error detecting codes to catch corruptions and resend the
data. The current network infrastructure (RTworks) provides these guarantees
in its documentation.

database: Queries generated about the database make assumptions about the
format and organization of information in the prescription database. It makes
assumptions about the names and orders of columns, and that dose information
is stored in certain units (e.g. joules versus rads). Changing the database
format, even slightly, would require changes to many portions of the treatment
manager code involved in send, receiving, and processing queries and network
messages pertaining to queries.

GUI: The GUI was automatically generated with a commercial tool. If it were
re-generated, it would need to be re-evaluated (unless the generate tool itself
were proven correct). Specifically, we rely heavily on the authenticity of the
information shown to the therapist and the influence of mouse and keyboard
clicks upon the internal state of the GUI and the messages it sends to the
treatment manager.

code structure: The code is overall poorly structured and lacks useful
documentation. As a result, the code is much less transparent than it could
have been, limiting the value of manual code reviews.

The code is written in C and manipulates memory references directly. C is not a
memory safe language, although there are subsets and coding styles that reduce
the risk of memory conflicts.

The code makes extensive use of global variables that are shared between
portions of the code with widely varying functions. There is no access control
to the globals, so non-critical portions of the software can corrupt the data used
by critical portions. As such, the entire code base must be considered critical.

The code has unnecessary redundancy in its data and algorithms. For example,
some data about patient dose is stored in two different global variables, one of
which is used in some procedures and other of which is used in other procedures.
They are currently kept in synch, but such redundancy is a recipe for introducing
errors during modification. Similarly, portions of the algorithmic code are
repeated in different locations, producing a dual-maintenance problem if the
algorithm is updated.

Future vulnerabilities would be a minor concern if the system were never modified.

However, there are a couple of likely scenarios in which the system will be significantly

modified.
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discontinued systems: The network infrastructure currently used (RTworks) has
not been commercially supported for about 5 years. At the time that it was
installed, it was a reputable system that provided the necessary guarantees
for safe operation. However, if new functionality is needed, or if an error is
discovered, an entirely new network infrastructure might need to be added. At
that time, it will be essential to know what guarantees about message delivery
are important to system safety.

hospital additions: The BPTC has plans to add a new firing mode to the system.
Under current firing modes, the beam is fired in a broad and fairly low-
intensity pattern, bathing the tumor in radiation. The proposed mode, called
pencil beam scanning, would rapidly sweep a narrow, high-intensity beam back
and forth across the tumor. Pencil beam scanning provides a more precise
boundary around the tumor and thus causes less collateral damage. Apart
from adding new failure modes to the system (the beam moving too slowly or
halting in place), adding a new firing mode would involve significant changes
to the Treatment Manager and other components in the system. When such a
change is implemented, it will be vital know the set of assumptions that must
be maintained as the components are altered.

In the long term, the BPTC plans to add new treatment rooms, to accommodate
the high demand for proton therapy. Doing so requires minor changes to the
software running in the MCR and to the shared database. These changes would
be less pervasive than adding a new firing mode, but would still require a clear
set of assumptions, lest those assumptions be inadvertently violated during
modification. However, the last time that a room was added (room number
three), it violated the emergency stop button’s ability to halt the beam [11].

Further reflections on our analysis of the BPTC are described in Chapter 7.

4.1.1 Effort

Our analysis required about two months of person-time, counting both the time spend

by our research group and the time spend by MGH employees. Figure 4.1 uses the

BPTC CDAD to break this time down, and reveals that almost half of this time

(three of the eight weeks) was spent on manual translation tasks that have since been

rendered obsolete by automation such as CForge and JForge [2]. Of the remaining five

weeks, one was spent gathering a basic understanding of the system – work that can

be re-used on future dependability arguments for the BPTC. The remaining time is

one person-month of work, and we estimate that matching dependability arguments

could be built for the other high priority concerns for the BPTC in about one month
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Figure 4-1: Time spent building the BPTC dependability argument for dose delivery.

each, adding up to around a year of work. This cost is a bit high, but is a fraction of

the cost of building and testing the system. Less critical systems would justify using

lighter weight analyses, as they could tolerate dependability arguments with lower

confidence.
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Chapter 5

Case Study: Voting Auditability

5.1 Achievements

We articulated the existing intuition for the fidelity, secrecy, and auditability of

the Pret a Voter system, using an unambiguous formal model, and confirmed

those three arguments through automatic analysis of our model. Our analysis not

only demonstrates that the desired properties hold, but it also provides structured,

traceable, and readable argument describing why the system satisfies its requirements.

