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Abstract

A technique is presented for obtaining a specification
from a requirement through a series of incremental steps.
The starting point is a Problem Frame description, involv-
ing a decomposition of the environment into interconnected
domains and a formal requirement on phenomena of those
domains. In each step, the requirement is moved towards
the machine, leaving behind a trail of ‘breadcrumbs’ – par-
tial domain descriptions representing assumptions about
the behaviors of those domains. Eventually, the trans-
formed requirement references only phenomena at the in-
terface of the machine and can therefore serve as a speci-
fication. Each step is justified by a mechanically checkable
implication, ensuring that, if the machine obeys the derived
specification and the domain assumptions are valid, the re-
quirement will hold. The technique is formalized in Alloy
and demonstrated on two examples.

1 Introduction

Many system failures stem from implicit (but incorrect)
assumptions about the system’s environment which, when
made explicit, are easily recognized and corrected [2, 6, 20].
As software is increasingly deployed in contexts in which it
controls multiple, complex physical devices, this issue is
likely to grow in importance. Building an argument is not

enough; one must also explicitly expose all the assumptions
the argument depends on. This not only gives us greater
confidence that the argument is valid now, but also helps
us know if the argument will still apply if the system is
changed. If the changes to the system do not violate the
assumptions used in the argument, then the conclusion of
that argument still holds.

1.1 Our Approach

The problem frames approach offers a framework for de-
scribing the interactions amongst software and other sys-
tem components [12, 14]. It helps the developer under-
stand the context in which the software problem resides,
and which of its aspects are relevant to the design of a so-
lution [8, 13, 17, 18]. In this approach, a requirement is
an end-to-end constraint on phenomena from the problem
world, which are not necessarily controlled or observed by
the machine. During subsequent development, the require-
ment is typically factored into a specification (of a machine
to be implemented) and a set of domain assumptions (about
the behavior of physical devices and operators that interact
directly or indirectly with the machine).

A key advantage of the problem frames approach is that
it makes explicit the argument that connects these elements.
In general, this argument takes a simple form: That the
specification of the machine, in combination with the prop-
erties of the environment, establishes the desired require-
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ment. When the environment comprises multiple domains,
however, the argument may take a more complicated form.
The problem frames representation allows the argument to
be shown in anargument diagram – the problem diagram
embelished with the argument.

In the problem frames book [14], a strategy for con-
structing such arguments, calledproblem progression, is de-
scribed. But, since each step in a problem progression in-
volves deletion of domains from the diagram, the strategy
does not result in an argument diagram; rather, it produces
a series of diagram fragments. The approach described in
this paper, which we callrequirement progression, likewise
aims to produce an argument diagram. Its steps produce
accretions to the diagram, never deletions, and the diagram
resulting from the final step is an argument diagram in the
expected form.

Often, the problem diagram fits a well established pat-
tern (aproblem frame), and the argument required will be
an instantiation of an archetypal argument. As our log-
ging example will illustrate, not all problems match existing
frames, and an argument diagram must be specially con-
structed using progression.

Our approach relies upon the analyst’s ability to accu-
rately distill, disambiguate, and formalize the requirement.
One of the benefits of problem oriented software engineer-
ing [17], of which problem frames is an example, is that the
analyst is permitted to formulate the requirement in terms of
whatever phenomena are convenient for describing the ac-
tual system requirement. For example, a designer of a traffic
light might write a requirement saying “cars going different
directions are never in the intersection at the same time”.
The analyst then methodically transforms the requirement
so that it constrains only controllable phenomena, making
sure that the new version is sufficiently strong to enforce the
original requirement. For example, the traffic light designer
might reformulate the requirement to say “the control unit
sends signals to the traffic lights in the following pattern...”,
and justify the reformulation by appealing to known prop-
erties about how cars and traffic lights behave. Attempt-
ing to write the reformulated version from scratch is error
prone. As with other progression techniques (e.g. [30]), our
goal is to provide support for performing that transforma-
tion systematically and accurately. Our technique is most
appropriate when the requirement can be phrased in a for-
mal language, although the methods we describe could also
guide reasoning about informal requirements.

We demonstrate our technique on two examples. The
first example is of a two-way traffic light similar to the one
described in the problem frames book [14]. It demonstrates
the use of our technique to specialize the correctness argu-
ment of the problem frame that matches the problem dia-
gram. The second example is a simplified view of the log-
ging facility used in a radiation therapy medical system. It

demonstrates the use of our technique when no single ex-
isting problem frame matches the entire problem. These
examples are perhaps not sufficiently complex to properly
demonstrate the need for systematic requirement progres-
sion, but they do illustrate the key elements of our approach
and indicate its strong and weak points.

In both examples, the various constraints are formal-
ized in the Alloy modeling language, and the Alloy An-
alyzer [9, 7, 11] is used to check that the resulting spec-
ification and domain assumptions do indeed establish the
desired system-level properties. The Alloy Analyzer can
check the validity of a transformation with a bounded, ex-
haustive analysis. Our transformation technique is not tied
to Alloy; we chose Alloy because it is simple, was familiar
to us, provides automatic analysis, and allows a fairly natu-
ral expression of the kinds of requirements and assumptions
involved in these examples.

1.2 Context

Our research group has been involved in an ongoing col-
laboration with the Burr Proton Therapy Center (BPTC), a
radiation therapy facility associated with the Massachusetts
General Hospital in Boston, investigating improved meth-
ods for ensuring software dependability. We are currently
investigating the use of problem frames for constructing de-
pendability cases for the BPTC control software. The work
described in this paper grew out of the difficulty we encoun-
tered with keeping track of a large number of domain prop-
erties, relating them appropriately to the requirements and
specifications.

Initially, we used problem diagrams simply to describe
the BPTC system – keeping track of how domains in-
teracted and recording properties about the domains. As
we spent more time interacting with the BPTC engineers,
we found that the problem diagrams were not only useful
recording information they had told us, but also for indicat-
ing what questions to ask. The information they initially
gave us was not enough to build a safety case, yet it was not
clear what additional information would be. There simply
was not time to get full descriptions of all the parts of the
system, so we needed to narrow our questions and focus our
inquiry.

We found that we could use the structure of a problem
diagram to (at least start to) build a safety argument for a
requirement and, by doing so, explicitly expose the assump-
tions we were making about the behavior of different parts
of the system. Once those assumptions were exposed and
articulated, we could ask the BPTC engineers if they were
reasonable. This was a big improvement over our earlier at-
tempts to build safety arguments out of the information the
engineers volunteered on their own or blindly probing their
knowledge of the immensely complex system.

The requirement progression technique described in this
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paper is a more general and systematic way for doing the
kind of reasoning that has helped us communicate with the
BPTC. This method can either be used as a means of fo-
cusing requirements elicitation, or it can be used to build
an auditable argument – one in which an outside reviewer
can understand why the argument is correct. We originally
developed it to help us do the former task, although our cur-
rent work focuses more on the latter task.

1.3 Paper Organization

The rest of the paper is organized as follows:
- Section 2 introduces problem frames.
- Section 3 outlines of our technique for requirement

progression.
- Section 4 demonstrates the technique on a simple traf-

fic light example.
- Section 5 describes an Alloy model of problem dia-

grams.
- Section 6 extends that model to describe our technique

for requirement progression.
- Section 7 demonstrates the technique on a second,

more elaborate, logging example.
- Section 8 reflects on the strengths and weakness of our

technique.
- Section 10 discusses future work.
- Section 9 discusses related work.
- The Appendix gives the full text of the Alloy model

described in Section 5 and 6.

2 Problem Frames

An analyst has, in hand or in mind, an end-to-end re-
quirement on the world that some machine is to enforce. In
order to implement or verify the machine, one needs a spec-
ification at the machine’s interface. Since the requirement
typically references phenomena not shared by the machine,
it cannot serve as a specification. The Problem Frame nota-
tion expresses this disconnect as shown in Figure 11.

The analyst has written arequirement (right) describing
a desired end-to-end constraint on theproblem world (cen-
ter). The requirement references some subset of the phe-
nomena from the problem world (right arc). Amachine
(left) is to enforce that requirement by interacting with the
problem world viainterface phenomena (left arc).

For example, in a traffic light system, the problem world
might consist of the physical apparatus (lights and sensors)

1We deviate slightly from the standard problem frames notation when
drawing an arc indicating that domainD controls phenomenonp. Rather
than labeling the arcD!p, we label itp and place an arrow head pointing
away fromD. When not all phenomena shared by two domains are con-
trolled by the same domain, separate arcs are used. Most of our diagrams
omit indications of control all together, as it is not currently relevant to our
approach.

Machine
Problem

World
interface

phenomena
Requirement

referenced
phenomena

Figure 1. A generic problem frames description
showing the disconnect between the phenom-
ena controlled by the machine (the interface phe-
nomena) and those constrained by the require-
ment (the referenced phenomena).

and external components (cars and drivers), the require-
ment might be that cars do not collide, and the specifica-
tion would be the protocol by which the machine generates
control signals in response to the monitoring signals it re-
ceives. The machine and its specification only have access
to the phenomena pertaining to control and feedback sig-
nals, whereas the requirement is a constraint on the direc-
tions and positions of the cars.

The problem world is broken into multipledomains,
each with its own assumptions. Here, for example, there
may be one domain for the cars and drivers (whose assump-
tions include drivers obeying traffic laws), and another for
the physical control apparatus (whose assumptions describe
the reaction of the lights to control signals received, and the
relationship between car behavior and monitoring signals
generated). Aproblem diagram shows the structure of the
domains and phenomena involves in a particular situation.
One possible problem diagram for the traffic light system is
shown in Figure 2.

Controller Lights No Collisionssignals
Cars and 
Drivers

location
position

observ-
ations

Figure 2. A problem diagram describing the
domains and phenomena for a two-way traffic
light. The arc connecting two domains is la-
beled by the phenomena shared by those do-
mains – those phenomena that both domains in-
volve. The arc connecting the requirement to a
domain is labeled by the phenomen referenced
(constrained) by the requirement.

To ensure that the system will indeed enforce the require-
ment, it is not sufficient to verify that the machine satisfies
its specification. In addition, the developer must show that
the combination of the specification and assumptions about
the problem world imply the requirement. To argue that
the machine, when obeying the specification, will enforce
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the requirement, we must appeal to assumptions about how
the domains act and interact – how lights respond to control
signals, how monitoring signals are generated, how drivers
react to lights, and how cars respond to driver reactions.
Those behaviors are recorded as domain assumptions, as
shown in Figure 3.

