Requirement Progression in Problem Frames:
Deriving Specifications from Requirements

Robert Seater, Daniel Jackson
Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Laboratory
Software Design Group
32 Vassar Street, 32-G707
Cambridge, Massachusetts, 02148
{rseater, dnj } @mit.edu

Rohit Gheyi
Massachusetts I nstitute of Technology, and
Universidade Federal de Pernambuco
Cidade Universitaria, Recife PE
CEP: 50670-901
gheyi @mit.edu

Abstract

A technique is presented for obtaining a specification
from a requirement through a series of incremental steps.
The starting point is a Problem Frame description, involv-
ing a decomposition of the environment into interconnected
domains and a formal requirement on phenomena of those
domains. In each step, the requirement is moved towards
the machine, leaving behind a trail of ‘ breadcrumbs’ — par-
tial domain descriptions representing assumptions about
the behaviors of those domains. Eventually, the trans-
formed requirement references only phenomena at the in-
terface of the machine and can therefore serve as a speci-
fication. Each step is justified by a mechanically checkable
implication, ensuring that, if the machine obeys the derived
specification and the domain assumptions are valid, the re-
quirement will hold. The technique is formalized in Alloy
and demonstrated on two examples.

1 Introduction

enough; one must also explicitly expose all the assumptions
the argument depends on. This not only gives us greater
confidence that the argument is valid now, but also helps
us know if the argument will still apply if the system is
changed. If the changes to the system do not violate the
assumptions used in the argument, then the conclusion of
that argument still holds.

1.1 Owur Approach

The problem frames approach offers a framework for de-
scribing the interactions amongst software and other sys-
tem components [12, 14]. It helps the developer under-
stand the context in which the software problem resides,
and which of its aspects are relevant to the design of a so-
lution [8, 13, 17, 18]. In this approach, a requirement is
an end-to-end constraint on phenomena from the problem
world, which are not necessarily controlled or observed by
the machine. During subsequent development, the require-
ment is typically factored into a specification (of a machine
to be implemented) and a set of domain assumptions (about
the behavior of physical devices and operators that interact

Many system failures stem from implicit (but incorrect) directly or indirectly with the machine).

assumptions about the system’s environment which, when

A key advantage of the problem frames approach is that

made explicit, are easily recognized and corrected [2, 6, 20]. it makes explicit the argument that connects these elements.
As software is increasingly deployed in contexts in which it In general, this argument takes a simple form: That the
controls multiple, complex physical devices, this issue is specification of the machine, in combination with the prop-

likely to grow in importance. Building an argument is not

erties of the environment, establishes the desired require-

ment. When the environment comprises multiple domains, demonstrates the use of our technique when no single ex-
however, the argument may take a more complicated form. isting problem frame matches the entire problem. These
The problem frames representation allows the argument toexamples are perhaps not sufficiently complex to properly
be shown in arargument diagram — the problem diagram demonstrate the need for systematic requirement progres-

embelished with the argument. sion, but they do illustrate the key elements of our approach
In the problem frames book [14], a strategy for con- and indicate its strong and weak points.
structing such arguments, callpiabblem progression, is de- In both examples, the various constraints are formal-

scribed. But, since each step in a problem progression in-ized in the Alloy modeling language, and the Alloy An-
volves deletion of domains from the diagram, the strategy alyzer [9, 7, 11] is used to check that the resulting spec-
does not result in an argument diagram; rather, it producesification and domain assumptions do indeed establish the
a series of diagram fragments. The approach described indesired system-level properties. The Alloy Analyzer can
this paper, which we catlequirement progression, likewise check the validity of a transformation with a bounded, ex-
aims to produce an argument diagram. Its steps producehaustive analysis. Our transformation technique is not tied
accretions to the diagram, never deletions, and the diagramio Alloy; we chose Alloy because it is simple, was familiar
resulting from the final step is an argument diagram in the to us, provides automatic analysis, and allows a fairly natu-
expected form. ral expression of the kinds of requirements and assumptions

Often, the problem diagram fits a well established pat- Involved in these examples.
tern (aproblem frame), and the argument required will be
an instantiation of an archetypal argument. As our log- 1.2 Context

ging example will illustrate, not all problems match existing Our research group has been involved in an ongoing col-
frames, and an argument diagram must be specially con-japoration with the Burr Proton Therapy Center (BPTC), a
structed using progression. radiation therapy facility associated with the Massachusetts
Our approach relies upon the analyst's ability to accu- General Hospital in Boston, investigating improved meth-
rately distill, disambiguate, and formalize the requirement. ods for ensuring software dependability. We are currently
One of the benefits of problem oriented software engineer- investigating the use of problem frames for constructing de-
ing [17], of which problem frames is an example, is that the pendability cases for the BPTC control software. The work
analyst is permitted to formulate the requirementin terms of described in this paper grew out of the difficulty we encoun-
whatever phenomena are convenient for describing the ac-tered with keeping track of a large number of domain prop-
tual system requirement. For example, a designer of a trafficerties, relating them appropriately to the requirements and
light might write a requirement saying “cars going different specifications.
directions are never in the intersection at the same time”. |njtially, we used problem diagrams simply to describe
The analyst then methodically transforms the requirementthe BPTC system — keeping track of how domains in-
so that it constrains only controllable phenomena, making teracted and recording properties about the domains. As
sure that the new version is sufficiently strong to enforce the we spent more time interacting with the BPTC engineers,
original requirement. For example, the traffic light designer we found that the problem diagrams were not only useful
might reformulate the requirement to say “the control unit recording information they had told us, but also for indicat-
sends signals to the traffic lights in the following pattern...”, ing what questions to ask. The information they initially
and justify the reformulation by appealing to known prop- gave us was not enough to build a safety case, yet it was not
erties about how cars and traffic lights behave. Attempt- clear what additional information would be. There simply
ing to write the reformulated version from scratch is error was not time to get full descriptions of all the parts of the
prone. As with other progression techniques (e.g. [30]), our system, so we needed to narrow our questions and focus our
goal is to provide support for performing that transforma- inquiry.
tion systematically and accurately. Our technique is most We found that we could use the structure of a problem
appropriate when the requirement can be phrased in a for-diagram to (at least start to) build a safety argument for a
mal language, although the methods we describe could alsarequirement and, by doing so, explicitly expose the assump-
guide reasoning about informal requirements. tions we were making about the behavior of different parts
We demonstrate our technigue on two examples. The of the system. Once those assumptions were exposed and
first example is of a two-way traffic light similar to the one articulated, we could ask the BPTC engineers if they were
described in the problem frames book [14]. It demonstrates reasonable. This was a big improvement over our earlier at-
the use of our technique to specialize the correctness argutempts to build safety arguments out of the information the
ment of the problem frame that matches the problem dia- engineers volunteered on their own or blindly probing their
gram. The second example is a simplified view of the log- knowledge of the immensely complex system.
ging facility used in a radiation therapy medical system. It The requirement progression technique described in this

paper is a more general and systematic way for doing the
kind of reasoning that has helped us communicate with the
BPTC. This method can either be used as a means of fo-
cusing requirements elicitation, or it can be used to build

an auditable argument — one in which an outside reviewer
can understand why the argument is correct. We originally
developed it to help us do the former task, although our cur-

rent work focuses more on the latter task.

1.3 Paper Organization

—
referenced

’
" henimena 7\ ")

Problem

Machine World

interface
phenomena

Figure 1. A generic problem frames description
showing the disconnect between the phenom-
ena controlled by the machine (the interface phe-
nomena) and those constrained by the require-
ment (the referenced phenomena).

The rest of the paper is organized as follows:
- Section 2 introduces problem frames.

- Section 3 outlines of our technique for requirement and external components (cars and drivers), the require-
progression. ment might be that cars do not collide, and the specifica-

- Section 4 demonstrates the technique on a simple traf-tion would be the protocol by which the machine generates
fic light example. control signals in response to the monitoring signals it re-

- Section 5 describes an Alloy model of problem dia- ceives. The machine and its specification only have access
grams. to the phenomena pertaining to control and feedback sig-

- Section 6 extends that model to describe ourtechniquenals’ whereas the requirement is a constraint on the direc-
. . tions and positions of the cars.
for requirement progression.

Section 7 d h hni q The problem world is broken into multipldomains,
- Section emonstrgtes the technique on a secon 'each with its own assumptions. Here, for example, there
more elaborate, logging example.

may be one domain for the cars and drivers (whose assump-
- Section 8 reflects on the strengths and weakness of oUtijons include drivers obeying traffic laws), and another for
technique. the physical control apparatus (whose assumptions describe
- Section 10 discusses future work. the reaction of the lights to control signals received, and the
- Section 9 discusses related work. relationship between car behavior and monitoring signals
- The Appendix gives the full text of the Alloy model ~generated). Aproblem diagram shows the structure of the
described in Section 5 and 6. domains and phenomena involves in a particular situation.
One possible problem diagram for the traffic light system is

2 Problem Frames shown in Figure 2.

An analyst has, in hand or in mind, an end-to-end re-
qguirement on the world that some machine is to enforce. In
order to implement or verify the machine, one needs a spec-
ification at the machine’s interface. Since the requirement
typically references phenomena not shared by the machine,
it cannot serve as a specification. The Problem Frame nota-
tion expresses this disconnect as shown in Figdre 1

The analyst has written reequirement (right) describing
a desired end-to-end constraint on gneblemworld (cen-
ter). The requirement references some subset of the phe-
nomena from the problem world (right arc). wachine
(left) is to enforce that requirement by interacting with the
problem world vianterface phenomena (left arc).