5.1.1 Clean Division

In building the argument, we separated the system-level arguments from low-level

crypto-graphic arguments. The designers had previously conflated the arguments

together, making reasoning about the system more difficult. Requirement progression

provided such a boundary – it argues why a certain set of assumptions enforce the

requirement, separate from the argument that those assumptions are provided by the

proposed cryptographic protocols. Put another way, we identified the appropriate

level of detail for the system argument – exposing certain properties about the

cryptographic theorems and protocols while hiding others. The automatic analysis

confirms that we exposed an appropriate level of detail.

We also re-enforced our belief that requirement progression is faster and easier
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when supported by an expert-provided intuitive outline for how we expect the

argument to look. That argument guided progression, and allowed us to finish the

process in just a few hours.

5.1.2 Leveraging Fidelity for Secrecy and Auditability

We demonstrated how building the fidelity, secrecy, and auditability arguments in

tandem can make them not only easier but also more thorough.

- We built the fidelity argument using requirement progression, which provided
automatic analysis to confirm the argument. The resulting set of breadcrumb
assumptions were encoded in an Alloy model.

- When we built secrecy, we leveraged that Alloy model in two ways: We used
the structure of the data (the sets and relations) to build the structure of the
adversary’s knowledge base. We used the breadcrumb assumptions to derive a
core set of inferences. Those inferences can be expanded, but we found that just
the derived inferences were enough to model basic attacks against the system’s
secure information.

- The auditability argument rests upon identifying the correct set of properties to
audit. We showed how to read that list off the fidelity and secrecy arguments
– one must audit any assumption in the fidelity argument that references
phenomena that are initially hidden in the secrecy argument. The means by
which one audits those assumptions is a domain-specific question, but we easily
produce a complete list of what needs to be audited.

5.1.3 Discoveries

For the most part, our analysis confirmed the system as proposed. In a couple of

cases, we discovered some minor surprises.

- The Pret a Voter system as proposed uses onions to encode not only the list
of candidate names but also the position of the marking on the re-encrypted
receipts. Our analysis shows that encoding just the list of names is sufficient to
provide the three goals (fidelity, secrecy, auditability). Encoding the markings
does not interfere with those goals, but adds unnecessary complication. In an
actual implementation, it may be useful to encode the markings simply to more

34



fully automate the re-encryption process – so that the entire receipt is encoded
in an onion and there are no slips of paper to pass around.

- Before our collaboration, Peter Ryan had proposed a method for obfuscating
what list of candidates was given to a particular voter, but he was not sure if
that mechanism was necessary. Our analysis shows that it is indeed necessary
to provide secrecy.
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Figure 5-1: Time spent building the fidelity argument.

5.1.4 Effort

Our analysis required two weeks (10 days) of work, counting time spent by all

participants. The fidelity argument took five days of work, four of which were

spent just understanding the system and one of which was spend performing the

actual requirement progression. See Figure 5.1.3. The secrecy argument took four
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Figure 5-2: Time spent building the secrecy argument.

days, two of which were spent building the model framework and two of which were

spent deriving inferences for the adversary. See Figure 5.1.3. Identifying the list of

properties to audit required less than one day.

These counts do not include the time spent by Peter Ryan and his collegues to

establish the assumptions with cryptographic protocols. That work had already been

completed when we performed our analysis, and this timing data only reflects the

additional work needed to build the dependability argument on top of prior work.
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Chapter 6

Related Work
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Chapter 7

Conclusions

We have proposed and applied a methodology with which a skilled analyst can build

end-to-end dependability arguments for complex, software-intensive systems with

reasonable human effort. These arguments not only validate the system design as

whole, but they also provide traceability – linking system level requirements to low

level assumptions about individual components in the system.

7.1 Contributions and Achievements

We introduced requirement progression (Chapter 3), a systematic, guided method

for decomposing a system requirement into a set of component assumptions.

A system requirement articulates the needs of the overall system, but no one

engineer or specialist is qualified to confirm or deny that broad of a requirement,

since it references aspects of many components. The component assumptions

(breadcrumbs) generated by requirement progression articulate important properties

about individual components, which can be independently assessed by appropriate

domain specialists.

The progression process is incremental and local – each step of a progression only

requires the analyst to reason about one domain and its interfaces. We provide a set

of guidelines to help the analyst develop the progression efficiently, which are based

on the structure of the system’s Problem Diagram [6]. The analyst can automatically
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check the steps of the progression (using Alloy [5]), ensuring that the resulting set of

domain assumptions will indeed be strong enough to enforce the original requirement.

We introduced the Component Dependability Argument Diagrams (Chapter 2), a

notation for classifying analysis techniques and for composing them together to form

an integrated end-to-end argument. CDADs show how requirement progression links

into other analyses from related fields of study, helping the analyst select and compose

techniques to build an end-to-end dependability argument.