Controller Lights No Collisionssignals

Lights 
Assumption

Specification

Cars and 
Drivers

location
position

observ-
ations

Cars 
Assumption

signals
signals

observations

observations
location
position

Figure 3. Assumptions about the intervening do-
mains are expressed as partial domain descrip-
tions in the form of constraints on their behaviors.
These assumptions help us relate the machine
specification to the system requirement. As with
a requirement, the arc connecting an assump-
tion or specification to its domain is labeled with
the phenomena referenced by that assumption.

A problem diagram serves to structure the domains and
their relationships to the machine and the requirement, and
is accompanied by aframe concern that structures the ar-
gument behind this implication. The traffic light system,
for example, matches therequired behavior shown in Fig-
ure 4 [14].

Because the required behavior frame concern is general
enough to match many situations, it only gives an outline
of the correctness argument and serves primarily to focus
attention on the kinds of domain properties upon which the
completed correctness argument is likely to rely. Applying
it to the traffic light problem diagram suggests the argument
structure shown in Figure 5.

This information is a valuable aid in building the full
argument, but would greatly benefit from a systematic ap-
proach for determining exactly which properties of the do-
mains are relevant, deriving an appropriate specification for
the machine, and providing a guarantee that the specifica-
tion and domain properties are sufficient to establish the re-
quirement. This papers describes such an approach.

3 Requirement Progression
In this section, we introduce an incremental way of de-

riving a specification from a requirement via requirement
progression. A byproduct of the progression is a trail of
domain assumptions, calledbreadcrumbs, that justify the
progression and record the line of reasoning that lead to the
specification.

Requirements, specifications, and breadcrumbs are three
instances ofdomain constraints. Requirements can touch
any set of domains but usually touch only non-machine do-
mains; specifications touch only the machine domain; and
each breadcrumb touches only a single non-machine do-
main. The only thing barring the requirement from serv-
ing as a specification is that it mentions the wrong set of
phenomena. Unfortunately, altering it to mention the right
set of phenomena (those at the interface of the machine do-
main) is no easy matter and requires appealing to properties
of the intervening domains. The transformation process we
describe is an incremental method for achieving such an al-
teration and recording the necessary domain properties.

3.1 Available Transformations
There are three types of steps in the transformation pro-

cess:adding a breadcrumb permits the requirement to be
rephrased, which in turn enables apush to change which
domains it touches. Figure 6 shows an archetype of how
these steps can turn a requirement into a specification. In
that example, there is one interface phenomenon controlled
by the machine (p1) and one phenomenon mentioned by the
requirement (p2). The intervening domain involves both of
those phenomena.

(a) Add a breadcrumb constraint, representing an assump-
tion about a domain in the problem world. The bread-
crumb must touch a single domain that is currently
touched by the requirement (and no other domains),
and therefore only mention phenomena from that do-
main (e.g.p1 andp2).2 It is chosen so as to enable
a useful rephrasing (step b). The breadcrumb must be
validated by a domain expert to ensure that it is a valid
characterization of the constrained domain.

(b) Rephrase the requirement so that it represents a dif-
ferent constraint. The new version of the requirement
must touch the same domains, but it may mention (and
thereby constraint) a different subset of the phenom-
ena of those domains (e.g. mentionp1 instead ofp2).
The rephrasing is chosen so as to enable a useful push
(step c).

2The phenomena mentioned by a breadcrumb might be shared amongst
several domains, but there must be a single domain that involves all of
them. It is this domain that the breadcrumb touches.
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Machine Device
Requirement 
on behaviors

The Machine 
generates 
commands 

according to the 
Specification, so...

...because the 
Device exhibits 

behaviors based on 
commands like 

this...

...the Requirement 
on behaviors will 

hold..

commands

commands ~ 
behaviors

Specification 
on 

commands

behaviors

commands
commands
behaviors

Figure 4. An informal argument diagram for the required behavior frame.

Controller Lights No Collisions

The Controller 
controls the signal 

pulses according to 
this Specification, 

so...

...because the 
signal pulses relate 
to light observations 

like this...

...the requirement on 
car locations and 
positions will hold, 

preventing cars from 
colliding.

signals

Lights 
Assumption

Specification 
on signals

Cars and 
Drivers

location
position

observ-
ations

...and because light 
observations relate 
to car locations and 
positions like this...

Cars 
Assumption

signals
signals

observations

observations
location
position

Figure 5. The informal argument diagram that results from applying the required behavior frame to the
two-way traffic light problem diagram. It provides an outline for arguing that the specification enforces the
requirement, and it indicates what sort of domain assumptions will be needed to build that argument.
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Machine Domainp1
Requirement
(Rephrased)

p1

Machine Domainp1

p1

Breadcrumb

p1
p2

Breadcrumb

p1
p2

Requirement
(Specification)

Machine Domain Requirementp1 p2

Breadcrumb

p1
p2

(b)

(c)

(d)

Machine Domain Requirementp1 p2

(a)

Figure 6. An archetypal requirement progres-
sion: (a) Prior to the transformation (b) A bread-
crumb constraint is added, representing an as-
sumption about how the domain relates phenom-
ena p1 and p2. (c) That breadcrumb permits the
requirement to be rephrased to reference p1 in-
stead of p2. (d) The rephrasing enables a push,
moving the requirement from the problem-world
domain onto the machine.

The analyst must verify that existing breadcrumbs are
sufficiently strong to permit the rephrasing by estab-
lishing the implication

(breadcrumb∧ new requirement)
⇒ prior requirement

The means of establishing this implication will depend
on the language used to express the breadcrumb and
requirement constraints.

(c) Push the requirement so that it touches a different
set of domains but still represents the same constraint
over the same phenomena. A push is only permit-
ted if it will perserve the fact that each phenomenon
mentioned by the requirement is involved in some do-
main touched by the requirement, and that every do-
main touched by the requirement involves some phe-
nomenon mentioned by the requirement.

Typically, a push changes the requirement to touch
some domaind′ (e.g. the machine) instead of some
domaind (e.g. the non-machine domain) such that all
the phenomena ofd mentioned by the requirement are
also phenomena ofd′ (e.g.p1). Diagramatically, this
means that only one of the arcs emanating from the re-
quirement is altered, and the phenomena labeling that
arc must be shared betweend andd′. 3

The analyst continues to perform these transformations (in
any order) until the requirement touches only the machine
domain. At that point, it only mentions phenomena at the
interface of the machine and is thus a valid specification.

In theory, one might want to express an assumption that
mentions phenomena that are not involved in any single
domain – the constraint representing such an assumption
would necessarily touch two or more domains and would
therefore be an invalid breadcrumb. Such assumptions in-
hibit local reasoning and are hard to validate, as there may
not be any single domain expert who can certify them. In
practice, we have not found (or been able to construct) an
example where such an assumption is needed. We there-
fore only allow assumptions about intra-domain proper-
ties; inter-domain properties must be factored into several
intra-domain properties (and incorporated as a set of bread-
crumbs).

3If a requirement mentions a phenomenon that is shared between do-
mains, we consider the diagram to be well formed as long as the require-
ment toucheseither of those two domains. It is good style, but not neces-
sary, for the requirement to touch the domain that controls the mentioned
phenomenon. A push transformation will violate that good style but leave
the diagam well formed. Note that the problem frames notation, as given
in the problem frames book [14], is ambiguous about this issue.

6



3.2 Source of Breadcrumbs

Central to this approach is the introduction of bread-
crumb constraints representing assumptions about the do-
main behaviors. However, coming up with domain char-
acterizations that are both useful in moving the progression
forward and which will be certified by an expert can be quite
an onerous task. We have considered four potential sourcess
of breadcrumbs:

• analyst’s intuition – The analyst introduces whatever
breadcrumbs are useful to the progression, as long as
they seem reasonable. They are later checked by a do-
main expert and hopefully validated. If not, the pro-
gression will have to be reworked with a substitute as-
sumption. For this method to be practical, the analyst
must usually generate correct assumptions, as may be
the case if the analyst is one of the system experts or if
the system is simple.

• explicit list – In a safety critical system, it is may be
reasonable to explicitly list all of the available assump-
tions for each domain. Such a list might already exist,
or it might be cost effective to generate. The analyst
can then browse the list for useful breadcrumbs. If the
list is very large, this method will not be much different
from the first.

• implicit encoding – Even if the explicit list of all do-
main assumptions is large, there may be a compact en-
coding of those properties. For example, a state ma-
chine might be an effective way to describe a domain,
as opposed to explicitly describing all of the proper-
ties of that state machine. The analyst could use the
compact encoding both as a source of inspiration and
as a means of verifying desired assumptions without
consulting the actual domain expert.

• informal description – Full formal encodings of each
of the domains is often an unfulfilled wish. Rather,
the analyst faces an informal, although perhaps very
detailed and precise, description of the system com-
ponents. These informal descriptions might be in the
form of natural language documentation or expert in-
terviews. They suggest to the analyst what sorts of do-
main assumptions are likely to be validated by the ex-
perts, although, due to their informality, they will still
produce some false positives.

Our experience with the BPTC has been with the fourth
case, and that is how we will present the examples in this
paper. We have considered building formal models (the
third case) from informal descriptions (the fourth case) as
preprocessing for requirement progression. We discuss this
idea further in Section 9 as future work.

4 Two-Way Traffic-Light
Our first example is of a two-way traffic light, similar to

the one described in the problem frames book [14]. It is a
good example of a problem frame with alinear topology:
the machine and requirement are on opposite ends of a lin-
ear sequence of domains. Requirement progression is sim-
ply a matter of shifting the requirement down that sequence
and onto the machine. Later, in Section 7, we will see how
requirement progression works on abranching topology.
Requirement progression on larger problem frames involves
a combination of both kinds of approaches.

The two-way traffic light is also instructive because it is
a prototypical instance of therequired behavior frame, one
of the five problem frames presented in the problem frames
book [14]. It is thus a good example of how to use our re-
quirement progression technique to specialize the correct-
ness argument suggested by that frame.

The two-way traffic light problem frame is shown in
more detail in Figure 7, along with the requirement we will
focus on in this example.

Control 
Unit

Light Unit Cars

NRobserve
NGobserve
SRobserve
SGobserve

NRpulse
NGpulse
SRpulse
SGpulse

CarDirection
CarOnSegment

no t: time | some c1, c2 : Cars |
   CarDirection(c1, t) = north and
   CarDirection(c2, t) = south and
   CarOnSegment(c1, t) and
   CarOnSegment(c2, t)

Figure 7. A more detailed problem diagram for
the two-way traffic light problem. The constraint
has been formalized and expressed using the Al-
loy language, a relational first-order logic.