For example, in a traffic light system, the problem world
might consist of the physical apparatus (lights and sensors)

—
location /4

[position 7\ N° Colhgons/
S

Cars and
Drivers

| observ- |

ntroller
Controlle ations

signals —| Lights

——

Figure 2. A problem diagram describing the
domains and phenomena for a two-way traffic
light. The arc connecting two domains is la-
beled by the phenomena shared by those do-
mains — those phenomena that both domains in-
volve. The arc connecting the requirement to a
domain is labeled by the phenomen referenced
(constrained) by the requirement.

To ensure that the system will indeed enforce the require-
ment, it is not sufficient to verify that the machine satisfies
. its specification. In addition, the developer must show that
away fromD. When not all phenomena shared by two domains are con- the combination of the specification and assumptions about
trolled by the same domain, separate arcs are used. Most of our diagram

omit indications of control all together, as it is not currently relevant to our the pr0b|(_9m world imply _the reqUirem_em-_ To argue that
approach. the machine, when obeying the specification, will enforce

1We deviate slightly from the standard problem frames notation when
drawing an arc indicating that domalihcontrols phenomenop. Rather
than labeling the arB! p, we label itp and place an arrow head pointing

the requirement, we must appeal to assumptions about how3 Requirement Progression
the domains act and interact — how lights respond to control |, thjs section, we introduce an incremental way of de-
signals, how monitoring signals are generated, how drivers riving a specification from a requirement via requirement

react to lights, and how cars respond to driver reactions. progression. A byproduct of the progression is a trail of
Those behaviors are recorded as domain assumptions, agomain assumptions, calldgteadcrumbs, that justify the

shownin Figure 3. progression and record the line of reasoning that lead to the
specification.
e | caeara V ocaion 7 N\ Requirements, specifications, and breadcrumbs are three
°°”"°”e+s'g”a'“ H [wons 7| orwers [postion T instances oflomain constraints. Requirements can touch
H sigza.s spsorations any set of domains but usually touch only non-machine do-
e observations o mains; specifications touch only the machine domain; and
) 1 b each breadcrumb touches only a single non-machine do-
Speciicaion ssumpton | Assumpton main. The only thing barring the requirement from serv-
"""""""""" ing as a specification is that it mentions the wrong set of
phenomena. Unfortunately, altering it to mention the right
set of phenomena (those at the interface of the machine do-
Figure 3. Assumptions about the intervening do- main) is no easy matter and requires appealing to properties
mains are expressed as partial domain descrip- of the intervening domains. The transformation process we
tions in the form of constraints on their behaviors. describe is an incremental method for achieving such an al-
These assumptions help us relate the machine teration and recording the necessary domain properties.
specification to the system requirement. As with
a requirement, the arc connecting an assump- 3.1 Available Transformations

tion or specification to its domain is labeled with

the phenomena referenced by that assumption. There are three types of steps in the transformation pro-

cess:adding a breadcrumb permits the requirement to be
rephrased, which in turn enables push to change which

A problem diagram serves to structure the domains and domains it touches. Figure & shows an archetype of how
their relationships to the machine and the requirement, andtn€Se Steps can turn a requirement into a specification. In
is accompanied by frame concern that structures the ar- that example, there is one interface phenomenon controlled
gument behind this implication. The traffic light system, Py the machinef(1) and one phenomenon mentioned by the
for example, matches thequired behavior shown in Fig- requirementg2). The intervening domain involves both of
ure 4 [14]. those phenomena.

Because the required behavior frame concern is general
enough to match many situations, it only gives an outline
of the correctness argument and serves primarily to focus
attention on the kinds of domain properties upon which the
completed correctness argument is likely to rely. Applying
it to the traffic light problem diagram suggests the argument
structure shown in Figure 5.

This information is a valuable aid in building the full
argument, but would greatly benefit from a systematic ap-
proach for determining exactly which properties of the do-

mains are relevant, deriving an appropriate specification for (b) Rephrase the requirement so that it represents a dif-
the machine, and providing a guarantee that the specifica- ferent constraint. The new version of the requirement
tion and domain properties are sufficient to establish the re- must touch the same domains, but it may mention (and
quirement. This papers describes such an approach. thereby constraint) a different subset of the phenom-
ena of those domains (e.g. menth instead ofp2).
The rephrasing is chosen so as to enable a useful push
(step c).

(a) Add a breadcrumb constraint, representing an assump-
tion about a domain in the problem world. The bread-
crumb must touch a single domain that is currently
touched by the requirement (and no other domains),
and therefore only mention phenomena from that do-
main (e.g.p1 andp2).? It is chosen so as to enable
a useful rephrasing (step b). The breadcrumb must be
validated by a domain expert to ensure that it is a valid
characterization of the constrained domain.

2The phenomena mentioned by a breadcrumb might be shared amongst
several domains, but there must be a single domain that involves all of
them. It is this domain that the breadcrumb touches.

Machine

--F

L]
commands

e

\
1 Specification :
on

]
!} commands

I

The Machine
generates
commands
according to the
Specification, so...

commands ——»|

Device

-

commands
behaviors

o
@
3
<.
o
=
7]

...because the
Device exhibits
behaviors based on
commands like

<t - - - behaviors -

this..

ocuremon

7 Requirement

...the Requirement
on behaviors will
hold..

Figure 4. An informal argument diagram for the required behavior frame.

--?

L]
signals

PR -

[}
] I

1 Specification
1 on signals
)

\

)
[}
[}
[}

]

The Controller
controls the signal

pulses according to
this Specification,

SO...

Controller |~ signals —

| observ-

Lights ations

o
signals
observations

......... pas—

Lights
Assumption

Cars and

Drivers

(¢}

observations
location
position

......... Ises——

Cars
Assumption

...because the
signal pulses relate
to light observations

like this...

...and because light
observations relate
to car locations and
positions like this...

location _/
position

— —

No Collisions

...the requirement on
car locations and
positions will hold,

preventing cars from

colliding.

Figure 5. The informal argument diagram that results from applying the required behavior frame to the
two-way traffic light problem diagram. It provides an outline for arguing that the specification enforces the
requirement, and it indicates what sort of domain assumptions will be needed to build that argument.

@)

- — -

N

Machine f— pl — Domain |- — p2 - @
" t—

(b)

- — -

N

Machine f— pl — Domain | — p2 - @
e e——

e
p'1
p2

...................

: Breadcrumb

©

—— e = —

\

/ .
i —— pl — i E__. . Requirement
Machine pl Domain pl 4\ (Rephrased) }
e —

o

pl
p2

...................

: Breadcrumb
(d)
- pl -
-7 . RREN s gTTTTET S 3
f 3 Requirement
Machine |— pl1 — Domain i (Specification)
\

e
pl
p2

...................

§ Breadcrumb

Figure 6. An archetypal requirement progres-
sion: (a) Prior to the transformation (b) A bread-
crumb constraint is added, representing an as-
sumption about how the domain relates phenom-
ena pl and p2. (c) That breadcrumb permits the
requirement to be rephrased to reference p1l in-
stead of p2. (d) The rephrasing enables a push,
moving the requirement from the problem-world
domain onto the machine.

The analyst must verify that existing breadcrumbs are
sufficiently strong to permit the rephrasing by estab-
lishing the implication

(breadcrumbn new requirement)
= prior requirement

The means of establishing this implication will depend
on the language used to express the breadcrumb and
requirement constraints.

(c) Push the requirement so that it touches a different
set of domains but still represents the same constraint
over the same phenomena. A push is only permit-
ted if it will perserve the fact that each phenomenon
mentioned by the requirement is involved in some do-
main touched by the requirement, and that every do-
main touched by the requirement involves some phe-
nomenon mentioned by the requirement.

Typically, a push changes the requirement to touch
some domaini’ (e.g. the machine) instead of some
domaind (e.g. the non-machine domain) such that all
the phenomena af mentioned by the requirement are
also phenomena of (e.g.pl). Diagramatically, this
means that only one of the arcs emanating from the re-
quirement is altered, and the phenomena labeling that
arc must be shared betweéandd’. 3

The analyst continues to perform these transformations (in
any order) until the requirement touches only the machine
domain. At that point, it only mentions phenomena at the
interface of the machine and is thus a valid specification.

In theory, one might want to express an assumption that
mentions phenomena that are not involved in any single
domain — the constraint representing such an assumption
would necessarily touch two or more domains and would
therefore be an invalid breadcrumb. Such assumptions in-
hibit local reasoning and are hard to validate, as there may
not be any single domain expert who can certify them. In
practice, we have not found (or been able to construct) an
example where such an assumption is needed. We there-
fore only allow assumptions about intra-domain proper-
ties; inter-domain properties must be factored into several
intra-domain properties (and incorporated as a set of bread-
crumbs).

3If a requirement mentions a phenomenon that is shared between do-
mains, we consider the diagram to be well formed as long as the require-
ment touchegither of those two domains. It is good style, but not neces-
sary, for the requirement to touch the domain that controls the mentioned
phenomenon. A push transformation will violate that good style but leave
the diagam well formed. Note that the problem frames notation, as given
in the problem frames book [14], is ambiguous about this issue.