In the proton therapy case study (Chapter 4), we saw how requirement progression

can be combined with automatic code analysis to discharge domain assumptions on

software components. The resulting argument, illustrated with a CDAD, constitutes

a dependability argument for a critical aspect of a working radiation therapy medical

device.

In the voting case study (Chapter 5), we saw how to analyze a system with

multiple, apparently contradictory, requirements – fidelity, secrecy, and auditability.

By using requirement progression to build an Alloy model of fidelity, we saw how

it was then easier and more systematic to build secrecy and auditability arguments.

The resulting analysis validates the design of the Pret a Voter election scheme [12].

7.2 Limitations

To understand an approach, one must understand its limits – both the incidental

limitations of the particular approach and the inherent limitations of all approaches

in that style. The limitations we discuss below are reasonable restrictions if one wants

to build end-to-end confidence in a system, but it is important to be aware of the sort

of investment one must make and results one can obtain. Much of the future work

(Section 7.4) revolves around reducing or eliminating these limitations.

7.2.1 Vulnerabilities Versus Errors

This sort of system analysis fundamentally discovers vulnerabilities rather than

errors. One sometimes discovers errors in the course of building the argument
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and understanding the needs for the system, but the focus is on the discovery and

documentation of component assumptions. Sometimes the mere act of building

a dependability case will increase dependability simply by focusing attention and

prioritizing concerns about the different components. More typically, errors are

discovered when one attempts to discharge and validate component assumptions,

and the ability to perform that validation limits the errors that can be uncovered in

this manner.

7.2.2 Human Domains

In some domains, discharging assumptions is relatively easy and thorough. For

example, in the BPTC case study (Chapter 4), I showed how to link requirements

progression and system analysis to automatic code analysis. Other technical domains,

such as electro-mechanical devices, can similarly be analyzed by well-established

means.

However, it was hard to analyze human domains – such as a therapist who

identifies a BPTC patient and selects the matching name from a list in the GUI.

Interpreting assumptions made about human processes is low cost but not as

systematic as the rest of our analyses. Even our ad-hoc analysis of such components,

in the BPTC example, revealed a large number of vulnerabilities and critical

undocumented assumptions (Section ??). However, it was unclear now to build proper

confidence that more such assumptions and vulnerabilities do not exist.

Even with trained, experienced operators, it is hard to build confidence. One

of the big concerns in human controlled systems is habituation – experienced

operators get used to the normal modes of operations, and thus become less likely

to notice deviations from the norm. As such, systems with human operators can

actually become less safe the longer they operate, even as the humans become more

experienced. We suspect that extending the type of classification proposed by Donald

Norman [10] would help to provide such confidence.
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7.2.3 Support from Domain Specialists

Building an argument focused on identifying and assessing component assumptions

requires that the analyst have access to experts on the system components – probably

engineers and operators working on particular components of the system under

analysis. We found that the analyst did not need a lot of time from those specialists,

but did need to meet with them in a few key capacities:

initial interviews: The analyst will up-front specialist interviews for each
component component, to build a rough understanding the basic structure of
the domains and their roles in the system. This helps the analyst to build the
initial problem diagram, provides intuition for the overall shape of the argument,
and gives an idea of what sorts of assumptions can be reasonably made about
each component.

assisting analysis: If the analyst directly participates in the analysis of the domain
(as we did with the software of the Treatment Manager at the BPTC), then
additional time will be incurred, depending on the efficiency of the techniques
and confidence demanded.

identifying interface: A skilled analyst must separate the internal details of the
domain (the realm of the specialist) from the interface of the domain (the realm
of the generalist). Assumptions are made about (and phrased in terms of) the
interface, but exactly what internal details are relevant to the interface is not
always obvious. The analyst must resist the pressure from specialists to expose
in inner workings of a domain, and be able to abstract the interface out of the
Specialists (much more detailed) explanation of the entire component.

interpreting assumptions: For each assumption made about a domain, the analyst
must interpret that assumption back into the language of the domain, thus
putting it in a form that the specialists can understand and evaluate. Doing
so requires an understanding of the language and terminology used by the
domain experts, at least at a high level. For example, interpreting a code
assumption involves phrasing it in terms of input and output variables in the
code. In contrast, assumptions about physics devices (e.g. the cyclotron) are
best phrased in terms of the properties of the beam generated (e.g. intensity
and duration).

discharging assumptions: As the argument takes form, the analyst begins to need
to discharge assumptions made about the components, which involves frequent
(but small) questions to be answered by particular specialists.

If no expert is available for one of the components, there are several options available

to the analyst:
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(1) Accept lower confidence in the system as a whole. If one cannot confidently
discharge assumptions about one of the domains, then that becomes a weak
link in the argument that will reduce confidence in the dependability of the
system as a whole.