The Light Unit has four physical lights: a red light and a
green lights in each direction. The control unit sends signal
pulses to the light unit to individually toggle the four lights
on and off. The cars moving in each direction observe those
traffic signals, and then decide whether or not to enter the
road segment. The requirement is that cars do not collide,
which we will interpret to mean that no two cars are ever on
the road segment at the same time going opposite directions.
However, the control unit has no knowledge of, or control
over, the cars; it can only send signal pulses to the light units
and observe the history of what signals it previously sent.
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4.1 Basic Declarations
For completeness, we shall include, in addition to the

constraints, the Alloy [9, 7, 11] declarations needed to com-
plete the model.

There is a set of cars and two relations about cars:
onSeg is a binary relation mapping each car to the set of
times at which that car is on the road segment. That re-
lation is wrapped by the predicateCarOnSegment[c,
t], which determines if a carc is on the segment at time
t. dir is a ternary relation mapping each car and di-
rection to the set of times at which that car is moving
in that direction. This relation is wrapped in the func-
tion CarDirection[c, t] which returns the direction
a given car is moving at a given time. For the rest of this ex-
ample, we will use the predicate and the function, rather
than their equivalent relations, in order to give our con-
straints a more natural syntax for readers who are not fa-
miliar with relational logic.

sig Cars {
onSeg: set Time,
dir: Direction -> Time }

pred CarOnSegment[c: Cars, t: Time] {
t in c.onSeg }

fun CarDirection
[c: Cars, t: Time] : Direction

{ [c.dir].t }

abstract sig Direction { }
one sig north extends Direction { }
one sig south extends Direction { }

There is a set of times, divided into 8 non-exclusive sub-
sets. For example,NRO represents the subset of times at
which the northern red light is observed, andNRP represents
the set of times at which a signal pulse is sent to the northern
red light. These 8 subsets are wrapped by 8 predicates. For
example,NRobserve[t] determines whether or not the
northern red light is observed at timet, andNRpulse[t]
determines whether or not there was a signal pulse sent to
the northern red light at timet. From now on, we will
use the predicates, rather than the subsets, to make our con-
straints more readable.

sig Time { }

sig NGO, SGO, NRO, SRO in Time { }
pred NGobserve[t: Time] {t in NGO}
pred SGobserve[t: Time] {t in SGO}
pred NRobserve[t: Time] {t in NRO}
pred SRobserve[t: Time] {t in SRO}

sig NGP, SGP, NRP, SRP in Time { }
pred NGpulse[t: Time] {t in NGP}
pred SGpulse[t: Time] {t in SGP}
pred NRpulse[t: Time] {t in NRP}
pred SRpulse[t: Time] {t in SRP}

4.2 The Requirement
The initial requirement that cars do not collide can now

be expressed as follows:

pred Requirement1 [ ] {
no t: Time | some c1,c2: Cars |

CarDirection[c1, t] = north and
CarDirection[c2, t] = south and
CarOnSegment[c1, t] and
CarOnSegment[c2, t] }

The initial problem diagram with this requirement is shown
in Figure 7.

4.3 Step 1: from Cars to Light Units
The first thing we would like to do is to push the re-

quirement from theCars domain onto theLight Unit
domain, following the heuristic of trying to shift the re-
quirement closer to theControl Unit. In order to
justify such a push, we will add a breadcrumb constraint
on Cars which permits us to rephrase the requirement
so that the only phenomena it mentions areNRobserve,
NGobserve, SRobserve, andSGobserve. We will
then be able to push the requirement fromCars onto
Light Unit. These three tasks are illustrated in Figure 8
and narrated below.

(A) Add a Breadcrumb

The frame, shown in Figure 5, suggests that we character-
ize how theCars domain relatesCarDirection and
CarOnSegment with the four observation phenomena.
We do so by adding the following breadcrumb constraint
toCars, expressing the assumption that cars never disobey
red lights. In Alloy, we represent each breadcrumb as a
predicate.
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pred CarsBreadcrumb [ ] {
all t: Time |

not NGobserve[t]
=> no c: Cars |

CarDirection[c,t] = north
and CarOnSegment[c,t]

all t: Time |
not SGobserve[t]

=> no c: Cars |
CarDirection[c,t] = south
and CarOnSegment[c,t] }

This constraint further characterizes theCar domain: at
any given time, if a car does not observe a green light in
its direction, then it cannot be on the road segment.4 The
result of this addition is shown in Figure 8a.

(B) Rephrase the Requirement

Instead of requiring that no two cars be in the intersection
moving in opposite directions at the same time, we can in-
stead require that opposing green lights are never both ob-
served to be green at the same time.

pred Requirement2 [ ] {
no t: Time |

NGobserve[t] and
SGobserve[t] }

The result of this rephrasing is shown in Figure 8b.
To validate the rewrite, we are obliged to show that the

new requirement, conjoined with the new breadcrumb, im-
plies the prior requirement.

assert Step1 {
Requirement2[] and

CarsBreadcrumb[]
=> Requiremet1 [] }

check Step1 for 10

In general, how such implications are discharged will de-
pend on the problem domain and the level of confidence
needed in the requirement. Since our constraints are written
in first-order relational logic, we used the Alloy Analyzer
to perform a bounded, exhaustive check [11, 7]. The check
passed for a scope of 10, meaning that the property is not
violated by any situation with up to 10 cars and up to 10
points in time5.

4For the sake of simplicity, we will ignore the delays between when a
light observation is made and when car positions change in response to that
change. There is no time allowed for the intersection to clear, and there is
no yellow light.

5Each execution of the Alloy model was solved instantaneously on a

(C) Push the Requirement

The only phenomena mentioned by the new requirement are
NGobserve andSGobserve. Since those phenomena
are shared by both theCars andLight Unit domains,
we are permitted to push the requirement from one to the
other. The result of this push is shown in Figure 8c.

4.4 Step 2: From Light Unit to Control
Unit

The requirement is now one step away from being a spec-
ification. We repeat the process to shift the requirement the
rest of the way onto theControl Unit domain (the ma-
chine). In order to do so, we will need add another bread-
crumb and perform another rephrasing of the requirement.
This process is illustrated in Figure 9 and narrated below.

(A) Add a Breadcrumb

Once again, we appeal to the frame (Figure 5) for guidance
on what breadcrumb to add. This time, we need to make
an assumption about theLight Unit domain that will
help us reconcile the observation and signal pulse phenom-
ena. If we assume that the parity of signal pulses determines
how the lights are observed, then we can substitute mentions
of signal pulses for mentions of observations. We do so
by adding the following breadcrumb constraint toLight
Unit about the electrical wiring of the unit and about the
reliability of observations:

pred LightUnitBreadcrumb [ ] {
all t: Time |

NGobserve[t] <=>
odd[NGpulse,t] and

SGobserve[t] <=>
odd[SGpulse,t] }

whereodd is a function that determines the parity of the
number of occurrences of the given phenomenon up to the
given time. The most recent breadcrumb therefore says that,
at any point in time, if an odd number of signal pulses have
been sent to a particular light, then that light is on and will
be observed. If an even number have been sent, then it is
off and will not be observed. The result of this addition is
shown in Figure 9a.

133MHz G4 PowerMac with 800Mb of RAM, using the freely available
version of Alloy 4 [7]
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Control 
Unit

Light Unit Cars

NRobserve
NGobserve
SRobserve
SGobserve

NRpulse
NGpulse
SRpulse
SGpulse

all t: time | ! NGobserve(t) =>
   no c: Cars |
      CarDirection(c, t) = north
      and CarOnSegment(c,t)

all t: time | ! SGobserve(t) =>
   no c: Cars |
      CarDirection(c, t) = south
      and CarOnSegment(c, t)

CarDirection
CarOnSegment

NGobserve
SGobserve

Control 
Unit Light Unit Cars

NRobserve
NGobserve
SRobserve
SGobserve

NRpulse
NGpulse
SRpulse
SGpulse

NGobserve
SGobserve

no t: time |
   NGobserve(t) and
   SGobserve(t)

Control 
Unit

Light Unit Cars

NRobserve
NGobserve
SRobserve
SGobserve

NRpulse
NGpulse
SRpulse
SGpulse

NGobserve
SGobserve

no t: time |
   NGobserve(t) and
   SGobserve(t)

all t: time | ! NGobserve(t) =>
   no c: Cars |
      CarDirection(c, t) = north
      and CarOnSegment(c,t)

all t: time | ! SGobserve(t) =>
   no c: Cars |
      CarDirection(c, t) = south
      and CarOnSegment(c, t)

CarDirection
CarOnSegment

NGobserve
SGobserve

CarDirection
CarOnSegment

no t: time | some c1, c2 : Cars |
   CarDirection(c1, t) = north and
   CarDirection(c2, t) = south and
   CarOnSegment(c1, t) and
   CarOnSegment(c2, t)

all t: time | ! NGobserve(t) =>
   no c: Cars |
      CarDirection(c, t) = north
      and CarOnSegment(c,t)

all t: time | ! SGobserve(t) =>
   no c: Cars |
      CarDirection(c, t) = south
      and CarOnSegment(c, t)

CarDirection
CarOnSegment

NGobserve
SGobserve

(c)

(b)

(a)

Figure 8. The first transformation: (a) A breadcrumb constraint is added to the Cars domain, representing
the assumption that car behavior can be determined by knowing what traffic signals were observed. (b)
Taking advantage of that assumption, the requirement is rephrased so that it refers to observations instead
of car behaviors. (c) Because the requirement refers only to phenomena shared between the Cars and
Light Unit domains, it can be pushed from one to the other.
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NGobserve
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all t: time |
   NGobserve(t) <=> odd(NGpulse, t) and
   SGobserve(t) <=> odd(SGpulse, t)

all t: time | ! NGobserve(t) =>
   no c: Cars |
      CarDirection(c, t) = north
      and CarOnSegment(c,t)

all t: time | ! SGobserve(t) =>
   no c: Cars |
      CarDirection(c, t) = south
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CarDirection
CarOnSegment

NGobserve
SGobserve

Control 
Unit

Light Unit Cars

NRobserve
NGobserve
SRobserve
SGobserve

NRpulse
NGpulse
SRpulse
SGpulse

all t: time | ! NGobserve(t) =>
   no c: Cars |
      CarDirection(c, t) = north
      and CarOnSegment(c,t)

all t: time | ! SGobserve(t) =>
   no c: Cars |
      CarDirection(c, t) = south
      and CarOnSegment(c, t)

CarDirection
CarOnSegment

NGobserve
SGobserve

NGobserve
SGobserve

no t: time |
   NGobserve(t) and
   SGobserve(t)

NGobserve
SGobserve
NGpulse
SGpulse

NGobserve
SGobserve
NGpulse
SGpulse

all t: time |
   NGobserve(t) <=> odd(NGpulse, t) and
   SGobserve(t) <=> odd(SGpulse, t)

(a)

(b)

(c)

Figure 9. The second transformation: (a) a breadcrumb constraint is added to the Light Unit domain,
representing the assumption that signal pulses completely determine how the cars observe the traffic light.
(b) Taking advantage of that assumption, the requirement is rephrased that that it refers to signal pulses
instead of observations. (c) Because the requirement refers only to phenomena shared between the Light
Unit and Control Unit domains, it can be pushed from one to the other. The problem diagram is now
an argument diagram.
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(B) Rephrase the Requirement

In light of that breadcrumb, we rephrase the requirement to
mention signal pulses instead of light observations:

pred Requirement3 [ ] {
no t: Time |

odd[NGpulse,t] and
odd[SGpulse,t] }

assert Step2 {
Requirement3[] and

LightUnitBreadcrumb[]
=> Requirement2[] }

check Step2 for 10

We use the Alloy Analyzer to verify that the new require-
ment plus the breadcrumb imply the prior requirement. It
passes for a scope of 10, so the breadcrumb is strong enough
to justify the rephrasing. The result of this rephrasing is
shown in Figure 9b.