3.2 Source of Breadcrumbs 4 Two-Way Traffic-Light

]])] Our first example is of a two-way traffic light, similar to
Central to this approach is the introduction of bread- e one described in the problem frames book [14]. Itis a
crumb constraints representing assumptions about the do‘good example of a problem frame withiaear topology:
main behaviors. However, coming up with domain char- e machine and requirement are on opposite ends of a lin-
acterizations that are both useful in moving the progression g5, sequence of domains. Requirement progression is sim-

forward and which will be certified by an expert can be quite ply a matter of shifting the requirement down that sequence
an onerous task. We have considered four potential sourcess,nq onto the machine. Later. in Section 7. we will see how

of breadcrumbs: requirement progression works onbeanching topology.

« analyst's intuition — The analyst introduces whatever Requwe_me_nt progressionon larger problem frames involves
a combination of both kinds of approaches.

breadcrumbs are useful to the progression, as long as L . : .
they seem reasonable. They are later checked by a do- The twq-wgy traffic light is al_so mstruc_tlve because it is
main expert and hopefully validated. If not, the pro- a prototypical instance of threquired behavior frame, one

gression will have to be reworked with a substitute as- gf thlf fl'\f plro_blehm frames dpresent(Td "} thhe problem frames
sumption. For this method to be practical, the analyst 00 [14]. Itis t us a goo hegamp €o o_vvl_to uie our re-
must usually generate correct assumptions, as may pefuirement progression technique to specialize the correct-

the case if the analyst is one of the system experts or if ness argument sugggstgd by that frame. . .
the system is simple. The two-way traffic light problem frame is shown in

more detail in Figure 7, along with the requirement we will
e explicit list — In a safety critical system, it is may be focus on in this example.
reasonable to explicitly list all of the available assump-

tions for each domain. Such a list might already exist, NRpulse NRobserve
. . . Control NGpulse . " NGobserve
or it might be cost effective to generate. The analyst T T — Light Unit SRobserve ﬂ Cars
. SGpulse SGobserve
can then browse the list for useful breadcrumbs. If the P ®
listis very large, this method will not be much different Carbirection
from the first cepnseament
s T TS T ‘/" ~
¢ implicit encoding — Even if the explicit list of all do- /" Carettenr i <nornand '\
main assumptions is large, there may be a compact en- L Croneamemer e)
coding of those properties. For example, a state ma- \ Cronsegmentc2 b /

chine might be an effective way to describe a domain,
as opposed to explicitly describing all of the proper-
ties of that state machine. The analyst could use the
compact encoding both as a source of inspiration and
as a means of verifying desired assumptions without
consulting the actual domain expert.

Figure 7. A more detailed problem diagram for

the two-way traffic light problem. The constraint

has been formalized and expressed using the Al-

loy language, a relational first-order logic.

e informal description — Full formal encodings of each
of the domains is often an unfulfilled wish. Rather, i . o)
the analyst faces an informal, although perhaps very 1Ne Light Unit has four physical lights: a red light and a
detailed and precise, description of the system com- 9r€en lights in each direction. The control unit sends signal
ponents. These informal descriptions might be in the PUISes to the light unit to individually toggle the four lights
form of natural language documentation or expert in- On and off. The cars moving in each direction observe those
terviews. They suggest to the analyst what sorts of do- traffic signals, and then decide whether or not to enter the

main assumptions are likely to be validated by the ex- rogd segme:\np The requirement is that cars do not collide,
perts, although, due to their informality, they will still which we will interpret to mean that no two cars are ever on

produce some false positives. the road segment at the same time going opposite directions.
However, the control unit has no knowledge of, or control

Our experience with the BPTC has been with the fourth over, the cars; it can only send signal pulses to the light units
case, and that is how we will present the examples in this and observe the history of what signals it previously sent.
paper. We have considered building formal models (the
third case) from informal descriptions (the fourth case) as
preprocessing for requirement progression. We discuss this
idea further in Section 9 as future work.

4.1 Basic Declarations

For completeness, we shall include, in addition to the ~ SI 9 NGP, SGP, NRP, SRP in Time { }
constraints, the Alloy [9, 7, 11] declarations needed to com- ~ Pred NGpul se[t: Time] {t in NGP}
plete the model. pred SGpul se[t: T! me] {t in SGP}

There is a set of cars and two relations about cars; Pred NRpulse[t: Time] {t in NRP}
onSeg is a binary relation mapping each car to the set of ~ Pred SRpulse[t: Time] {t in SRP}
times at which that car is on the road segment. That re-
lation is wrapped by the predicatear OnSegnent [c,

t], which determines if a car is on the segment at time 4-2 The Requirement

t. dir is a ternary relation mapping each car and di- The initial requirement that cars do not collide can now
rection to the set of times at which that car is moving be expressed as follows:

in that direction. This relation is wrapped in the func-

tionCarDi rection[c, t] which returns the direction pred Requirementl [] {
a given car is moving at a given time. For the rest of this ex- not: Tinme | sone cl,c2: Cars |
ample, we will use the predicate and the function, rather CarDirection[cl, t] = north and
than their equivalent relations, in order to give our con- CarDirection[c2, t] = south and
straints a more natural syntax for readers who are not fa- Car OnSegnent [c1, t] and
miliar with relational logic. Car OnSegnent[c2, t] }
sig Cars { The initial problem diagram with this requirement is shown
onSeg: set Tine, in Figure 7.

dir: Direction -> Time }

pred CarOnSegnent[c: Cars, t: Tine] { 4.3 Step 1: from Cars to Light Units

t in c.onSeg }) . . .
fun CarDirection The first thing we would like to do is to push the re-

[c: Cars, t: Time] : Direction quirement from theCar s dor_najn onto fcheLi ght. Uni t
{lc d,i (1.t} domain, following the heuristic of trying to shift the re-

' ‘ quirement closer to th€ontrol Unit. In order to
justify such a push, we will add a breadcrumb constraint
on Car s which permits us to rephrase the requirement
so that the only phenomena it mentions BRRobser ve,
NGobser ve, SRobser ve, and SCobserve. We will
then be able to push the requirement fr&@ar s onto
Li ght Unit. These three tasks are illustrated in Figure 8
and narrated below.

abstract sig Direction { }
one sig north extends Direction { }
one sig south extends Direction { }

There is a set of times, divided into 8 non-exclusive sub-
sets. For exampld\RO represents the subset of times at
which the northernred light is observed, afiRP represents
the set of times at which a signal pulse is sent to the northern(A) Add a Breadcrumb

red light. These 8 subsets are wrapped by 8 predicates. FOfpe frame, shown in Figure 5, suggests that we character-
exampleNRobser ve[t] determines whether or notthe ;e now theCar s domain relateCar Di r ect i on and

northern red light is observed at tirheandNRpul se[t] Car OnSegnent with the four observation phenomena.
determines whether or not there was a signal pulse sent toye do so by adding the following breadcrumb constraint
the northern red light at timé. From now on, we will to Car s, expressing the assumption that cars never disobey
use the predicates, rather than the subsets, to make our cor,g lights. In Alloy, we represent each breadcrumb as a
straints more readable. predicate.

sig Time { }

sig NGO, SGO, NRO, SROin Time { }
pred NGobserve[t: Time] {t in NGO}
pred SCGobserve[t: Tinme] {t in SGO}
pred NRobserve[t: Time] {t in NRO}
pred SRobserve[t: Time] {t in SRO}

(C) Push the Requirement
pred CarsBreadcrunb [] {
all t: Time |
not NGobserve[t]
=> no c: Cars |
CarDirection[c,t] = north
and Car OnSegnent[c,t]
all t: Time |

The only phenomena mentioned by the new requirement are
NGobser ve and SGobser ve. Since those phenomena
are shared by both théar s andLi ght Uni t domains,

we are permitted to push the requirement from one to the
other. The result of this push is shown in Figure 8c.

not SGobserve[t] 4.4 Step 2: From Light Unit to Control
=> no c: Cars | Unit
CarDirection[c,t] = south The requirementis now one step away from being a spec-
and CarOnSegnent[c,t] } ification. We repeat the process to shift the requirement the

rest of the way onto th€ont r ol Uni t domain (the ma-
This constraint further characterizes t8ar domain:; at chine). In order to do so, we will need add another bread-
any given time, if a car does not observe a green light in crumb and perform another rephrasing of the requirement.
its direction, then it cannot be on the road segménthe This process is illustrated in Figure 9 and narrated below.
result of this addition is shown in Figure 8a.

(A) Add aBreadcrumb

(B) Rephrasethe Requirement Once again, we appeal to the frame (Figure 5) for guidance

Instead of requiring that no two cars be in the intersection on what breadcrumb to add. This time, we need to make
moving in opposite directions at the same time, we can in- an assumption about tHe ght Uni t domain that will
stead require that opposing green lights are never both ob-help us reconcile the observation and signal pulse phenom-

served to be green at the same time. ena. If we assume that the parity of signal pulses determines
how the lights are observed, then we can substitute mentions
pred Requirement2 [] { of signal pulses for mentions of observations. We do so
no t: Tine | by adding the following breadcrumb constraintltoght
NGobserve[t] and Uni t about the electrical wiring of the unit and about the
SGobserve[t] } reliability of observations:
The result of this rephrasing is shown in Figure 8b. pred LightUnitBreadcrumb [] {
To validate the rewrite, we are obliged to show that the all t: Time |
new requirement, conjoined with the new breadcrumb, im- NCGobserve[t] <=>
plies the prior requirement. odd[NGpul se, t] and
SCGobserve[t] <=>
assert Stepl { odd[SGpul se, t] }
Requirement 2[] and
Car sBreadcrunb[] whereodd is a function that determines the parity of the
=> Requiremetl [] } number of occurrences of the given phenomenon up to the
check Stepl for 10 given time. The most recent breadcrumb therefore says that,

at any point in time, if an odd number of signal pulses have
In general, how such implications are discharged will de- been sent to a particular light, then that light is on and will

pend on the problem domain and the level of confidence be observed. If an even number have been sent, then it is
needed in the requirement. Since our constraints are writtenoff and will not be observed. The result of this addition is
in first-order relational logic, we used the Alloy Analyzer shown in Figure 9a.
to perform a bounded, exhaustive check [11, 7]. The check
passed for a scope of 10, meaning that the property is not
violated by any situation with up to 10 cars and up to 10
points in timé.