(2) Rework or replace the component, effectively building a new component for
which you now have an expert. This option can be costly, but is can also fit
with an iterative development process, such as those adhering to Fred Brook’s
advice:

Plan to throw one away. You will do that, anyway. Your only choice
is whether to try to sell the throwaway to customers.

Fred Brooks [4]

(3) Use components that are transparent, clear, or simple. That is, use components
for whom anyone can become an expert through careful examination. Some
components are fundamentally too complex to make transparent to outsiders,
but the general engineering experience is that simpler components are better.

Everything should be made as simple as possible, but not simpler.
Albert Einstein

Confidence in the system relies on both confidence in the system argument and

confidence in the component assumptions that underly that argument. Without both,

confidence is impaired.

7.2.4 Analyst Expertise

The role of analyst – actually building the dependability argument – should, itself,

be treated as a specialized task demanding proper background and training. Only

a small number of analysts are needed, perhaps as few as just one, but that analyst

must have a certain technical aptitude

In general, the analyst must be capable of system level reasoning – a generalist

not a specialist. It is the analyst’s job to to communicate with different kinds of

engineers and extract the relevant information – both a technical skill (getting past

domain specific terminology) and a social skill (convincing engineers to help build the

safety argument and managers that it is a worthwhile expenditure of resources).
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For our approach, the analyst must be capable of using and interpreting formal

notation. We used Alloy as our formal language, although other formalisms can also

be used to articulate the assumptions made during requirement progression. However,

some sort of formal language is needed, both to unambiguously communicate and

record the assumption, and also so that the system argument is amenable to automatic

analysis. The analyst must both translate assumptions and requirements into the

formal language (based on informal descriptions provided by specialists), as well as

being able to interpret the assumptions discovered during requirement progression

back into language that makes sense to the specialists (whose job it is to confirm or

deny those assumptions). The analyst must also be comfortable at rephrasing the

requirement (during the requirement progression process) and structuring/debugging

the associated model.

Relational logic provided us with a useful formalism. We found it to be a fairly

intuitive way to precisely describe requirements (and found that most technical

people, even from other engineering disciplines, could make sense of Alloy statements).

It also fit nicely with the Forge analysis tool [2], which was capable of automatically

discharging relational claims about code fragments.

Domain Knowledge During Validation

When analyzing and interpreting assumptions into domain language (e.g. the code

analysis for the BPTC case study), the analyst must be aware of the kinds of failures

possible in that domain. That is, how might the domain violate the assumption made

about it? This knowledge can come partly from talking to domain experts (personnel

working on the system) but the analyst needs to have a basic idea of what to look

for. Put another way, an analyst should be a generalist capable to talking to a range

of specialists in order to gain an understanding of the relevant domains.

For example, one vulnerability we found on the BPTC involved an SQL injection

attack. We discovered the attack while we were performing a separability analysis to

determine if the data read out of the data base could have been overwritten. While

we did not initially look for SQL injection attacks, we only discovered the attack
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because were were (peripherally) aware of the existence of such attacks. The analysis

uncovered the assumption – the database values are currently the same as when they

were initialized – but the analyst had to come up with the particular failure mode

that could violate that constraint – SQL injection attacks.

This observation ties into our philosophy of providing a technique that is

systematic but not automatic. No tool or technique can substitute for domain

expertise, although our technique helps an analyst decompose a system requirement

(that no one person is qualified to confirm) into a set of domain assumptions (that

individual domain experts are qualified to confirm). We aid the analyst in identifying

what question to ask what specialist, but do not replace the need for the specialists

nor do we replace the need for an analyst who can reason about abstract, system-level

concerns.

7.2.5 Code Analysis

A particular instance of relying on expert specialists to validate assumptions is the

reliance on expert software engineers when analyzing software. We found that, while

automatic analysis eased the process and make it more thorough, it did not substitute

for a well structured or well explained code base. Our analysis of the BPTC code

was dependent on the head programmer (Doug Miller) and his broad understanding

of how the code fit together. When he moved away, our ability to discharge code

assumptions with confidence went down, as it became much harder to identify the

subset of the code relevant to particular assumptions (which was necessary, since our

analysis tools could not scale to the entire code base).

In order to keep performing analyses without an expert on the code base, we would

either have needed a tool that scaled better than Forge (but which could still discharge

arbitrary relational claims), or the code base would have had to be better structured,

so that we could have more easily identified the relevant subset. We suspect that tools

(like Forge) that are expressive enough to handle relational claims about real code

(including loops, recursion, conditionals, arithmetic) will never scale well enough to

handle millions of lines of code without some amount of human assistance.
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The more reasonable path is to demand that the code be structured to reflect

the safety argument and execution modes, thus making it possible to easily and

confidently identify a small portion of the code relevant to a particular concern. While

in theory this might not be possible for an arbitrary algorithm implemented in code, in

practice our impression was that there were no such obstacles facing the BPTC code.