(C) Push the Requirement

The requirement now mentions only phenomena shared by
both theLight Unit andControl Unit domains, so
we can push it from one to the other. The result of this push
is shown in Figure 9c.

Now that the requirement has been pushed all the way
onto the machine domain, it only mentions phenomena
known about by the machine and is a legal specification
for that machine. We have derived a specification for the
control unit (the final version of the requirement), a cor-
rectness argument for why it enforces the original require-
ment, and a set of assumptions about the world upon which
we are relying (the breadcrumbs). The designer can hand
that specification off to an engineer to guide or validate an
implementation, knowing that (as long as the breadcrumb
assumptions hold) the specification is, by construction, suf-
ficient to enforce the original requirement.

4.5 Lessons Learnt
One of the primary benefits of problem frames is that it

forces the designer to be explicit about what assumptions
are being made. Those assumptions can then be checked by
domain experts, rather than being left hidden inside of the
designer’s head. In fact, there is a possible mistake in this
example, which might have escaped attention had the bread-
crumbs not been explicitly recorded in a formal language as
part of our technique.

Recall that the first breadcrumb (CarsBreadcrumb)
states that a car will not enter the road segment if the green
light in its direction is off. Upon closer inspection, suppose
the designer realized that this is not true – if neither the

red nor the green lights are on, then cars might assume that
the system is off and enter the road segment. That bread-
crumb needs to be strengthened to mention red observations
as well as green ones. The corrected breadcrumb and result-
ing specification is shown in Figure 10.

If, however, the designer decides that the cars bread-
crumb is reasonable, then we have learned something about
the system: red lights do not play a role in establishing the
original safety requirement. Had we gone straight to writ-
ing a specification, rather than deriving it incrementally, we
would probably have missed this insight and have written
an over-constrained specification – we would probably have
written one that requires both red and green lights to be
turned on and off in a certain pattern, rather than one that
just constrains green lights. While sufficient to enforce the
original requirement, such a specification would needlessly
restrict the design of the control unit.

5 Encoding Problem Diagrams in Alloy
In this section, we describe an Alloy model of problem

diagrams, and define what it means for a problem diagram
to be well formed. In Section 6, we extend the model to
describe our method for requirement progression (adding
breadcrumbs, rephrasing goals, and pushing goals). Key
parts of the model are introduced in these sections, and the
entire model (including all referenced predicates) is shown
as a single unit in the Appendix.6

5.1 Sets and Relations

The key sets and relations that define a problem diagram
are shown in object model notation [33] in Figure 11. Each
constraint mentions a set of phenomena and touches a set
of domains. Each domain involves a set of phenomena and
connects to a set of domains. There is a special machine
domain and two special kinds of constraints, specifications
and requirements.

To express the anatomy of a problem diagram in Alloy,
we start by defining three sets: the set of phenomena, the set
of domain, and the set of constraints. These are the building
blocks of problem diagrams.

sig Phenomenon, Domain, Constraint {}

Next we define setDiagram, each element of which rep-
resents a complete problem diagram.

6We use Alloy to formalize problem diagrams and the effect of our
transformations on them (Sections 5 and 6) and also to express the con-
straints in particular examples (Sections 4 and 7). We use the same lan-
guage only to reduce the number of logics that the reader must keep track
of, not to suggest a connection between the two uses. The two kinds of
models are not currently put together, and need not be written in the same
language. Connecting the two kinds of models is future work (Section 10).
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Control 
Unit

Light Unit Cars

NRobserve
NGobserve
SRobserve
SGobserve

NRpulse
NGpulse
SRpulse
SGpulse

NRobserve
NGobserve
SRobserve
SGobserve

no t: time |
   odd(NGpulse, t) and
   even(NRpulse, t) and
   odd(SGpulse, t) and
   even(SRpulse, t)

NRobserve
NGobserve
SRobserve
SGobserve

NRpulse
NGpulse
SRpulse
SGpulse

all t: time |
   NGobserve(t) <=> odd(NGpulse, t) and
   NRobserve(t) <=> odd(NRpulse, t) and
   SGobserve(t) <=> odd(SGpulse, t) and
   SRobserve(t) <=> odd(SRpulse, t)

all t: time |
   ! NGobserve(t) and NRobserve(t)
   => no c: Cars |
           CarDirection(c,t ) = north
           and CarOnSegment(c, t)

all t: time |
   ! SGobserve(t) ^ SRobserve(t)
   => no c: Cars |
           CarDirection(c,t) = south
           and CarOnSegment(c, t)

CarDirection
CarOnSegment

NRobserve
NGobserve
SRobserve
SGobserve

Figure 10. The argument diagram that results if we change the breadcrumb on the Car domain to permit
cars to enter the intersection when neither a red nor a green light shows. In this version of the argument,
both red and green lights are relevant.
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sig Diagram {
phenomena: set Phenomenon,
domains, machines: set Domain,
constraints, requirements,

specifications: set Constraint,
connects: Domain -> Domain,
involves: Domain -> Phenomenon,
touches: Constraint -> Domain,
mentions: Constraint -> Phenomenon

}

A problem diagram comprises a set ofdomains, a set
of phenomena, and a set ofconstraints. There is a
special kind of domain called a machine, and two special
kinds of constraints, called requirements and specifications.
The first three lines encode these as relations. For exam-
ple, if x is aDiagram, then the expressionx.domains
denotes a set ofDomains.

Problem diagrams structure their domains, phenomena,
and constraints. Each domain in a diagram involves a set of
phenomena and connects to a set of other domains. Each
constraint in a diagram mentions a set of phenomena and
touches a set of domains. The last four lines encode these
as relations. For example, ifx is aDiagram, then the ex-
pressionx.mentions denotes a binary relation that maps
Constraints toPhenomena. More generally, we can
get the set of phenomena mentioned by a constraintc in a
diagramx by writingc.(x.mentions) or by the equiv-
alent expressionx.mentions[c].

Phenomenon

ConstraintDomain

involves mentions

touches

RequirementMachine

1..n

1..n1..nconnects

1..n

Specification

1..n1..n

Figure 11. A metamodel of problem diagrams,
expressed using standard object model notation.

5.2 Well Formedness

Not any collection of domains, phenomena, and con-
straints constitute a meaningful description. If the predi-
catewellFormedDiagram holds on a diagram, then we
know that the diagram has a meaningful structure. Later,
we will use this predicate to check whether or not certain
transformations preserve well formedness.

pred wellFormedDiagram [x: Diagram] {
selfContained[x]
one x.machines
connectIffShare[x]
nonTrivial[x]
all c: x.constraints |

wellFormedConstraint[c,x]
}

A well formed diagram satisfies five properties.

• Diagrams must be self contained. For example, the
domains in a diagram cannot connect to domains in a
different diagram. Full definitions of all predicates can
be found in the Appendix.

• There must be exactly one machine.

• Every domain must be reachable from every other do-
main by following theconnects relation zero or
more times.

• Trivial diagrams are forbidden, such as disconnected
diagrams or domains that contain no phenomena. Non-
triviality is not technically a requirement of a problem
diagram, but we include it for the sake of not having to
worry about uninteresting corner cases.

• Every constraint must be well formed.

pred wellFormedConstraint
[c: Constraint, x: Diagram]

{
c in x.constraints
all p: x.mentions[c] |

some d: x.touches[c] |
p in x.involves [d]

all d: x.touches[c] | some
( x.involves[d] & x.mentions[c])

c in x.specifications <=>
x.touches[c] in x.machines

x.touches[c] in x.domains
x.mentions[c] in x.phenomena

}

14



A well formed constraint satisfies four properties.

• Any phenomenon mentioned by the constraint must be
involved in at least one of the domains touched by the
constraint. That is, every phenomenon used in a con-
straint must come from somewhere.

• Any domain touched by the constraint must involve
at least one phenomenon mentioned by the constraint.
That is, a constraint cannot touch a domain for no rea-
son.

• A constraint is a specification if it touches only the ma-
chine.

• A constraint must be completely contained within the
diagram. For example, it cannot touch domains that
are not in its own diagram or mention phenomena that
are not it its own diagram.

The Alloy Analyzer can automatically generate sample so-
lutions to the above constraints by executing arun com-
mand:

run wellFormedDiagram for 4

The “for 4” specifies ascope for the execution. It tells the
Alloy Analyzer to only consider solutions in which each
signature has 4 or fewer elements. That is, we will only
generate solutions with up to 4 diagrams, up to 4 domains,
up to 4 phenomena, and up to 4 constraints.

6 Encoding Requirement Progression in Al-
loy

Now that we have laid the groundwork with a descrip-
tion of well formed problem diagrams, we will formalize
what it means to perform requirement progression on such
diagrams. We do so by extending our previous model to
include descriptions of add, rephrase, and push operations.