4For the sake of simplicity, we will ignore the delays between when a
light observation is made and when car positions change in response to that
change. There is no time allowed for the intersection to clear, and there is
no yellow light. 133MHz G4 PowerMac with 800Mb of RAM, using the freely available

5Each execution of the Alloy model was solved instantaneously on aversion of Alloy 4 [7]

[CY

' i Cars
o
CarDirection

CarOnSegment

NGobserve
SGobserve

{ allt: time | ! NGobserve(t) => |
no c: Cars |

i CarDirection(c, t) = north
and CarOnSegment(c,t)

. —/ {all : time | ! SGobserve(t) => |

{ noc:Cars|
CarDirection(c, t) = south §
H and CarOnSegment(c, t)

(b)

| i Cars
_J N

NGobserve
SGobserve
>
e
7
7
-
—_—————— ~
/
no t: time | \
NGobserve(t) and |
\ SGobserve(t) /
(©
' NRobserve
. . NGobserve
Light Unit ft——— SRobserve] Cars
SGobserve
|
NGobserve
SGobserve
|
|
= B —
| nhot time | \
\ NGobserve(t) and |
SGobserve(t)

Figure 8. The first transformation: (a) A breadcrumb constraint is added to the Car s domain, representing
the assumption that car behavior can be determined by knowing what traffic signals were observed. (b)
Taking advantage of that assumption, the requirement is rephrased so that it refers to observations instead
of car behaviors. (c) Because the requirement refers only to phenomena shared between the Car s and
Li ght Uni t domains, it can be pushed from one to the other.

10

Il Light Unit

NGobserve
SGobserve
NGpulse
SGpulse

all t: time |
i NGobserve(t) <=> odd(NGpulse, t) and
SGobserve(t) <=> odd(SGpulse, t) i

(b)

| Light Unit
._J = T‘. e —
|

NGpulse
SGpulse
|

e

4 .
no t: time | \

/
\ odd(NGpulse, t) and
Y odd(SGpulse, t) J

NRpulse
Control NGpulse . .
Unit SRpulse Light Unit
SGpulse)
T A B — ————
> ~
~
NGpulse
SGpulse
~
~
~
~
~
e - ————-———
) N
no t: time | \
\ odd(NGpulse, t) and 1
\ odd(SGpulse, t) /

Figure 9. The second transformation: (a) a breadcrumb constraint is added to the Li ght Uni t domain,
representing the assumption that signal pulses completely determine how the cars observe the traffic light.
(b) Taking advantage of that assumption, the requirement is rephrased that that it refers to signal pulses
instead of observations. (c) Because the requirement refers only to phenomena shared between the Li ght
Unit and Control Unit domains, it can be pushed from one to the other. The problem diagram is now
an argument diagram.

11

(B) Rephrasethe Requirement red nor the green lights are on, then cars might assume that
the system is off and enter the road segment. That bread-
crumb needs to be strengthened to mention red observations
as well as green ones. The corrected breadcrumb and result-
ing specification is shown in Figure 10.

If, however, the designer decides that the cars bread-
crumb is reasonable, then we have learned something about
the system: red lights do not play a role in establishing the
original safety requirement. Had we gone straight to writ-
ing a specification, rather than deriving it incrementally, we
would probably have missed this insight and have written
an over-constrained specification — we would probably have
written one that requires both red and green lights to be
turned on and off in a certain pattern, rather than one that
just constrains green lights. While sufficient to enforce the
original requirement, such a specification would needlessly
restrict the design of the control unit.

In light of that breadcrumb, we rephrase the requirement to
mention signal pulses instead of light observations:

pred Requirenment3 [] {
not: Time |
odd[NGoul se, t] and
odd[SGpul se, t] }

assert Step2 {
Requi renment 3[] and
Li ght Uni t Br eadcr unb|[]
=> Requirement2[] }
check Step2 for 10

We use the Alloy Analyzer to verify that the new require-
ment plus the breadcrumb imply the prior requirement. It
passes for a scope of 10, so the breadcrumb is strong enough . . .

to justify the rephrasing. The result of this rephrasing is © Encoding Problem Diagramsin Alloy

shown in Figure 9b. In this section, we describe an Alloy model of problem
diagrams, and define what it means for a problem diagram
(C) Push the Requirement to be well formed. In Section 6, we extend the model to

describe our method for requirement progression (adding
breadcrumbs, rephrasing goals, and pushing goals). Key
h parts of the model are introduced in these sections, and the

entire model (including all referenced predicates) is shown
as a single unit in the Appendif.

The requirement now mentions only phenomena shared by
both theLi ght Unit andControl Unit domains, so
we can push it from one to the other. The result of this pus
is shown in Figure 9c.

Now that the requirement has been pushed all the way
onto the machine domain, it only mentions phenomena
known about by the machine and is a legal specification

for that machine. We have derived a specification for the The k d relati hat defi blem di
control unit (the final version of the requirement), a cor- € key sets and relations that define a problem diagram

rectness argument for why it enforces the original require- are shoyvn n ObJ.ECt model notation [33]in Figure 11. Each
ment, and a set of assumptions about the world upon whichconStra'nt mentions a sgt ,Of phenomena and touches a set
we are relying (the breadcrumbs). The designer can handOf dom?lnts. Eacr; d?rgam 'DVOIV_?_E a se_t of phenprlnenar?_nd
that specification off to an engineer to guide or validate an connects 1o a set of domains. There IS a Special machine
implementation, knowing that (as long as the breadcrumb domain and two special kinds of constraints, specifications

assumptions hold) the specification is, by construction, suf- an?_requwemenhts. f blem di in All
ficient to enforce the original requirement. O EXPress t © anatomy of a problem diagram in Alloy,
we start by defining three sets: the set of phenomena, the set
of domain, and the set of constraints. These are the building

)]] _ blocks of problem diagrams.
One of the primary benefits of problem frames is that it

forces the designer to be explicit about what assumptions

are being made. Those assumptions can then be checked by

domain experts, rather than being left hidden inside of the ey we define sebi agr am each element of which rep-

designer’s hgad. !n fact, there is a possm_le mistake in this jogents a complete problem diagram.

example, which might have escaped attention had the bread-

crumbs not been explicitly recorded in a formal language as sy use Alioy to formalize problem diagrams and the effect of our

part of our technlque. transformations on them (Sections 5 and 6) and also to express the con-
Recall that the first breadcrumiEdr sBr eadcr unb) straints in particular examples (Sections 4 and 7). We use the same lan-

states that a car will not enter the road segment if the greenguage only to reduce the number of logics that the reader must keep track
of, not to suggest a connection between the two uses. The two kinds of

lightin iFS direCtior‘ is off. Upo_n (_:loser inSPGCti_On’ SUPPOSE models are not currently put together, and need not be written in the same
the designer realized that this is not true — if neither the language. Connecting the two kinds of models is future work (Section 10).

5.1 Sets and Relations

4.5 Lessons Learnt

si g Phenonenon, Donmin, Constraint {}

12

Control
Unit
|
|
|
NRobserve
NGobserve
SRobserve
SGobserve
|
|
|
|
— e — —I— -_— -
/ nhot: time |
odd(NGpulse, t) and
| even(NRpulse, t) and

\ odd(SGpulse, t) and
\ even(SRpulse, t)

NRpulse
NGpulse
SRpulse
SGpulse

—»

Light Unit

NRobserve
NGobserve
SRobserve
SGobserve
NRpulse
NGpulse
SRpulse
SGpulse

NRobserve
NGobserve
SRobserve
SGobserve

all t: time |
NGobserve(t) <=> odd(NGpulse, t) and
NRobserve(t) <=> odd(NRpulse, t) and
SGobserve(t) <=> odd(SGpulse, t) and
SRobserve(t) <=> odd(SRpulse, t)

Cars

it

CarDirection
CarOnSegment
NRobserve
NGobserve
SRobserve
SGobserve

all t: time |
I NGobserve(t) and NRobserve(t)
=>no c: Cars |
CarDirection(c,t) = north
and CarOnSegment(c, t)

all t: time |
! SGobserve(t) » SRobserve(t)
=>noc: Cars |
CarDirection(c,t) = south
and CarOnSegment(c, t)

Figure 10. The argument diagram that results if we change the breadcrumb on the Car domain to permit
cars to enter the intersection when neither a red nor a green light shows. In this version of the argument,
both red and green lights are relevant.