Having written the code once, a complete rewrite of the code (i.e. iterative design)

would have produced code that was transparently correct to an outside observer.

For example, the BPTC code uses many globals that are only used in a few places

(and thus could instead be passed around, have access control, or have not be global

to the entire code). The code also lumps all data of one type together, rather than

all data of one purpose together. For example, all messages are listed in one huge

case statement (which must be kept synchronized with other lists which declare the

valid types of messagers). Modes and sub-modes are kept as separate variables, with

no assertions to maintain the invariant that you are not in mode A while you are also

in a submode of mode B.

In spite of these limitations, this work does show that (even without automatic

tool support or better code structure) it is possible to link requirement progression

to code analysis, thereby building deep end-to-end arguments. The cost of manual

analysis was still a fraction of the cost of building and testing the system, and was

quite reasonable for a safety critical system like the BPTC. If one reduced the cost,

then our techniques would be applicable to a wider range of systems.

7.3 Experience and Reflections

While the research focuses on the technical aspects of building and checking an

argument, a lot of the skill involved is communicating effectively with the specialists

involved in the system.

The art of fortifying does not consist of applying rules or following a
procedure, but of good sense and experience.

Marechal Sebastien le Prestre de Vauban
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(1633-1707, Military Engineer to King Louis XIV)

7.3.1 Types of Personnel

In the course of building the BPTC dependability argument, we talked with the

following types of specialists (ordered with the most frequently accessed personnel

first):

- The lead software engineer and programmer – Doug Miller. Extensive contact
and support during the code analysis. Provided overview of code fragments and
answers to particular questions about blocks of the code.

- The head of the BPTC, responsible for managing, certifying, and providing
funding for the project – Jay Flanz. Extensive contact early in the project,
but less as the analysis moved to lower levels. Useful for identifying whom we
should speak to, and determining the correct set of requirements.

- The head physicist, who works both on calibrating the system, performing
research on it, and helping physicians translate their prescriptions into radiation
treatments. Moderate contact early in the project. Limited contact late in
project. Useful for understanding the precise definition of a correct dose,
including the somewhat subtle definition of location. He also helped describe
the overall system structure.

- Operators who work in the Master Control Room (MCR), coordinating the
therapists in the individual treatment rooms. Moderate contact mid-way
through project. Helpful in understanding day-to-day process and what normal
operating conditions are like, and what sorts of minor errors occur routinely.

- Therapists who directly contact patients and prep them for treatment. Limited
contact due to hospital restrictions about access during operating hours.
Potentially helpful to analyzing patient identification protocol, but not helpful
in practice due to limited availability.

- Physicians who write prescriptions for patients undergoing radiation treatment.
Limited contact during analysis of database. Relevant to the initial assignment
of criticality to hazards, to determine the danger posed by different failure
modes. Would be key to building a more thorough hazard analysis or
requirement elicitation phase.

- Patients undergoing treatment. No contact due to privacy restrictions. Might
have helped understand the patient identification process better, to better
understand the likelihood of different sorts of false-identification scenarios.
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For the voting case study, I spoke almost exclusively with Peter Ryan, who

originally proposed the system and is currently one of the leading researchers

developing it. It is a much smaller system than the BPTC, involving fewer different

types of engineers, and our total analysis took about a quarter of the time (two weeks

instead of two months). Peter Ryan is an academic researcher, with a background

in cryptography and voting systems, and a side interest in system analysis. He thus

played both the role of a specialist (knowing what assumptions could be guaranteed

by cryptographic proofs) and a generalist (giving a summary of the overall system).

Before our collaboration, he already had an intuitive safety argument, which proved

helpful in guiding progression.

7.3.2 Mediums of Communication

Initially, we used the problem diagrams themselves as a means of guiding

communication with the BPTC personnel. However, this proved to be less fruitful

than using the assumptions (generated via requirement progression), as isolated

concrete questions. When shown a high-level overview of the system, the specialists

tended to trust the diagram’s accuracy more than we wanted, and thus not provide

proper feedback on our understanding of the system structure. In contrast, concrete

claims or questions produced elaborate and informed responses.

For example, an early version of the BPTC problem diagram had a direct

connection between the GUI and the prescription database. At one point, the software

lead made an aside along the lines “I guess that’s some sort of abstracted view of

dataflow” when actually it was a mistake – the database information only gets to

the GUI via the TM and network (which were also on that diagram). However,

when shown the matching domain assumption that the messages sent by the GUI are

received by the DB, he immediately pointed out that no such message existed, and

explained the indirect path of communication between those two points. Furthermore,

he pointed to the particular parts of the code relevant to passing that message along

and processing it.