Since we will be talking about sequences of problem di-
agrams, we use one of Alloy’s library modules to impose
a total ordering on Diagrams. We can writefirst[] to
denote the firstDiagram in the ordering andnext[x] to
denote the nextDiagram after aDiagram x.

open util/ordering[Diagram] as ord

6.1 Requirement Progression Invariant
In requirement progression, only constraints change; the

underlying structure of the domains and phenomena re-
mains constant. We express this invariant as a predicate.

pred structureEquivalent
[x,y: Diagram] {

x.domains = y.domains
x.machines = y.machines
x.phenomena = y.phenomena
x.connects = y.connects
x.involves = y.involves

}

Two diagrams are structurally equivalent if and only if their
domains, machines, and phenomena are the same, as well
as the connections between domains and the phenomena in-
volved in each domain. No restriction is placed on con-
straints, requirements, or specification, nor on the touches
and mentions relations.

6.2 The Transformations
The addition of a breadcrumb to a diagram is modeled as

a predicate, given in Figure 12. The only change to the di-
agram is the addition of a single constraint. That constraint
touches a single domain, is well formed, but is neither a
requirement nor a specification. The domain structure re-
mains the same, as do all other constraints.

The rephrasing of a requirement is modeled as another
predicate, given in Figure 13. The only change to the dia-
gram is the replacement of one requirement (r) by another
(r’). The new requirement must be well formed, men-
tion at least one different phenomenon than the only one,
and touch the same phenomena. The constraints in the fi-
nal diagram (comprising the new requirement and the old
non-requirement constraints) must logically imply the old
requirement.

A third predicate, given in Figure 14, defines a require-
ment push. The only change to the diagram is that one re-
quirement changes what it touches but remains well formed.

6.3 Well Formedness Preservation
With formal descriptions of the transformations in hand,

we can check our belief that these transformations preserve
well formedness. We write an assertion that, if any of the
three operations is performed on a well formed diagram, the
resulting diagram will also be well formed.

pred someTransformation
[x,y: Diagram] {

addBreadcrumb[x,y] or
rephraseRequirement[x,y] or
pushRequirement[x,y] or
commonTransformation[x,y]

}
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assert wellFormednessPreservation {
all x,y: Diagram |

wellFormedDiagram[x]
and someTransformation[x,y]

=> wellFormedDiagram[y]
}

check wellFormednessPreservation for 4

The check passes for a scope of 4, so we know that the
transformations preserve the well formedness invariant for
all small problem diagrams.

7 Proton Therapy Logging

Our second example is a simplified version of the log-
ging system used in the BPTC system. It is a good ex-
ample of a problem frame with abranching topology: the
requirement connects to two different problem-world do-
mains, which in turn connect (either directly or indirectly)
to the machine. Requirement progression will involve shift-
ing both of the requirement’s arcs onto the machine. Each
of the arcs is progressed in a manner similar to what we saw
in the traffic light example (Section 4), and will be handled
independently.

The logging problem is also an instructive example be-
cause it does not match any single standard problem frame;
one part matches theinformation display frame, and another
part matches therequired behavior frame [14]. While those
frames will still provide us with some guidance, neither of
them captures the full essence of the logging requirement.
Requirement progression can still be used to construct a cor-
rectness argument for the system, and will still ensure that
we are not relying on implicit domain assumptions. How-
ever, we will not be able to rely on existing frames to guide
our choice of domain assumptions and will instead intro-
duce assumptions based on existing domain knowledge pro-
vided by the BPTC engineers.

7.1 System Requirements

The BPTC system is considered to be safety critical pri-
marily due to the potential for overdose — treating the pa-
tient with radiation of excessive strength or duration. The
International Atomic Energy Agency lists 80 separate acci-
dents involving radiation therapy in the United States over
the past fifty years [32]. The most infamous of these acci-
dents are those involving the Therac-25 machine [20, 23], in
whose failures faulty software was a primary cause. More
recently, software appears to have been the main factor in
similar accidents in Panama in 2001 [5].

The BPTC system was developed in the context of a so-
phisticated safety program including a detailed risk analy-
sis. Unlike the Therac-25, the BPTC system makes exten-

sive use of hardware interlocks, monitors, and redundan-
cies. The software itself is instrumented with abundant run-
time checks, heavily tested, and manually reviewed.

There are two top-priority requirements in the BPTC sys-
tem: overdose avoidance andlogging.

Overdose Avoidance: At no time should the radiation
received by any part the patient’s body exceed the dose
stipulated in the treatment plan.

Logging: The system should write a log that accu-
rately reflects the dose delivered to the patient.

Without an accurate log, clinicians cannot resume an inter-
rupted treatment without risking an overdose.

Each such requirement is handled, in the problem frames
approach, as a distinctsubproblem. The proton therapy de-
velopment involves several other subproblems, such as that
of positioning the patient accurately [10]. We shall consider
only the logging subproblem here.

7.2 Logging Subproblem
The BPTC provides us with some knowledge about

the domains that, together with the two partially-relevant
frames, suggest some domain properties that are likely to
be relevant to our argument (and that will therefore mani-
fest themselves as breadcrumbs).

The challenge presented by the logging problem is that
neither the physical machine producing the beam nor the
logging disk are completely reliable. For example, the beam
equipment could be shut off by a hardware interlock, or the
logging database might reach its capacity or its disk might
crash. If the log cannot be written, the treatment must be
halted.

We assume, however, that the Treatment Control System
(TCS) is a reliable component and will therefore be given
the responsibility of enforcing the requirement in the face of
known unreliabilities of the other components. If the TCS
is found to be unreliable in ways that prevent it from ful-
filling the derived specification, then the process must be
repeated to find a looser specification. Doing so is likely
to entail stronger assumptions about the reliability of other
components, or weakening the requirement we are able to
guarantee.

We assume a standard failure model for the disk sub-
system and the network. Disk writes are atomic – they ei-
ther complete successfully, or fail, leaving the disk unaf-
fected. Messages sent on the network may be dropped, but
are never corrupted or duplicated.

The radiation hardware may fail like a disk, but presents
a harder challenge. A disk write can be made atomic, by
regarding it as not having occurred until a single commit bit
is flipped, until which point the write can be revoked. The
delivery of radiation, in contrast, is irrevocable.
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pred addBreadcrumb [before, after: Diagram] {
structureEquivalent[before, after]
some bc: Constraint {

addConstraint[bc, before, after]
one after.touches[bc]
wellFormedConstraint[bc, after]
bc !in after.requirements + after.specifications

}
}

Figure 12. Adding a breadcrumb to a problem diagram.

pred rephraseRequirement [before, after: Diagram] {
structureEquivalent[before, after]
some r: before.requirements, r’: after.requirements {

wellFormedConstraint[r’, after]
replace[r,r’,before,after]
onlyChanges[r, r’, before, after]
before.mentions[r] != after.mentions[r’]
before.touches[r] = after.touches[r’]
implication[after.constraints, r, after]

}
}

Figure 13. Rephrasing a requirement.

pred pushRequirement [before, after: Diagram] {
structureEquivalent[before, after]
onlyTouchesChanges[before, after]
some r: before.requirements & after.requirements {

before.touches[r] != after.touches[r]
before.touches - (r -> univ) = after.touches - (r -> univ)
wellFormedConstraint[r, after]

}
}

Figure 14. Pushing a requirement.
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...and generate 
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specification, ...
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have these values 
because it obeys 
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...which 
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required, to the 

state of the world.

Figure 15. An informal argument diagram for the information display frame.

d = #DoseUnit ⇔ Upon the completion of treatment,
the patient’s body has exactly d units of radiation.

e = #Entry ⇔ Upon the completion of treatment,
there are exactly e entries in the log.

b in DelivBurst ⇔ At some point during the treatment,
a burst of radiation was delivered,
associated with the burst b.

b in ReqBurst ⇔ At some point during the treatment,
a request was made for burst b to be delivered.

b in AckBurst ⇔ At some point during the treatment,
an acknowledgement was made that burst b was delivered.

b in ReqWrite ⇔ At some point during the treatment,
there was a request for burst b to be written.

b in AckWrite ⇔ At some point during the treatment,
there was an acknowledgement that burst b was written.

Figure 16. Designations for the dose logging problem diagram.
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The strategy, therefore, is to deliver the beam in short
bursts, logging each burst as it is occurs. If the disk fails,
no further bursts are delivered. If the delivery mechanism
fails, no further log entries are written. Although the log
might not match the treatment exactly, we are assured that
they deviate by at most a single burst.

The analysis we perform shows how this approach is jus-
tified, and how it reveals a distribution of small but subtle
assumptions across the various components of the system.

7.3 The Phenomena
Figure 17 shows a problem diagram for the logging sub-

problem. In it, the informal logging requirement has been
formalized using the Alloy language [9, 7, 11]. Designa-
tions7 for the phenomena used in that diagram are given in
Figure 16.

A Patient is prepared to receive radiation from
the Beam Equipment. The Treatment Control
System (TCS) issues a series ofReqBurst requests to
theBeam Equipment.8 EachReqBurst instructs the
equipment to deliver a single burst of radiation to the pa-
tient, DelivBurst, which in turn raises the total radia-
tion delivered to the patient by oneDoseUnit. After a
successfulDelivBurst, theBeam Equipment sends
anAckBurst acknowledgement back to theTCS.

Whenever theTCS issues aReqBurst, it attempts
to write a record of that dose to theLog by issuing a
ReqWrite request. TheLog may then create anEntry
recording that aDoseUnit has been delivered to the pa-
tient. Upon successfully creating anEntry, theLog sends
anAckWrite acknowledgement back to theTCS.

Both theBeam Equipment and theLog are known
to be partially unreliable. TheBeam Equipment will
never perform aDelivBurst without first receiving a
ReqBurst, but it may ignore someReqBursts. Simi-
larly, theLog will never write erroneousEntries, but it
may ignore someReqWrite requests (if, for example, the
log has reached its capacity or the disk crashes).

This knowledge about the domains is not initially repre-
sented in the problem diagram, as we are not yet sure which
parts of it will be relevant to the progression. We will not
actually add any of this information into the diagram until
it is needed for the progression. Rather, these informal de-
scriptions are used to help the analyst know what domain
properties are available for introduction as a breadcrumb.

In this way, the breadcrumbs are only those domain prop-
erties relevant to the argument that the derived specifica-

7A designation is an association between formal terms in some
description and informal properties of the real world. This is in contrast to
adefinition, which relates formal terms to other formal terms. [14]

8The number of such requests is based on the patient’s treatment plan.
The treatment plan has thus omitted from the problem diagram, since it
is not relevant to the logging requirement. It would be included in the
problem diagram for the overdose avoidance requirement.

tion enforces the original requirement, and they are unclut-
tered by unnecessary (albeit correct) domain assumptions.
If the domains are later changed in ways that do not affect
the breadcrumbs we used, then the argument reprsented by
the requirement progression will still hold. Including un-
necessary, but true, assumptions increases the chance that
changes to the domain will require the progression to be re-
worked.