13

5.2 Well Formedness
sig Diagram {

phenonmena: set Phenonenon, Not any collection of domains, phenomena, and con-
domai ns, machines: set Domain, straints constitute a meaningful description. If the predi-
constraints, requirements, catewel | For medDi agr amholds on a diagram, then we
specifications: set Constraint, know that the diagram has a meaningful structure. Later,
connects: Domain -> Domain, we will use this predicate to check whether or not certain
i nvol ves: Domain -> Phenomenon, transformations preserve well formedness.
touches: Constraint -> Donain,
mentions: Constraint -> Phenonenon pred wel | For medDi agram [x: Diagran] {
} sel f Cont ai ned[x]
one X. nmachi nes
A problem diagram comprises a setddnai ns, a set connect | ff Shar e[x]
of phenonena, and a set otonstrai nts. There is a nonTrivial [x]
special kind of domain called a machine, and two special all c: x.constraints |
kinds of constraints, called requirements and specifications. wel | For medConstraint[c, x]

The first three lines encode these as relations. For exam- }

ple, if x is aDi agr am then the expressiox. donai ns

denotes a set donai ns. A well formed diagram satisfies five properties.
Problem diagrams structure their domains, phenomena,

and constraints. Each domain in a diagram involves a set of

phenomena and connects to a set of other domains. Each

constraint in a diagram mentions a set of phenomena and

touches a set of domains. The last four lines encode these

e Diagrams must be self contained. For example, the
domains in a diagram cannot connect to domains in a
different diagram. Full definitions of all predicates can
be found in the Appendix.

as relations. For examplexfis aDi agr am then the ex- e There must be exactly one machine.

pressiork. ment i ons denotes a binary relation that maps

Const r ai nt s toPhenonena. More generally, we can e Every domain must be reachable from every other do-
get the set of phenomena mentioned by a constrainta main by following theconnect s relation zero or
diagramx by writingc. (X. ment i ons) or by the equiv- more times.

alent expressior. nenti ons[c] . - . :
P el e Trivial diagrams are forbidden, such as disconnected

diagrams or domains that contain no phenomena. Non-
triviality is not technically a requirement of a problem

Phenomenon diagram, but we include it for the sake of not having to
7 % worry about uninteresting corner cases.
1. 1. .
connects e "\ e Every constraint must be well formed.
involves mentions
1..n
1..n‘ V 1.n .
pred wel | For medConstrai nt
Domain |« 1.n — touches Constraint [c: Constraint, x: Diagrani

f c in X.constraints
all p: x.mentions[c] |

some d: X.touches]c]
p in x.involves [d]

Machine Specification Requirement all d: x.touches[c] | sone
(x.involves[d] & x.nentions[c])
c in x.specifications <=>
Xx.touches[c] in x.machines
x.touches[c] in x.domains
Figure 11. A metamodel of problem diagrams, x. nmentions[c] in Xx.phenomena
expressed using standard object model notation. }

14

A well formed constraint satisfies four properties.

pred structureEquival ent
e Any phenomenon mentioned by the constraint must be [x,y: Diagram {

involved in at least one of the domains touched by the x. donmai ns = y. domai ns
constraint. That is, every phenomenon used in a con- x. machi nes = y. machi nes
straint must come from somewhere. X. phenormena = y. phenonena
e Any domain touched by the constraint must involve X F:onnect s f Y- gonnect s
x.involves = y.invol ves

at least one phenomenon mentioned by the constraint. }
That is, a constraint cannot touch a domain for no rea-

son. Two diagrams are structurally equivalent if and only if their

e Aconstraintis a specification if it touches only the ma- domains, machines, and phenomena are the same, as well
chine. as the connections between domains and the phenomenain-
volved in each domain. No restriction is placed on con-

e A constraint must be completely contained within the straints, requirements, or specification, nor on the touches
diagram. For example, it cannot touch domains that gnd mentions relations.

are not in its own diagram or mention phenomena that

are not it its own diagram. 6.2 The Transformations

The Alloy Analyzer can automatically generate sample so- 1he addition of a breadcrumb to a diagram is modeled as
lutions to the above constraints by executingun com- a predicate, given in Figure 12. The only change to the di-
mand: agram is the addition of a single constraint. That constraint
touches a single domain, is well formed, but is neither a
run wel | For medDi agram for 4 requirement nor a specification. The domain structure re-

mains the same, as do all other constraints.
The “for 4” specifies acope for the execution. It tells the The rephrasing of a requirement is modeled as another

Alloy Analyzer to only consider solutions in which each Predicate, given in Figure 13. The only change to the dia-
signature has 4 or fewer elements. That is, we will only 9ram is the replacement of one requirementify another

generate solutions with up to 4 diagrams, up to 4 domains, (" ")- The new requirement must be well formed, men-
up to 4 phenomena, and up to 4 constraints. tion at least one different phenomenon than the only one,

and touch the same phenomena. The constraints in the fi-

nal diagram (comprising the new requirement and the old

non-requirement constraints) must logically imply the old
loy requirement.

Now that we have laid the groundwork with a descrip- A third predicate, given in Figure 14, defines a require-
tion of well formed problem diagrams, we will formalize ment push. The only change to the diagram is that one re-
what it means to perform requirement progression on such guirement changes what it touches but remains well formed.
diagrams. We do so by extending our previous model to
include descriptions of add, rephrase, and push operations.6.3 Well Formedness Preservation

Since we will be talking about sequences of problem di- \wjth formal descriptions of the transformations in hand,

agrams, we use one of Alloy’s library modules to impose e can check our belief that these transformations preserve
a total ordering on Diagrams. We can wrfterst[] to e|l formedness. We write an assertion that, if any of the

6 Encoding Requirement Progression in Al-

denote the firsbi agr amin the ordering andext [x] to three operations is performed on a well formed diagram, the
denote the nexdi agr amafter abi agr amx. resulting diagram will also be well formed.
open util/ordering[Di agranj as ord pred someTransformati on

[x,y: Diagram {
addBr eadcrunb[x, y] or

6.1 Requirement Progression Invariant rephr aseRequi r enent [X, y] or

In requirement progression, only constraints change; the pushRequi renment[x, y] or
underlying structure of the domains and phenomena re- commonTr ansfor mation[x, y]
mains constant. We express this invariant as a predicate. }

15

sive use of hardware interlocks, monitors, and redundan-

assert wel | FornednessPreservation { cies. The software itself is instrumented with abundant run-
all x,y: Diagram | time checks, heavily tested, and manually reviewed.
wel | For medDi agr anf x] There are two top-priority requirements in the BPTC sys-
and soneTransformation[x, y] tem: overdose avoidance andlogging.

=> wel | For nedDi agr anj y] . . o
Overdose Avoidance: At no time should the radiation

check wel | For mednessPreservation for 4 received by any part the patient’s body exceed the dose
stipulated in the treatment plan.
The check passes for a scope of 4, so we know that the
transformations preserve the well formedness invariant for
all small problem diagrams.

Logging: The system should write a log that accu-
rately reflects the dose delivered to the patient.

Without an accurate log, clinicians cannot resume an inter-

7 Proton Therapy Logging rupted treatment without ri;king an ovgrdose.
Each such requirementis handled, in the problem frames
Our second example is a simplified version of the log- approach, as a distinstibproblem. The proton therapy de-

ging system used in the BPTC system. It is a good ex- velopment involves several other subproblems, such as that
ample of a problem frame with laranching topology: the of positioning the patient accurately [10]. We shall consider
requirement connects to two different problem-world do- only the logging subproblem here.
mains, which in turn connect (either directly or indirectly)
to the machine. Requirement progression will involve shift- 7.2 Logging Subproblem
ing both of the requirement’s arcs onto the machine. Each
of the arcs is progressed in a manner similar to what we saw
in the traffic light example (Section 4), and will be handled

The BPTC provides us with some knowledge about
the domains that, together with the two partially-relevant
frames, suggest some domain properties that are likely to

md_?ﬁer:den_tly. blem is al instruct le b be relevant to our argument (and that will therefore mani-
e logging problem is also an instructive example be- ¢ . colves as breadcrumbs).

cause it does not match any sin.gle standard problem frame; The challenge presented by the logging problem is that
onetparz T}atc:lhes thpgrtr)glor) dliplayfralrze,\j\vnhqlartlr?ther neither the physical machine producing the beam nor the
part matchies teequir avior frame [14]. lie those logging disk are completely reliable. For example, the beam

frames will still provide us with some guidance, neither of equipment could be shut off by a hardware interlock, or the

them 'captures the fuII'essence .of the logging requwement.loggmg database might reach its capacity or its disk might
Requirement progression can still be used to construct a cor-

S crash. If the log cannot be written, the treatment must be
rectness argument for the system, and will still ensure that 9

. L : . halted.
we are not relying on implicit doma"? assumptions. HO.W' We assume, however, that the Treatment Control System
ever, we will not be able to rely on existing frames to guide

our choice of domain assumptions and will instead intro- (TCS)is a reliable component and will therefore be given
u : : umpti WIR I : the responsibility of enforcing the requirementin the face of

d.uce assumptions basgd on existing domain knowledge P'O%nown unreliabilities of the other components. If the TCS
vided by the BPTC engineers. is found to be unreliable in ways that prevent it from ful-
. filling the derived specification, then the process must be
7.1 System Requirements repeated to find a looser specification. Doing so is likely
The BPTC system is considered to be safety critical pri- to entail stronger assumptions about the reliability of other
marily due to the potential for overdose — treating the pa- components, or weakening the requirement we are able to
tient with radiation of excessive strength or duration. The guarantee.
International Atomic Energy Agency lists 80 separate acci- We assume a standard failure model for the disk sub-
dents involving radiation therapy in the United States over system and the network. Disk writes are atomic — they ei-
the past fifty years [32]. The most infamous of these acci- ther complete successfully, or fail, leaving the disk unaf-
dents are those involving the Therac-25 machine [20, 23], in fected. Messages sent on the network may be dropped, but
whose failures faulty software was a primary cause. More are never corrupted or duplicated.
recently, software appears to have been the main factor in The radiation hardware may fail like a disk, but presents
similar accidents in Panama in 2001 [5]. a harder challenge. A disk write can be made atomic, by
The BPTC system was developed in the context of a so- regarding it as not having occurred until a single commit bit
phisticated safety program including a detailed risk analy- is flipped, until which point the write can be revoked. The
sis. Unlike the Therac-25, the BPTC system makes exten-delivery of radiation, in contrast, is irrevocable.