In general, we found that using breadcrumbs as a medium of communication
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was more productive, as they provide concrete questions. The engineers and

specialists tended to be concrete thinkers who were deeply grounded in their particular

component. As such, they were very able to answer very hard (and slightly vague)

questions about their components, but were not able to give us a useful overview of

how the component worked and what key properties it provided.

When we did end up showing problem diagrams to the programmers, we ended up

just pretending they were dataflow diagrams – a more concrete and familiar notation

for a programmer. For the most part, phenomena in our diagrams represented the

flow of information (or the issuing of commands) between components, and so viewing

them as dataflow diagrams was fine for checking our broad understanding.

In the voting case study, Peter Ryan was able to directly understand the Problem

Frame notation, but still needed help in making sense of the details of larger Alloy

models.

7.3.3 Styles of Thinking

While we interacted with only a small sample number of engineers, a few patterns

did emerge about how the different types of engineers tended to describe their

components. The physicists were more apt to think declaratively than the

programmers – they were more apt to give a declarative statement about the

system (such-and-such a property will always be true of the beam) and less likely

to make an operational statement (X happens and so Y then happens). In contrast,

programmers were more able to separate abstraction layers, describing the overall

shape of information in the system without diving into the details of the code (the

A-related stuff happens in this part of the code, and the B-related stuff happen in

this chunk of code). The physicists seemed comfortable with thinking about non-

temporal invariants (X is always greater than Y), but less comfortable deciding what

details to leave out of an explanation. Roughly speaking, physicists told us too much,

programmers told us too little, and we had to adapt our questions accordingly.
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7.3.4 BPTC Safety Culture

The BPTC specialists tended to have broad and deep understandings of their own

domains. The overall system was small enough that there were only a few specialists

of each type, and thus individual people could answer fairly broad questions about a

component. This made it easy to find a specialist qualified to validate a given domain

assumption, or at least to help us in validating it.

However, while the individuals were knowledgeable, the system documentation

was too vague and too sparse. It gave little or no overview of the system nor any

argument for why the system would work, and simply described details of how the

system actually operated. As such, a lot of the relevant knowledge to maintaining

safety is in the heads of the specialists, and is lost when those specialists are replaced

or retire.

The head of the center, Jay Flanz, was very concerned with safety issues, and very

supportive of our efforts to analyze the system. He was unsure of how to build an

appropriate safety argument, and was concerned that the FDA certification process

did not provide the confidence he wanted in the system. He knew that the testing

was not enough, but he was not sure what to do other than add additional safety

interlocks in response to incidents as they occurred.

Overall, the personnel had a conscious understanding of the safety-critical nature

of their device. They understood the different types of dangers presented, reinforced

by their physical proximity to the device (and thus immediate personal concern in

the safety of the proton beam). They had proper respect not only for the immediate

dangers of overdosing a patient, but also the dangers of poor logging or non-graceful

failure modes. While they lacked the techniques and expertise to build a safety

argument for the system, they were motivated and skilled enough to support the

construction of such an argument.
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7.3.5 BPTC Conceptual Mistakes

While maintaining an overall strong safety culture, there were some particular points

wherein the BPTC personnel and management made conceptual mistakes about how

to reason about a complex system.

Criticality Classification

Components were not always properly classified as critical or non-critical, and thus

their reliability was not always appropriated prioritized. Some components were

classified as non-critical, even though they could (if they were replaced by a malicious

or careless implementation) violate safety concerns.

For example, the network was not deemed safety critical, even though emergency

stop commands were transmitted across it [11] and corrupt network messages could

result in patients receiving someone else’s treatment (Chapter 4). Similarly, in earlier

work [3], we analyzed the automatic beam scheduler, responsible for allocating the

proton beam between the treatment rooms. It was classified as non-critical, since the

instruction to fire the beam was controlled by the therapists in the individual rooms.

However, a bad scheduler could cause the beam to turn on or off at unpredictable

times, causing underdoses and treatment delays (and potentially harming confused

therapists or technicians).

In general, the devices classified as non-critical are the devices that we felt should

be non-critical. However, the realities of the system architectures did not not always

provide sufficient separability and modularity, meaning that the safe operation of the

system ended up relying upon a wider range of components than necessary. This

indicates a general need to provide better separation between critical and non-critical

components, so that one can better assign effort to the critical ones and ignore the

less critical ones without undermining confidence in the critical concerns.
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Planning for Change

A lesser concern was with the provision of misguided generality in the software. While

planning for change is difficult, as one does not know exactly how requirements will

change, we found a few cases where a little more forethough would have made the

system much more amenable to safe and easy modification.