7.4 Matching Problem Frames
No single existing problem frame matches the logging

subproblem, although we can draw some insight from two
frames that match pieces of the problem.

Logging partly matches theinformation display frame,
shown in Figure 15. In an information display frame, a
Machine resides between Sensors that detect phenomena in
the physical world and a Display that encodes some repre-
sentation of those phenomena. The requirement is that the
display values correspond, in some prescribed way, to the
state of the physical world. The frame concern focuses our
attention on the following characteristics of the three do-
mains: how the Sensor domain relates physical phenomena
to signals sent to the machine; how the Machine reacts to
those signals by issuing commands to the Display; and how
the Display reacts to those commands by rendering display
values. The correctness argument will follow this chain to
argue that any physical world phenomenon will result in the
appropriate display values.

The Logging facility is an information display prob-
lem in the following sense: TheDoseUnits are the
physical phenomena that we are attempting to represent.
The Patient and Beam Equipment together consti-
tute the Sensor, which detects increases inDoseUnits
and sends AckBurst signals to the TCS. TheTCS is the
Machine, which receivesAckBurst signals and gen-
eratesReqWrite commands. TheLog is the Dis-
play, responding toReqWrite commands and generating
Entries. Our requirement is thatEntries correspond
to DoseUnits.

The TCS does not just passively watch the patient and
react to changes inDoseUnits by updating the Log, as
suggested by the information display frame. The TCS is
also permitted to write a log entry and then deliver a burst
of radiation to match it. (Stopping the TCS once the pre-
scribed dose of radiation has been delivered and ensuring
that it eventually delivers a sufficient dose is part of the over-
dose requirement, not the logging requirement.)
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TCS: 
Treatment 

Control 
System

Patient

Beam 
Equipment

DelivBurst

Log

ReqWrite

Requirement:
The deviation between the number 
of entries recorded in the log and 
the number of dose units delivered 
to the patient is at most one.

#Entry = #DoseUnit or
#Entry = #DoseUnit + 1 or
#Entry = #DoseUnit - 1

DoseUnit Entry

ReqBurst

AckBurst

AckWrite

Figure 17. The problem diagram for the logging requirement. At any point in time, the doses recorded in the
log entries should match the total dose actually delivered to patient, up to a known margin or error.
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TCS: 
Treatment 

Control 
System

Patient

Beam 
Equipment

DelivBurst

Log

ReqWrite

ReqBurst

AckBurst

AckWrite

Breadcrumb 2:
The number of bursts delivered by the 
beam equipment is the same as the 
number of dose units received by the 
patient.  That is, each burst delivers one 
unit of radiation, and the patient receives 
no radiation from other sources.

#DoseUnit = #DelivBurst

DoseUnit
DelivBurst

Breadcrumb 3a:
Every acknowledged burst is 
also a delivered burst.  That 
is, only acknowledged bursts 
are delivered, but some 
delivered bursts are never 
acknowledged.

AckBurst in DelivBurst

Breadcrumb 3b:
Every delivered burst is also a 
requested burst.  That is, only 
requested bursts are delivered, 
but some requested bursts are 
never delivered.

DelivBurst in ReqBurst

Breadcrumb 1a:
The number of write acknowledgements 
received from the TCS cannot exceed the 
number of entries in the log.  That is, each 
entry written generates at most one write 
acknowledgement, but some entries may 
never be acknowledged.

#Entry >= #AckWrite

Breadcrumb 1b:
The number of entries in the log cannot 
exceed the number of write requests 
received from the TCS.  That is, each 
write request creates at least one entry, 
but some write requests may never be 
enacted.

#Entry =< #ReqWrite

Specification:
The bursts that are requested to be delivered are the 
same as the the bursts requested to be written to the 
log.  That is, the two kinds of requests are always 
issued in tandem.

There is at most one unacknowledged write request, 
and at most one unrequested delivery request.  That 
is, a new write request cannot be issued unless all 
prior write requests have accompanying write 
acknowledgements.  Similarly, a new burst request 
cannot be issued unless all prior burst requests have 
accompanying burst acknowledgments.

ReqWrite = ReqBurst
lone ReqWrite - AckWrite
lone ReqBurst - AckBurst

Entry
AckWrite

Entry
ReqWrite

ReqWrite
AckWrite
ReqBurst
AckBurst

DelivBurst
AckBurst

DelivBurst
ReqBurst

Figure 18. The argument diagram that results from transforming the requirement into a specification. Each
breadcrumb constraint has a formal description of a partial domain property and an informal interpretation
of that formula. The conjunction of the breadcrumb formulae and the specification formula logically imply
the requirement formula. The Alloy keyword lone, used in the TCS specification, indicates that a set has a
cardinality of zero or one.
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The failure to match is also apparent from the diagrams
by taking note of the arrow heads on the requirement arcs.
A requirement arc with an arrow head indicates that the phe-
nomena labeling that arc are the ones that are should change
in order to satisfy he requirement. Requirement arcs with-
out arrow heads indicate that those phenomena should not
be changed. In the information display frame, only the arc
to the Display has an arrow head, indicating that only the
Sensor’s phenomena will not be changed. In contrast, the
logging problem diagram has arrow heads on both the Log
and the Patient domains, as both entries and dose units can
be changed in order to satisfy the requirement.

Logging also partly matches therequired behavior
frame, shown in Figure 4. In a required behavior frame,
a Machine issues commands to a Device domain, which in
turn exhibits certain behaviors. There is a requirement on
what sorts of behaviors should occur. The frame concern
focuses our attention on characterizing how the behaviors
exhibited by the Device domain depend on the commands
issued by the Machine.

The Logging facility is a required behavior problem in
the following sense: TheTCS is the Machine, which is-
suesReqWrite andReqBurst commands. TheLog,
Beam Equipment, andPatient together constitute the
Device domain, whose exhibited behaviors areDoseUnit
andEntries. The requirement on valid behaviors exhib-
ited by the Device domain is that theDoseUnits match
theEntries.

The TCS also does not control a single Device domain,
as suggested by the required behavior frame. The controlled
device is really three different domains, one of which (the
Log) has no direct connection to the other two (the Beam
Equipment and the Patient). Lumping those three domains
together into a single Device domain hides the very trait that
makes the problem hard – the fact that the Log and Patient
cannot directly communicate with one another. It suggests
that we could introduce a domain assumption that says “the
Device keeps the Entries and DoseUnits the same”, missing
the key challenge of the Logging problem.

Neither frame alone captures the nature of the pro-active
logging problem that we are analyzing. One might argue
that the system ought to be designed so that one machine
delivers successive doses (required behavior) and a sepa-
rate machine passively maintains the log (information dis-
play). However, with an unreliable log, there needs to be
a communication channel between the log and the delivery
mechanism, as each needs to react to the acknowledgements
of the other. Eliminating that dependence would require
changes to the system itself, a luxury not available when
the system is already in place, and forcing the system into a
mold that fits poorly will only produce a correctness argu-
ment that fits equally poorly. Rather, we must approach the
system anew.

7.5 The Requirement

From the user’s perspective, there are two fundamental
sets – a set of radiation dose units and a set of log entries.

sig DoseUnit { }
sig Entry { }

The initial requirement is that the number of dose units de-
livered to the patient matches the number of entries in the
log, with a margin of error of one unit.

pred Requirement1 [ ] {
#Entry = #DoseUnit or
#Entry = #DoseUnit + 1 or
#Entry = #DoseUnit - 1 }

This requirement is loose enough to permit behaviors in
which a burst is both delivered and logged (first line),
logged but not delivered (second line), or delivered but not
logged (third line). However, in either of the latter two
cases, further logging and treatment cannot continue until
the imbalance has been corrected.

The essence of the interaction is that various messages
are exchanged about bursts delivered by the beam machine
(or requested of it). Since each message is about a particular
burst, there is no need to introduce a separate notion of a
message. Rather, we simply introduce a set of bursts

sig Burst { }

and a classification into a collection of (possibly overlap-
ping) sets, consisting of bursts that are delivered, requested,
and acknowledged, and bursts associated with log entries
that are requested and acknowledged.

sig DelivBurst, ReqBurst, AckBurst,
ReqWrite, AckWrite in Burst { }

That is, a burst in theReqWrite set is one for which a
write request has been issued. If a write acknowledgement
has been issued for that burst, then it will also be in the set
AckWrite.

Our task is to establish a relationship betweenEntries
andDoseUnits, as per the requirement. We will intro-
duce domain assumptions about thePatient andBeam
Equipment to relateDoseUnit to ReqBurst. Do-
main assumptions about theLog will be added to relate
Entries to ReqWrite. TheTCS specification will then
constrainReqBurst andReqWrite requests, thus indi-
rectly enforcing the original requirement. Figure 17 shows
the problem diagram before requirement pregression be-
gins, and Figure 18 shows the same diagram at upon com-
pletion.
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7.6 Transformation and Derivation

We begin with the requirement we want to enforce. The
derivation happens in three stages: First, we push the re-
quirement from theLog to theTCS, and add a breadcrumb
and rephrase the requirement as needed to permit that push.
Second, we push the requirement from thePatient to the
Beam Equipment, adding another breadcrumb and per-
forming another rephrasing. Finally, we push the require-
ment from theBeam Equipment to theTCS, adding a
third breadcrumb and performing a third rephrasing. At that
point, the requirement only touches (only mentions phe-
nomena involved in) the machine domain, and has thus been
transformed into a specification. Figure 18 shows the final
state of the Problem Frame description, after the transfor-
mation process is complete.

Step 1: from Log to TCS

Our first task is topush the requirement from theLog do-
main onto theTCS domain. We cannot do so because the
requirement mentions theEntry phenomenon, which is
not involved in theTCS. We will thus need torephrase the
requirement to reference phenomena shared with theTCS
(ReqWrite, AckWrite) instead of those known only to
the Log (Entries). However, we first need to intro-
duce a breadcrumb, characterizing the log, to justify such
a rephrasing. That breadcrumb needs to relate the phenom-
ena that the requirement constraint currently mentions to
those that we would like it to reference. To that end, we add
the following breadcrumb representing our domain assump-
tions aboutLog:

pred LogBreadcrumb [ ] {
#Entry >= #AckWrite
#Entry =< #ReqWrite }

The first constraint says that the number of entries writ-
ten is greater than or equal to the number of write ac-
knowledgments; it allows entries to be written without cor-
responding acknowledgments. The second constraint says
that the number of entries written is less than or equal to
the number of write requests; it allows write requests to be
ignored. With this assumption in hand, we rephrase the re-
quirement as follows:

pred Requirement2 [ ] {
lone ReqWrite - AckWrite and
(#ReqWrite = #DoseUnit or
#ReqWrite = #DoseUnit + 1) }

The Alloy keywordlone indicates that the following ex-
pression has a cardinality of zero or one. Thus, the for-
mulalone ReqWrite - AckWrite means that there

can be at most one write request for which there is no write
acknowledgement.