16

pred addBreadcrunb [before, after: Diagran] {
structureEqui val ent [before, after]
sone bc: Constraint {
addConstraint[bc, before, after]
one after.touches|bc]
wel | For medConstrai nt[bc, after]
bc lin after.requirenments + after.specifications

}
}

Figure 12. Adding a breadcrumb to a problem diagram.

pred rephraseRequirenent [before, after: Diagran] {

structureEqui val ent [before, after]

some r: before.requirenents, r’: after.requirements {
wel | FormedConstraint[r’, after]
replace[r,r’, before,after]
onl yChanges[r, r’', before, after]
before.nentions[r] != after.mentions[r’]
before.touches[r] = after.touches[r’]
inplication[after.constraints, r, after]

Figure 13. Rephrasing a requirement.

pred pushRequirenent [before, after: Diagran] {
structureEqui val ent [before, after]
onl yTouchesChanges[before, after]
some r: before.requirenents & after.requirenents {
before.touches[r] != after.touches[r]

before.touches - (r -> univ) = after.touches - (r -> univ)

wel | FormedConstraint[r, after]

}
}

Figure 14. Pushing a requirement.

17

detect these
signals...

II

pl

el
signals ~
commands
[VIS

-

...and generate

according to its
specification, ...

...the machine will

4 these commands,

B DA this assumption...

...then, because
sensors obey this
assumption, they
will generate
signals like this...

physical
phenom ~
signals
e
" When the state of
physical phenom the world is such-
sensor signals and-such....
fo}
Sensors
signal phgsical phenom ——
7 Display ~\
Sensors
command display vaILTe
=
Display
(] ...which
: corresponds, as
command phenom required, to the
display phenom state of the world.
§ commands ~ ,
i display i
i values i

...s0 the display will
have these values
because it obeys

Figure 15. An informal argument diagram for the information display frame.

= #DoseUni t
=#Entry

in DelivBurst

i n ReqBur st
i n AckBur st
in RegWite

in AckWite

=

=

=

=

=

=

Upon the completion of treatment,

the patient’s body has exactly d units of radiation.

Upon the completion of treatment,

there are exactly e entries in the log.

At some point during the treatment,

a burst of radiation was delivered,

associated with the burst b.

At some point during the treatment,

a request was made for burst b to be delivered.

At some point during the treatment,

an acknowledgement was made that burst b was delivered.
At some point during the treatment,

there was a request for burst b to be written.

At some point during the treatment,

there was an acknowledgement that burst b was written.

Figure 16. Designations for the dose logging problem diagram.

18

The strategy, therefore, is to deliver the beam in short tion enforces the original requirement, and they are unclut-
bursts, logging each burst as it is occurs. If the disk fails, tered by unnecessary (albeit correct) domain assumptions.
no further bursts are delivered. If the delivery mechanism If the domains are later changed in ways that do not affect
fails, no further log entries are written. Although the log the breadcrumbs we used, then the argument reprsented by
might not match the treatment exactly, we are assured thatthe requirement progression will still hold. Including un-
they deviate by at most a single burst. necessary, but true, assumptions increases the chance that

The analysis we perform shows how this approachis jus- changes to the domain will require the progression to be re-
tified, and how it reveals a distribution of small but subtle worked.
assumptions across the various components of the system.

7.4 Matching Problem Frames

7.3 The Phenomena No single existing problem frame matches the logging
Figure 17 shows a problem diagram for the logging sub- subproblem, although we can draw some insight from two
problem. In it, the informal logging requirement has been frames that match pieces of the problem.
formalized using the Alloy language [9, 7, 11]. Designa- Logging partly matches thimformation display frame,
tions’ for the phenomena used in that diagram are given in shown in Figure 15. In an information display frame, a
Figure 16. Machine resides between Sensors that detect phenomenain
A Patient is prepared to receive radiation from the physical world and a Display that encodes some repre-
the Beam Equi pnment. The Treat nent Contr ol sentation of those phenomena. The requirement is that the
Syst em(TCS) issues a series 8eqBur st requests to display values correspond, in some prescribed way, to the
the Beam Equi prent .2 EachReqBur st instructs the state of the physical world. The frame concern focuses our
equipment to deliver a single burst of radiation to the pa- attention on the following characteristics of the three do-
tient, Del i vBur st , which in turn raises the total radia- mains: how the Sensor domain relates physical phenomena
tion delivered to the patient by orl@oseUni t . After a to signals sent to the machine; how the Machine reacts to
successfubDel i vBur st , the Beam Equi pment sends those signals by issuing commands to the Display; and how
anAckBur st acknowledgement back to tA€S. the Display reacts to those commands by rendering display
Whenever theTCS issues aReqBur st , it attempts values. The correctness argument will follow this chain to
to write a record of that dose to tHeog by issuing a argue that any physical world phenomenon will result in the
RegW i t e request. Thé.og may then create aBnt ry appropriate display values.

recording that @oseUni t has been delivered to the pa- The Logging facility is an information display prob-

tient. Upon successfully creating &nt r y, theLog sends lem in the following sense: Th&oseUnits are the

anAckW i t e acknowledgement back to tieS. physical phenomena that we are attempting to represent.
Both theBeam Equi pnent and theLog are known The Pat i ent and Beam Equi pnent together consti-

to be partially unreliable. Th8eam Equi pnent will tute the Sensor, which detects increase®aseUni t s

never perform eDel i vBur st without first receiving a and sends AckBurst signals to the TCS. THeS is the

ReqBur st , but it may ignore som&eqBur st's. Simi- Machine, which receiveAckBur st signals and gen-

larly, theLog will never write erroneougnt ri es, but it eratesReqWite commands. ThelLog is the Dis-
may ignore som&eqW i t e requests (if, for example, the play, responding t®RegW i t e commands and generating
log has reached its capacity or the disk crashes). Entri es. Our requirement is thd&nt ri es correspond
This knowledge about the domains is not initially repre- to DoseUni t s.
sented in the problem diagram, as we are not yet sure which The TCS does not just passively watch the patient and
parts of it will be relevant to the progression. We will not react to changes iDoseUni t s by updating the Log, as
actually add any of this information into the diagram until suggested by the information display frame. The TCS is
it is needed for the progression. Rather, these informal de-also permitted to write a log entry and then deliver a burst
scriptions are used to help the analyst know what domain of radiation to match it. (Stopping the TCS once the pre-
properties are available for introduction as a breadcrumb. scribed dose of radiation has been delivered and ensuring
In this way, the breadcrumbs are only those domain prop- that it eventually delivers a sufficient dose is part of the over-
erties relevant to the argument that the derived specifica-dose requirement, not the logging requirement.)

A desi gnati on is an association between formal terms in some
description and informal properties of the real world. This is in contrast to
adefi ni tion,which relates formal terms to other formal terms. [14]

8The number of such requests is based on the patient’s treatment plan.
The treatment plan has thus omitted from the problem diagram, since it
is not relevant to the logging requirement. It would be included in the
problem diagram for the overdose avoidance requirement.

19

~ -
4 Requirement: \\
/' The deviation between the number \
/ of entries recorded in the log and

I the number of dose units delivered \
| to the patient is at most one. |
\ |

\ #Entry = #DoseUnit or /

\ #Entry = #DoseUnit + 1 or
\ #Entry = #DoseUnit - 1 /
.
//f \\
DoseUnit Ent(;\/
/’/ \\\
I £
Patient Log
DelivBurst ReqWrite AckWrite
ReqBurst
/ TCS:
Beam Treatment
Equipment Control
\ / System

AckBurst

Figure 17. The problem diagram for the logging requirement. At any point in time, the doses recorded in the
log entries should match the total dose actually delivered to patient, up to a known margin or error.

20

E Breadcrumb 1b:

{ The number of entries in the log cannot
i exceed the number of write requests

i received from the TCS. That is, each

i write request creates at least one entry,
. but some write requests may never be
i enacted.

i Breadcrumb la:

g The number of write acknowledgements

i received from the TCS cannot exceed the
i number of entries in the log. That is, each
E entry written generates at most one write

é acknowledgement, but some entries may
i never be acknowledged.

f Breadcrumb 2:

| The number of bursts delivered by the

i beam equipment is the same as the
number of dose units received by the
patient. That is, each burst delivers one
unit of radiation, and the patient receives
no radiation from other sources.

#Entry =< #ReqWite

#DoseUnit = #Del i vBur st #Entry >= #AckWite

DoseUnit Er':try

.) Entry .
DellvBuI‘st AckWrite Req\:erte
o S
i Breadcrumb 3a: i)
i Every acknowledged burstis | Patient Log
i also a delivered burst. That |
i is, only acknowledged bursts ; -
; are delivered, but some i
i delivered bursts are never !
i acknowledged. H
EAckBurst in DelivBurst | X 3
H i DelivBurst ReqWrite AckWrite
DelivBurst

AckBurst

S ReqBurst
/ TCS:
Treatment

Beam

Equipment Control
\ / System
- AckBurst
.~ .
DelivBurst B
ReqgBurst ','
od)
: ReqWrite
i 4 AckWrite
§ Breadcru_mb 3b:) RegBurst
{ Every delivered burst is also a AckBurst
i requested burst. That is, only ’
i requested bursts are delivered, B
i but some requested bursts are B
{ never delivered. _,"
1 3 S
éDeI i vBurst in ReqBurst Specification:
i / The bursts that are requested to be delivered are the

same as the the bursts requested to be written to the
log. Thatis, the two kinds of requests are always
issued in tandem.