For example, the code written to allocate the proton beam to one of the three

rooms [3] also provided a notion of priority, so a therapist could indicate that he or

she has a small child who is getting restless and needs the beam right away. The

priority queue included a three-tiered system for determining which room to allocate

next, including nine total possible priority levels. However, there were only three

rooms, and in practice there are only two priorities – “any time is fine” and “sooner

is better”. The code provided generality for adding more priority levels and more

types of priorities at each level, even though the current priority levels already far

exceeded the system’s needs.

However, the scheduler code did not provide generality for how many rooms there

were. It was originally written for exactly two rooms, and had to be retro-actively

(and inelegantly) extended to handle the 3rd room, when it was later added. The

new code included a lot of duplicated functionality, requiring dual maintenance when

modifications are made. As the center grows to meet the high demand for proton

therapy, the hospital is likely to add more rooms, which will require further extensions

of the code in ways it does not easily accommodate.

Human Versus Machine

The BPTC includes redundant checks and safety interlocks, combining automatic

hardware checks, automatic software checks, and manual human checks. However,

as the center evolved, some portions were over-automated due to inadequate

requirements elicitation.

The Automatic Beam Schedule [3] implements a priority queue, used to

automatically decide which room should currently have access to the proton beam.
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This process was previously handled by live communication (via a telephone) between

the therapist and the Master Control Room (MCR) operator. There are only three

treatment rooms, and a treatment takes about an hour to complete, so the beams

scheduling was not much of a burden on the MCR operator. The system was

automated in response to complaints that the therapists had that they were not sure if

their request was being processed or if their room had been forgotten. As such, what

they needed was better visibility of the current queue, not automatic prioritization

of that queue. A simple system could have provided feedback on the current queue

without adding the risks and complexities of an automatic priority queue.

In contrast, we would like to see more automatic checks in the patient-

identification process, to support the existing human checks. For example, scanning

a barcode on a patient ID rather than reading text by eye would reduce the risk of

selecting a patient with a similar name (and thus delivering the wrong dose).

7.4 Future Work

7.4.1 Tool Support for Progression

The requirement progression process is fundamentally a human process, requiring a

human to guide the introduction of meaningful assumptions. However, tool support

can certainly improve human processes. We currently support the human with

automatic checks of proposed requirement rephrasings. We would like to extend this

support to include automatic suggestions of how to proceed in the progression process,

using a combination of heuristics (such as pushing the requirement arcs towards the

machine domain) and mathematical inferences (such as using prime interpolents to

propose breadcrumbs [1]).

Aside from generating suggestions, simply providing a GUI for building and

maintaining problem diagrams and progressions would make the process more

accessible. Such a GUI could integrate with a back-end Alloy analysis, linking the

constraints in a diagram with the accompanying Alloy model that analyzes those
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constraints.

7.4.2 Code Analysis

The current code analysis required a fairly large amount of human effort, although

only a fraction of that spent on building and testing the system. The introduction

of automatic translation tools, such as CForge and JForge [2], helps to reduce this

time cost. However, the scalability limitations of the Forge analysis still requires

that a human invest time in building an abstraction barrier of specification stubs to

isolate the relevant portion of code. However, we remain tied to Forge for our analysis

because of its unique ability to check arbitrary relational claims (written in Alloy)

against code. This feature permits us to smoothly integrate the code analysis with

the assumptions generated by our Alloy-based requirement progression.

We feel that the gains from smoothly integrating the code analysis (Forge)

with the requirements analysis (requirement progression) justifies the additional

human investment. For costly or safety-critical applications, this tradeoff is sensible.

However, reducing the time investment would broaden the appeal of our techniques,

and make it applicable to a wider range of systems.

As mentioned earlier, one solution is to require better structured code, so that

it is easier to identify the relevant subset. Another approach would be to improve

Forge-like tools to scale better. A third option is to provide better tool support for

automatically identifying the relevant subset. For example, one might run a slicing

algorithm over the code to identify a subset small enough to hand off to Forge.

7.4.3 Integration with STAMP

Our current approach uses hazard analysis to justify the set of requirements analyzed,

but that technique is not as systematic as other component arguments, and thus

weakens the overall confidence of the dependability argument. For example, we

believe that Leveson’s STAMP [7] notation would link requirement progression to

requirements elicitation, justifying why the requirements analyzed by progression are
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indeed the right requirements to be establishing.