To confirm that the new breadcrumb and the new require-
ment together imply the prior requirement (the original re-
quirement), this is presented to the Alloy Analyzer as an
assertion to be checked:

assert Step1 {
LogBreadcrumb[] and

Requirement2[]
=> Requirement1[] }

check Step1 for 10

Now that the requirement only mentions phenomena from
the recipient domain, it can be pushed fromLog to TCS.

Step 2: from Patient to Equipment

We repeat the process to push the requirement from
Patient to Beam Equipment by characterizing the
Patient domain. First, we add the following bread-
crumb:

pred PatientBreadcrumb [ ] {
#DoseUnit = #DelivBurst }

which is motivated by the fact that eachDelivBurst
event delivers exactly oneDoseUnit to the patient, and
that the patient receives noDoseUnits of radiation from
other sources. The breadcrumb permits the requirement to
be rephrased as follows:

pred Requirement3 [ ] {
lone ReqWrite - AckWrite and
(#ReqWrite = #DelivBurst or
#ReqWrite = #DelivBurst + 1) }

To confirm that the new breadcrumb and the new require-
ment together imply the prior requirement, we present the
Alloy Analyzer with the following assertion to check:

assert Step2 {
PatientBreadcrumb[] and

Requirement3[]
=> Requirement2[] }

check Step2 for 10

We can now push the requirement fromPatient toBeam
Equipment.
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Step 3: from Equipment to TCS

We repeat the process a third time to push the requirement
from Beam Equipment to TCS. First add the following
breadcrumb:

pred EquipBreadcrumb[ ] {
AckBurst in DelivBurst
DelivBurst in ReqBurst }

which says that an acknowledgement must be sent only
whene a burst is delivered, and that a burst may only be de-
livered when it is requested. Limited unreliability is permit-
ted; some requests have no matching delivery and some de-
liveries have no matching acknowledgement. The require-
ment can now be rephrased as follows:

pred Requirement4 [ ] {
ReqWrite = ReqBurst
lone ReqWrite - AckWrite
lone ReqBurst - AckBurst }

The first line of the derived specification says that a write
must be requested of the log whenever the beam equipment
is requested to deliver a burst and vice versa. The second
line says that no new write requests can be made if any
write request remains unacknowledged. The third says that
no new burst request can be made if any burst request re-
mains unacknowledged. The machine must wait for both
acknowledgements before issuing another pair of requests.

We present the Alloy Analyzer with the following asser-
tion to check that the final rephrasing was justified by the
following breadcrumb:

assert Step3 {
EquipBreadcrumb[] and

Requirement4[]
=> Requirement3[] }

check Step3 for 10

Finally, we push the requirement fromBeam Equipment
to TCS. At this point, the requirement mentions only phe-
nomena fromTCS and has become a specification. If the
TCS issues requests according to this specification, and the
other three domains satisfy their domain assumptions, then
the original requirement will be preserved. The problem
diagram resulting from the entire is shown in Figure 18.

8 Discussion
8.1 Role of the Analyst

The transformation process is systematic but not auto-
matic. The decisions of what breadcrumbs to add, how to
rephrase the requirement, and which enabled pushes to en-
act are subjective assessments by the analyst based on ex-
perience or a related frame concern.

The approach is incremental, and justified by assertions
that involve, in any step, at most assumptions about a single
domain. While the process involves mostly local reason-
ing, the resulting guarantee is a global one – that the spec-
ification together with all the domain assumptions together
imply the requirement.

8.2 Automatic Analysis
It is not necessary to combine this approach with auto-

matic analysis tools (such as Alloy), although in practice
it is extremely difficult to construct valid arguments with-
out tool support. The same process could be performed us-
ing informal reasoning or a different formal logic and still
be helpful for structuring the argument, making domain as-
sumptions explicit, and providing a trace of the analyst’s
reasoning. The language for representing domain properties
and the method for discharging the rephrasing implications
should be chosen based on the analyst’s experience, the type
of requirement being analyzed, and the level of confidence
desired.

8.3 Progression Mistakes
The power and limitations of our technique can be appre-

ciated by considering some mistakes an analyst might make
while performing the transformations. How each mistake
manifests itself reveals both strengths of our current work
and indicates challenges for future work.

(1) A breadcrumb might be added that is insufficient to
permit the desired rephrasing. In such a case, the an-
alyst would be unable to discharge the required impli-
cation and the rephrasing would not be permitted.

(2) A breadcrumb might be added that represents an in-
valid assumption. At the very least, stating that as-
sumption explicitly will increase the likelihood that it
will be corrected by a domain expert.

(3) A breadcrumb might be added that is correct but which
is stronger than necessary to justify the rephrasing.
There will be no ill effect on the specification, but a
stronger breadcrumb places additional burden on the
domain expert attempting to validate it.

(4) A breadcrumb might be added that is weaker than
necessary, forcing the rephrased requirement to be
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stronger than necessary. The resulting specification
will be stronger than it could have been, making it
harder (or impossible) to implement. The analyst
would review the trail of breadcrumbs to find opportu-
nities for weakening the requirement by strengthening
the breadcrumbs.

(5) The original requirement might be too strong to be en-
forced by any (realistically) implementable specifica-
tion. In such a case, the analyst will derive an unrea-
sonably (but necessarily) strong specification, and the
requirement will have to be rethought.

Points 3 and 4 get at the fundamental tradeoff between the
strength of the domain assumptions and the strength of the
specification. If a domain assumption is weakened (thus
permitting more behaviors), then typically the specification
will have to be strengthened (thus permitting fewer behav-
iors). Conversely, weaking the specification typically re-
quires strengthening the domain assumptions.

9 Related Work
9.1 Requirement Factoring

Many approaches to system analysis involve some kind
of factoring of end-to-end requirements into subconstraints,
often recursively. Assurance and safety cases [1, 20], for
example, factor a critical safety property. They tend to op-
erate at a larger granularity than problem frames, in which
the elements represent arguments or large groupings of ev-
idence, rather than constraints. Analyses that focus on fail-
ures rather than requirements (such as HAZOP [28]) are du-
als of these approaches, in which factoring is used to iden-
tify the root causes of failures. Leveson’s STAMP approach
involves decomposing design constriants, with a focus on
managerial control over the operation of a system [21, 22].

More similar to our approach are frameworks, such as
i* [37] and KAOS [3], that factor system-level proper-
ties by assigning properties to agents that work together
to achieve the goal. For KAOS, patterns have been devel-
oped for refining a requirement into subgoals [4]. In our ap-
proach, we have not given a constructive method for obtain-
ing the new constraint systematically, and the refinement
strategies of KAOS may fill this gap.

Letier and Lamsweerde show how a goal (requirement)
produced from requirement elicitation can be transformed
into a specification which is formal and precise enough
to guide implementation [19]. That approach is centered
around producing operational specifications from require-
ments expressed in temporal logic, and focuses on proving
the correctness of a set of inference patterns. Such infer-
ence patterns are correct regardless of context, in contrast
to our approach in which transformations are only justified
by context-specific domain assumptions.

The four-variable model [29, 36] makes a distinction,
like problem frames, between the requirements, the spec-
ification, and domain assumptions. However, in Problem
Frame terminology, it assumes that a particular frame al-
ways applies, in which there is a machine, an input device
domain, an output device domain, and a domain of con-
trolled and monitored phenomena.

Johnson made an early use of the phrase “deriving spec-
ifications from requirements” in 1988 when he showed how
requirements written in the relational logic languageGist
can be transformed into specifications through iterative re-
finement [16]. Each refinement step places limits on what
domains may know and on the domains’ abilities to control
the world, and exceptions are added to global constraints.
A specification is not guaranteed to logically imply the re-
quirement it grew out of, and the two descriptions may even
be logically inconsistent with each other. In contrast, as we
refine (transform) a requirement, the breadcrumbs we add
expand our assumptions about the domains rather than re-
stricting them, and a specification will always be consistent
with the requirement it enforces.

9.2 Problem Frames

Michael Jackson sketches out a notion ofproblem pro-
gression in the problem frames book [14]. A problem pro-
gression is a sequence of Problem Frame descriptions, be-
ginning with the full description (including the original re-
quirement) and ending with a description containing only
the machine and its specification. Each step involves drop-
ping the domains touching the requirement, then reconnect-
ing the requirement to other domains and rephrasing it as
needed. He does not work out the details of how one would
derive the successive descriptions, but it seems that he had
a similar vision to our own. However, rather than eliminat-
ing elements (domains) from the diagram at each step, our
approach instead adds elements (domain assumptions), pro-
viding a trace of the analyst’s reasoning in a single diagram.

Jackson and Zave use a coin-operated turnstyle to
demonstrate how to turn a requirement into a specification
by adding appropriate environmental properties (domain as-
sumptions) [15]. Their approach is quite similar to our own,
and uses a logical constraint language to express domain as-
sumptions. Our work strives to generalize the process to be
applicable in broader and more complex circumstances, and
to help guide the analyst through the process with the visual
notion of pushing the requirement towards the machine.

Rapanotti, Hall, and Li recently introducedproblem re-
duction, a technique that uses causal logic to formalize
problem progression in problem frames [31]. Like our own
work, they seek to formalize and generalize problem pro-
gression in a way that provides traceability as well as a guar-
antee of sufficiency. Problem reduction follows the style
of problem progression described in the problem frames
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book [14], in which the requirement is moved closer to the
machine by eliminating intervening domains.

Hall, Rapanotti, Li, and M. Jackson are developing a
calculus of requirements engineering based on the problem
frames approach [24, 25, 30]. They examine how problems
and solutions can be restructured to fit known patterns. Part
of their technique involves transformation rules for problem
progression, in which a requirement (expressed in CSP) is
replaced by an equivalent requirement in an alternate form.
In contrast, our technique is a form of requirement pro-
gression, in which the transformations only change the con-
straints, not the underlying domain structure. Furthermore,
our transformations are not semantics-preserving; they are
justified by a set of explicit assumptions rather than proofs
of equivalence.