There is at most one unacknowledged write request,
and at most one unrequested delivery request. That
is, a new write request cannot be issued unless all
prior write requests have accompanying write
acknowledgements. Similarly, a new burst request
cannot be issued unless all prior burst requests have
accompanying burst acknowledgments.

ReqWite = ReqBurst
lone ReqWite - AckWite
| one ReqBurst - AckBurst

\

Figure 18. The argument diagram that results from transforming the requirement into a specification. Each
breadcrumb constraint has a formal description of a partial domain property and an informal interpretation
of that formula. The conjunction of the breadcrumb formulae and the specification formula logically imply
the requirement formula. The Alloy keyword lone, used in the TCS specification, indicates that a set has a
cardinality of zero or one.

21

The failure to match is also apparent from the diagrams 7.5 The Requirement
by takiﬂg note of th? arrow heads on.the. requirement arcs. From the user’s perspective, there are two fundamental
A requwemen't arcwith an arrow head indicates that the phe'sets — a set of radiation dose units and a set of log entries.
nomena labeling that arc are the ones that are should change
in order to satisfy he requirement. Requirement arcs with- sig Doselnit { }
out arrow heads indicate that those phenomena should not sig Entry { }
be changed. In the information display frame, only the arc

to the Display has an arrow head, indicating that only the The initial requirement is that the number of dose units de-

Sengors phenomgna will not be changed. In contrast, theIivered to the patient matches the number of entries in the
logging problem diagram has arrow heads on both the Log log, with a margin of error of one unit

and the Patient domains, as both entries and dose units can

be changed in order to satisfy the requirement. pred Requirenentl [] {

Logging also partly matches theequired behavior #Entry = #DoseUnit or
frame, shown in Figure 4. In a required behavior frame, #Entry = #DoseUnit + 1 or
a Machine issues commands to a Device domain, which in #Entry = #DoseUnit - 1 }

turn exhibits certain behaviors. There is a requirement on

what sorts of behaviors should occur. The frame concern rig requirement is loose enough to permit behaviors in
focuses our attention on characterizing how the behaviors, hich a burst is both delivered and logged (first line)
exhibited by the Device domain depend on the commands|qged but not delivered (second line), or delivered but not
issued by the Machine. logged (third line). However, in either of the latter two

The Logging facility is a required behavior problem in cases, further logging and treatment cannot continue until
the following sense: Th&CS is the Machine, which is- the imbalance has been corrected.

suesReqW i t e andReqBur st commands. Thé.og, The essence of the interaction is that various messages
Beam Equi pment , andPat i ent together constitutethe are exchanged about bursts delivered by the beam machine
Device domain, whose exhibited behaviors BoseUni t (or requested of it). Since each message is about a particular

andEnt ri es. The requirement on valid behaviors exhib- pyrst, there is no need to introduce a separate notion of a
ited by the Device domain is that ti®seUni t s match message. Rather, we simply introduce a set of bursts
theEntri es.

The TCS also does not control a single Device domain, sig Burst { }
as suggested by the required behavior frame. The controlled
device is really three different domains, one of which (the and a classification into a collection of (possibly overlap-
Log) has no direct connection to the other two (the Beam ping) sets, consisting of bursts that are delivered, requested,
Equipment and the Patient). Lumping those three domainsand acknowledged, and bursts associated with log entries
together into a single Device domain hides the very trait that that are requested and acknowledged.
makes the problem hard — the fact that the Log and Patient
cannot directly communicate with one another. It suggests sj g Del i vBurst, ReqBurst, AckBurst,

that we could introduce a domain assumption that says “the ReqWite, AckWite in Burst { }
Device keeps the Entries and DoseUnits the same”, missing
the key challenge of the Logging problem. That is, a burst in th&keqW i t e set is one for which a

Neither frame alone captures the nature of the pro-active write request has been issued. If a write acknowledgement
logging problem that we are analyzing. One might argue has been issued for that burst, then it will also be in the set
that the system ought to be designed so that one machineAckWi t e.
delivers successive doses (required behavior) and a sepa- Ourtask is to establish a relationship betw&enr i es
rate machine passively maintains the log (information dis- and DoseUni t s, as per the requirement. We will intro-
play). However, with an unreliable log, there needs to be duce domain assumptions about #&t i ent andBeam
a communication channel between the log and the delivery Equi prrent to relateDoseUnit to ReqBur st. Do-
mechanism, as each needs to react to the acknowledgementsain assumptions about theog will be added to relate
of the other. Eliminating that dependence would require Entri es to ReqW i t e. TheTCS specification will then
changes to the system itself, a luxury not available when constrainReqBur st andReqW i t e requests, thus indi-
the system is already in place, and forcing the system into arectly enforcing the original requirement. Figure 17 shows
mold that fits poorly will only produce a correctness argu- the problem diagram before requirement pregression be-
ment that fits equally poorly. Rather, we must approach the gins, and Figure 18 shows the same diagram at upon com-
system anew. pletion.

22

7.6 Transformation and Derivation can be at most one write request for which there is no write
acknowledgement.

To confirm that the new breadcrumb and the new require-
ment together imply the prior requirement (the original re-
hquirement), this is presented to the Alloy Analyzer as an

assertion to be checked:

We begin with the requirement we want to enforce. The
derivation happens in three stages: First, we push the re-
quirement from thé.og to theTCS, and add a breadcrumb
and rephrase the requirement as needed to permit that pus
Second, we push the requirement fromfad i ent to the
Beam Equi prent , adding another breadcrumb and per-
forming another rephrasing. Finally, we push the require-
ment from theBeam Equi pment to theTCS, adding a
third breadcrumb and performing a third rephrasing. At that
point, the requirement only touches (only mentions phe-
nomena involved in) the machine domain, and has thus been
transformed into a specification. Figure 18 shows the final
state of the Problem Frame description, after the transfor-
mation process is complete.

assert Stepl {
LogBreadcrunb[] and
Requi rement 2[]
=> Requirenment1[] }
check Stepl for 10

Now that the requirement only mentions phenomena from
the recipient domain, it can be pushed frbog to TCS.

Step 2: from Patient to Equipment
Step 1: fromLogto TCS

]]] We repeat the process to push the requirement from
Ouir first task is tgoush the requirement from theog do- Pati ent to Beam Equi pnent by characterizing the
main onto theTCS domain. We cannot do so because the Pati ent domain. First, we add the following bread-

requirement mentions thEnt ry phenomenon, which is . mb:

not involved in theTCS. We will thus need taephrase the

requirement to reference phenomena shared withT¢® pred PatientBreadcrunb [] {

(RegWit e, AckWi t e) instead of those known only to #DoseUnit = #Del i vBurst }

the Log (Entri es). However, we first need to intro-

duce a breadcrumb, characterizing the log, to justify such \ynich is motivated by the fact that eadel i vBur st
arephrasing. That breadcrumb needs to relate the phenomg, ant delivers exactly onBoseUni t to the patient, and

ena that the requirement constraint currently mentions 10 5t the patient receives mseUni t s of radiation from
those that we would like it to reference. To that end, we add iher sources. The breadcrumb permits the requirement to

the following breadcrumb representing our domain assump- pa rephrased as follows:
tions about.og:

pred Requirement3 [] {

pred LogBreadcrunb [] { | one ReqWite - AckWite and
#Entry >= #AckWite (#ReqWite = #Del i vBurst or
#Entry =< #ReqWite } #ReqWite = #DelivBurst + 1) }

The first constraint says that the number of entries Writ- To confirm that the new breadcrumb and the new require-
ten is greater than or equal to the number of write ac- ment together imply the prior requirement, we present the
knowledgments; it allows entries to be written without cor- - Aoy Analyzer with the following assertion to check:
responding acknowledgments. The second constraint says

that the number of entries written is less than or equal 0 assert Step2 {

the number of write requests; it allows write requests to be Pat i ent Breadcrunb[] and
ignored. With this assumption in hand, we rephrase the re- Requi rement 3[]
guirement as follows: => Requirenent2[] }

check Step2 for 10
pred Requirement2 [] {

lone ReqWite - AckWite and We can now push the requirement fréiat i ent to Beam
(#ReqgWite = #DoseUnit or Equi pnent .
#ReqWite = #DoseUnit + 1) }

The Alloy keywordl one indicates that the following ex-

pression has a cardinality of zero or one. Thus, the for-
mulal one RegWite - AckWit e means that there

23

Step 3: from Equipment to TCS 8 Discussion
We repeat the process a third time to push the requirement8.1 Role of the Analyst

from Beam Equi pnent to TCS. First add the following The transformation process is systematic but not auto-
breadcrumb: matic. The decisions of what breadcrumbs to add, how to
rephrase the requirement, and which enabled pushes to en-
pred Equi pBreadcrunb[] { act are subjective assessments by the analyst based on ex-
AckBurst in DelivBurst perience or a related frame concern.
DelivBurst in ReqBurst } The approach is incremental, and justified by assertions