7.4.4 Lightweight Techniques

We would like to experiment with applying these techniques to less critical

applications, where the analysis must be cheaper but need not provide as much

confidence. Working on that sort of case study would likely involve

- adding more automation and tool support so that existing techniques are lower
cost,

- using CDADs to select a lighter-weight set of component techniques, and

- being more conscious about the tradeoff, not only between breadth and depth,
but also between cost incurred and confidence provided.

One idea we have begun to develop to help manage that tradeoff is the waterglass

model – an extension of the CDAD notation that guides the distribution of effort or

budget across those techniques based on the confidence they provide and costs they

incur. We provide a glimpse of the waterglass model in the next section.

7.5 Waterglass Model of Budget Allocation

Suppose you have selected a set of techniques that fit together to build an end-to-end

dependability argument, as shown in the CDAD in Figure 7-1. Now you have to

allocate effort amongst those techniques, given a limited budget.

7.5.1 Representing Component Techniques

Think of each component argument as a glass of water, as shown in Figure 7-2.

The height of the glass represents the maximum confidence you could gain from the

technique, the height of water within a glass shows how much confidence you are

gaining given your current investment in the technique, and the diameter of the glass
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Figure 7-1: Techniques linked together to form an end-to-end dependability argument.

represents return on on investment – it takes more water to raise the level of a wider

glass. Your budget is a pitcher of water, which is to be poured into the glasses.

To get an idea of the overall confidence provided by a dependability argument, line

up the glasses side-by-side, as shown in Figure 7-3-a. As a rough approximation, the

confidence provided by the entire argument is the minimum water level of any glass.1

Confidence is maximized by equalizing the water level in all the glasses. Imagine

putting a pipe between the glasses so that they even themselves out, producing the

highest possible minimum (Figure 7-4-b).

1The actual confidence is surely a more complex function, but it is one that punishes you severely
for having one glass much lower than the rest and rewards you very little for having one glass much
higher than the rest. The minimum function is a good approximation for the purposes of this
narration.
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Figure 7-2: Each technique is represented by a glass of water. The height of the glass
shows potential confidence gained, the water level shows the current confidence being
provided, and the diameter represents return on investment.

7.5.2 Classifying Mistakes

This representation allows us to classify some of the ways that a dependability

argument can go wrong.

Figure 7-4 shows cases where one of the glasses has been omitted. In part (a),

requirements gathering has been omitted (right glass). A requirement has been

carefully decomposed into breadcrumbs (center glass), and the breadcrumbs have

been validated (left glass), but the wrong requirement might have been enforced, so

overall confidence is low. In part (b), requirements were carefully gathered (right),

and the system was carefully architected (center), but the components were not

validated (left), leaving overall confidence low. In part (c), the requirements were
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Figure 7-3: Overall confidence in the dependability argument is the minimum
confidence of the component techniques.

well understood (right), and the components were checked carefully (left), but no

argument was made that the component assumptions actually enforced the system

requirement (center), lowering overall confidence.

Figure 7-5 shows cases where techniques were chosen that were not appropriate

given the budget. Part (a) shows a case where a heavyweight theorem proving

technique was used to analyze code (left), as represented by a very wide (but tall)

glass. However, with a low budget, the benefits of theorem proving cannot be realized,

and the wide glass just sucks the water out of the other (much thinner) glasses. Overall

confidence is lower than necessary. Part (b) shows the opposite problem. A set of
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lightweight techniques have been used – they are narrow (fill up quickly) but short

(can only ever provide so much confidence). With a high budget, all three glasses

have been filled up with water to spare (and no where to spend the extra budget).

Overall confidence is lower than necessary.

7.5.3 Shaped Glasses

Actual techniques do not always correspond to cylindrical glasses. For example,

consider the glasses in Figure 7-6. The left-most glass represents a technique with

diminishing returns, such as testing. It takes more water (more test cases) to gain

confidence the higher the level already is (the more tests you have already run).

Each drop of water (test case) adds less confidence than the last. The second glass

represent a technique with a high overhead, such as a custom-build analysis. It

takes a lot of work to setup, but then has high return on investment. The last two

glasses show the tradeoff (discussed earlier) between lightweight and heavyweight

techniques. Heavyweight techniques have the potential to provide high confidence,

but take a large investment to achieve that confidence. Lightweight techniques have

a much lower maximum confidence, but attain that maximum much more quickly.

The shapes of the glasses for particular techniques would be based on empirical data

and historical experience.

Building a dependability argument is thus not only a matter of picking techniques

with appropriate breadth and depth (as shown on the CDAD), but also about

matching the techniques to the budget at hand. The waterglass model has the

potential to guide the selection of techniques and also guide the allocation of budget

to those techniques.
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harms confidence.
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overall confidence. In the second case, the techniques are lightweight but the budget
is high, resulting in wasted budget and lower confidence.
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