10 Future Directions
Our ultimate goal is to provide a structured and system-

atic way of building code-level arguments about system-
level properties. Central to our effort is the use of problem
progression to derive checkable specifications from system
requirements. In this way, our broader work is similar to
work that is being done on synthesizing problem frames
with assurance cases [35, 27, 26]. So far, we have found re-
quirement progression (problem progression in which only
the constraints are changed) to be the most manageable way
of doing problem progression in complex systems.

Our experience is that most problems, even very com-
plex ones, can be represented by relatively simple problem
diagrams but that those diagrams do not quite fit existing
frames and frame concerns. For example, in our work with
the BPTC, we have never needed a problem diagram with
more than a dozen domains. That said, the examples used in
this paper are still too small to adequately determine if our
technique scales. To better explore the issues that arise in
more complex problem diagrams, we are developing several
more case studies involving the BPTC software, involving
requirements such as overdose avoidance, patient identity
consistency, the accuracy of information presented to the
therapist, and a more elaborate description of dose logging.

There currently is an incompatability between the for-
mal description of our requirement progression technique in
general (Sections 5 and 6) and the models we write to vali-
date goal rephrasings in particular problem diagrams (Sec-
tions 4 and 7). We have done some preliminary work on
connecting those two kinds of models. That is, Alloy mod-
els of particular problem diagrams can be written as exten-
sions to the metamodel of problem diagrams given in Sec-
tion 5. One result would be that the analyst could check
that each proposed progression step is indeed following our
requirement progression process. For example, one can en-
sure that a breadcrumb is not added to a domain that does
not involve all of the necessary phenomena. In fact, building

such a model has already found a (minor) bug in the arc la-
bels of one of our published requirement progressions. Such
a synthesis will also permit us to check the completeness of
our transformation set.

The biggest shortcoming of our requirement progres-
sion technique is the burden placed on the analyst to come
up with breadcrumbs that are both useful for moving for-
ward with the progression but also consistent with existing
knowledge of the domains. We would like to better incor-
porate and represent existing domain knowledge, so that the
analyst is not producing breadcrumbs as blindly. For ex-
ample, one might have state machine descriptions of each
domain (similar to those suggested in the Problem Frame
book [14]). Not only would such descriptions suggest pos-
sible breadcrumbs to the analyst, but they would also allow
the analyst to check that a desired breadcrumb is usable (by
checking that it is implied by the relevant domain’s state
machine). This approach might be especially helpful if the
domain experts are not available on short notice. The ana-
lyst could build up a body of knowledge at a single meeting
by building formal domain models, then gradually draw on
that knowledge later on, during the course of the progres-
sion.

Another way to provide the analyst with more guidance
is through the development of a catalog of transformation
heuristics based on our experience with further case stud-
ies. That is, given the local structure of a problem diagram
and a desired push, what are the right kinds of breadcrumbs
and rephrasings to perform? Such heuristics are likely to
take into account which domains control which phenomena
and the type of each domain (biddable, causal, lexical) –
information which we currently ignore.
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Appendix: An Alloy Model of Requirement Progression

This Alloy model is analyzable with the current, freely available, version 4 of the Alloy Analyzer [7].

module requirementProgression
open util/ordering[Diagram] as ord
-- for effective visualization, project over Diagram

/***************************************/
/* defining a problem diagram */
/***************************************/

sig Phenomenon, Domain, Constraint {}

-- the anatomy of a problem diagram
sig Diagram {
phenomena: set Phenomenon,
domains, machines: set Domain,
constraints, requirements, specifications: set Constraint,
connects: Domain -> Domain,
involves: Domain -> Phenomenon,
touches: Constraint -> Domain,
mentions: Constraint -> Phenomenon
}

pred wellFormedDiagram [x: Diagram] {
-- relations do not cross between diagrams
selfContained[x]
-- there is exactly one machine
one x.machines
-- domains connect iff they involve a shared phenomenon
connectIffShare[x]
-- diagrams are non-trivial
nonTrivial[x]
-- all constraints are well formed
all c: x.constraints | wellFormedConstraint[c,x]

}

run wellFormedDiagram for 4
run wellFormedDiagram for 35 --2 minutes to solve
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/***************************************/
/* helper functions for well formedness */
/***************************************/

-- domains connect iff they involve a shared phenomenon
-- domains do not connect to themselves
pred connectIffShare [x: Diagram] {
all d,d’: Domain |

d’ in x.connects[d] <=>
(d != d’ and some x.involves[d] & x.involves[d’])

}

pred selfContained [x: Diagram] {
-- domains don’t connect to domains in other diagrams
(x.domains).(x.connects) in (x.domains)
-- domains do not involve phenomena from other diagrams
(x.domains).(x.involves) in (x.phenomena)
-- requirements and specifications are not from other diagrams
x.requirements + x.specifications in x.constraints
-- the machine is not in another diagram
x.machines in x.domains

}

pred nonTrivial [x: Diagram] {
-- each constraint mentions some phenomena
all c: x.constraints | some x.mentions[c]
-- each domain involves some phenomena
all d: x.domains | some x.involves[d]
-- the diagram is connected
all d,d’: x.domains | d’ in d.*(x.connects)
-- there is at least one non-machine domain
some x.domains - x.machines

}

pred wellFormedConstraint [c: Constraint, x: Diagram] {
-- constraints can only touch the domains that involve phenomena they mention
-- constraints must touch the domains that involve the phenomena they mention
all p: x.mentions[c] | some d: x.touches[c] | p in x.involves[d]
all d: x.touches[c] | some x.involves[d] & x.mentions[c]
-- specifications only touch machines
c in x.specifications <=> x.touches[c] in x.machines
-- c is contained entirely within x
fullyContainedConstraint [c, x]

}

pred fullyContainedConstraint [c: Constraint, x: Diagram] {
-- c must be one of x’s constraints
c in x.constraints
-- constraints do not touch domains in other diagrams
x.touches[c] in x.domains
-- constraints do not mention constraints in other diagrams
x.mentions[c] in x.phenomena

}

28



/***************************************/
/* requirement progression transformations */
/***************************************/

pred addBreadcrumb [before, after: Diagram] {
--nothing changes except for the addition of a single breadcrumb
structureEquivalent[before, after]
some bc: Constraint {

addConstraint[bc, before, after]
-- bc is a well formed valid breadcrumb
one after.touches[bc]
wellFormedConstraint[bc, after]
-- bc is not a requirement or a spec
bc !in after.requirements + after.specifications

}
}

pred rephraseRequirement [before, after: Diagram] {
--nothing changes except for r’ replacing r
structureEquivalent[before, after]
some r: before.requirements, r’: after.requirements {

wellFormedConstraint[r’, after]
replace[r,r’,before,after]
onlyChanges[r, r’, before, after]

-- r and r’ have different phenomena but same domains
before.mentions[r] != after.mentions[r’]
before.touches[r] = after.touches[r’]

-- the change is justified by the other constraints
implication[after.constraints, r, after]

}
}

pred pushRequirement [before, after: Diagram] {
structureEquivalent[before, after]
onlyTouchesChanges[before, after]
-- one requirement changes what it touches
some r: before.requirements & after.requirements {

before.touches[r] != after.touches[r]
before.touches - (r -> univ) = after.touches - (r -> univ)
wellFormedConstraint[r, after]

}
}
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/***************************************/
/* simulation and invariant preservation */
/***************************************/

pred commonTransformation [x,x’: Diagram] {
some y,z: Diagram {

addBreadcrumb[x, y]
rephraseRequirement[y, z]
pushRequirement[z,x’]

}
}

pred someTransformation [x,y: Diagram] {
addBreadcrumb[x,y] or
rephraseRequirement[x,y] or
pushRequirement[x,y] or
commonTransformation[x,y]

}

pred simulation [] {
-- the first diagram is well formed
wellFormedDiagram[first[]]
-- it has no spec,
no first[].specifications
-- and it has a requirement
some first[].requirements

-- a spec is eventually derived via transformations
some final: Diagram - first[] {

all x: prevs[final] | someTransformation[x,next[x]]
final.requirements in final.specifications

}
}
run simulation for 4

assert wellFormednessPreservation {
all x,y: Diagram |

wellFormedDiagram[x] and someTransformation[x,y]
=> wellFormedDiagram[y]

}
check wellFormednessPreservation for 4
-- the check executes faster if commonTransformation
-- is eliminated from someTransformation
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/***************************************/
/* helper functions for the transformations */
/***************************************/

-- add a non-requirement, non-specification constraint
pred addConstraint [c: Constraint, x,y: Diagram] {
onlyChange[c, x, y]
c = y.constraints - x.constraints
x.requirements = x.requirements
y.specifications = y.specifications }

-- only constraints, requirements, specifications, touches, mentions vary
pred structureEquivalent [x,y: Diagram] {
x.domains = y.domains
x.machines = y.machines
x.phenomena = y.phenomena
x.connects = y.connects
x.involves = y.involves }

-- approximates meaning of the implication (a_0 ˆ a_1 ˆ ... ˆ a_n => b)
pred implication [a: set Constraint, b: Constraint, x: Diagram] {
x.mentions[b] in x.mentions[a] }

-- r disappears and r’ appears to replace it
pred replace [r,r’: Constraint, x,y: Diagram] {

r in x.requirements
r !in y.requirements
r’ !in x.requirements
r’ in y.requirements }

-- only constraints in c change
pred onlyChange [c: set Constraint, x,y: Diagram] {
x.specifications - c = y.specifications - c
x.touches - (c -> univ) = y.touches - (c -> univ)
x.requirements - c = y.requirements - c
x.constraints - c = y.constraints - c
x.specifications - c = y.specifications - c
x.mentions - (c -> univ) = y.mentions - (c -> univ) }

-- only constraint c changes
pred onlyChange [c: set Constraint, x,y: Diagram] {
onlyChanges [c,c,x,y] }

-- only changes are c in x and c’ in y’
pred onlyChanges [c,c’: set Constraint, x,y: Diagram] {
x.specifications - c = y.specifications - c’
x.touches - (c -> univ) = y.touches - (c’ -> univ)
x.requirements - c = y.requirements - c’
x.constraints - c = y.constraints - c’
x.specifications - c = y.specifications - c’
x.mentions - (c -> univ) = y.mentions - (c’ -> univ) }
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-- nothing but the touches relation differs between x and y
pred onlyTouchesChanges[x,y: Diagram] {
x.requirements = y.requirements
x.constraints = y.constraints
x.mentions = y.mentions }
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