) that involve, in any step, at most assumptions about a single
which says that an acknowledgement must be sent onlygomain. While the process involves mostly local reason-
whene a burst is delivered, and that a burst may only be de-jng, the resulting guarantee is a global one — that the spec-

livered when it is requested. Limited unreliability is permit- jfication together with all the domain assumptions together
ted; some requests have no matching delivery and some dejmply the requirement.

liveries have no matching acknowledgement. The require-

ment can now be rephrased as follows: 8.2 Automatic Analysis

pred Requirementd [] { It' is not necessary to combine this approach with aL_lto-
ReqWite = ReqBur st mgtlc analysis tgqls (such as Alloy), glthough in pra(_:tlce
lone ReqWite - AckWite it is extremely difficult to construct valid arguments with-
out tool support. The same process could be performed us-
ing informal reasoning or a different formal logic and still
be helpful for structuring the argument, making domain as-

| one ReqBurst - AckBurst }

The first line of the derived specification says that a write

must be requested of the log whenever the beam equipmenBUmPptions explicit, and providing a trace of the analyst's
is requested to deliver a burst and vice versa. The second©@S0ning. The language for representing domain properties

line says that no new write requests can be made if anyand the method for discharging the rephrasing implications

write request remains unacknowledged. The third says thatShould be chosen based on the analyst's experience, the type

no new burst request can be made if any burst request reOf r(_aquirement being analyzed, and the level of confidence
mains unacknowledged. The machine must wait for both desired.
acknowledgements before issuing another pair of requests.
We present the Alloy Analyzer with the following asser- 8-3 ~Progression Mistakes
tion to check that the final rephrasing was justified by the The power and limitations of our technique can be appre-

following breadcrumb: ciated by considering some mistakes an analyst might make
while performing the transformations. How each mistake
assert Step3 { manifests itself reveals both strengths of our current work
Equi pBreadcrunb[] and and indicates challenges for future work.
Requi renment 4]]
=> Requirenment3[] } (1) A breadcrumb might be added that is insufficient to
check Step3 for 10 permit the desired rephrasing. In such a case, the an-
alyst would be unable to discharge the required impli-
Finally, we push the requirement fradBeam Equi prent cation and the rephrasing would not be permitted.

to TCS. At this point, the requirement mentions only phe-
nomena fromTCS and has become a specification. If the (2)
TCS issues requests according to this specification, and the
other three domains satisfy their domain assumptions, then
the original requirement will be preserved. The problem

diagram resulting from the entire is shown in Figure 18. (3) Abreadcrumb might be added that is correct but which
is stronger than necessary to justify the rephrasing.
There will be no ill effect on the specification, but a
stronger breadcrumb places additional burden on the
domain expert attempting to validate it.

A breadcrumb might be added that represents an in-
valid assumption. At the very least, stating that as-
sumption explicitly will increase the likelihood that it
will be corrected by a domain expert.

(4) A breadcrumb might be added that is weaker than
necessary, forcing the rephrased requirement to be

24

stronger than necessary. The resulting specification The four-variable model [29, 36] makes a distinction,
will be stronger than it could have been, making it like problem frames, between the requirements, the spec-
harder (or impossible) to implement. The analyst ification, and domain assumptions. However, in Problem
would review the trail of breadcrumbs to find opportu- Frame terminology, it assumes that a particular frame al-
nities for weakening the requirement by strengthening ways applies, in which there is a machine, an input device
the breadcrumbs. domain, an output device domain, and a domain of con-
trolled and monitored phenomena.

Johnson made an early use of the phrase “deriving spec-
ifications from requirements” in 1988 when he showed how
requirements written in the relational logic langudgiet
can be transformed into specifications through iterative re-
finement [16]. Each refinement step places limits on what

Points 3 and 4 get at the fundamental tradeoff between thedomalns may know an.d on the domains’ abilities to cont.rol
the world, and exceptions are added to global constraints.

strength of the domain assumptions and the strength of theA specification is not quaranteed to loaically imoly the re-
specification. If a domain assumption is weakened (thus uirrt)ament it arew out gf and the two degscri)t/ionsr{la even
permitting more behaviors), then typically the specification q 9 ! P y

. - be logically inconsistent with each other. In contrast, as we
will have to be strengthened (thus permitting fewer behav- ~ . .
) . P . refine (transform) a requirement, the breadcrumbs we add
iors). Conversely, weaking the specification typically re-

; :) . expand our assumptions about the domains rather than re-
quires strengthening the domain assumptions. L e . .
stricting them, and a specification will always be consistent
with the requirement it enforces.

(5) The original requirement might be too strong to be en-
forced by any (realistically) implementable specifica-
tion. In such a case, the analyst will derive an unrea-
sonably (but necessarily) strong specification, and the
requirement will have to be rethought.

9 Related Work
9.1 Requirement Factoring 9.2 Problem Frames

Many approaches to system analysis involve some kind Michael Jackson sketches out a notiorpodblem pro-
of factoring of end-to-end requirements into subconstraints, gression in the problem frames book [14]. A problem pro-
often recursively. Assurance and safety cases [1, 20], forgression is a sequence of Problem Frame descriptions, be-
example, factor a critical safety property. They tend to op- ginning with the full description (including the original re-
erate at a larger granularity than problem frames, in which quirement) and ending with a description containing only
the elements represent arguments or large groupings of evthe machine and its specification. Each step involves drop-
idence, rather than constraints. Analyses that focus on fail- ping the domains touching the requirement, then reconnect-
ures rather than requirements (such as HAZOP [28]) are du-ing the requirement to other domains and rephrasing it as
als of these approaches, in which factoring is used to iden-needed. He does not work out the details of how one would
tify the root causes of failures. Leveson's STAMP approach derive the successive descriptions, but it seems that he had
involves decomposing design constriants, with a focus on a similar vision to our own. However, rather than eliminat-
managerial control over the operation of a system [21, 22]. ing elements (domains) from the diagram at each step, our

More similar to our approach are frameworks, such as approach instead adds elements (domain assumptions), pro-
i * [37] and KAOS [3], that factor system-level proper- viding a trace of the analyst’'s reasoning in a single diagram.
ties by assigning properties to agents that work together Jackson and Zave use a coin-operated turnstyle to
to achieve the goal. For KAOS, patterns have been devel-demonstrate how to turn a requirement into a specification
oped for refining a requirement into subgoals [4]. In our ap- by adding appropriate environmental properties (domain as-
proach, we have not given a constructive method for obtain- sumptions) [15]. Their approach is quite similar to our own,
ing the new constraint systematically, and the refinement and uses a logical constraint language to express domain as-
strategies of KAOS may fill this gap. sumptions. Our work strives to generalize the process to be

Letier and Lamsweerde show how a goal (requirement) applicable in broader and more complex circumstances, and
produced from requirement elicitation can be transformed to help guide the analyst through the process with the visual
into a specification which is formal and precise enough notion of pushing the requirement towards the machine.
to guide implementation [19]. That approach is centered Rapanotti, Hall, and Li recently introducedoblem re-
around producing operational specifications from require- duction, a technique that uses causal logic to formalize
ments expressed in temporal logic, and focuses on provingproblem progression in problem frames [31]. Like our own
the correctness of a set of inference patterns. Such infer-work, they seek to formalize and generalize problem pro-
ence patterns are correct regardless of context, in contrasgression in a way that provides traceability as well as a guar-
to our approach in which transformations are only justified antee of sufficiency. Problem reduction follows the style
by context-specific domain assumptions. of problem progression described in the problem frames

25

book [14], in which the requirement is moved closer to the such a model has already found a (minor) bug in the arc la-
machine by eliminating intervening domains. bels of one of our published requirement progressions. Such
Hall, Rapanotti, Li, and M. Jackson are developing a a synthesis will also permit us to check the completeness of
calculus of requirements engineering based on the problemour transformation set.
frames approach [24, 25, 30]. They examine how problems The biggest shortcoming of our requirement progres-
and solutions can be restructured to fit known patterns. Partsion technique is the burden placed on the analyst to come
of their technique involves transformation rules for problem up with breadcrumbs that are both useful for moving for-
progression, in which a requirement (expressed in CSP) isward with the progression but also consistent with existing
replaced by an equivalent requirement in an alternate form. knowledge of the domains. We would like to better incor-
In contrast, our technique is a form of requirement pro- porate and represent existing domain knowledge, so that the
gression, in which the transformations only change the con- analyst is not producing breadcrumbs as blindly. For ex-
straints, not the underlying domain structure. Furthermore, ample, one might have state machine descriptions of each
our transformations are not semantics-preserving; they aredomain (similar to those suggested in the Problem Frame
justified by a set of explicit assumptions rather than proofs book [14]). Not only would such descriptions suggest pos-

of equivalence. sible breadcrumbs to the analyst, but they would also allow
the analyst to check that a desired breadcrumb is usable (by
10 Future Directions checking that it is implied by the relevant domain’s state

i i . machine). This approach might be especially helpful if the
.Our u t|matg goatis to provide a structured and system- domain experts are not available on short notice. The ana-
atic way of building code-level arguments about system- lyst could build up a body of knowledge at a single meeting

level propertles(.j C_entrz:}l tok0Lt|)r| effort '_i’_ the_ usefof problem by building formal domain models, then gradually draw on
progression to erive checkable spect |cat|ons_ rom _S‘yStemthat knowledge later on, during the course of the progres-
requirements. In this way, our broader work is similar to sion

work that is being done on synthesizing problem frames A.notherway to provide the analyst with more guidance

Wit_h assurance cases [35, 27, 26]. So far, we have found s through the development of a catalog of transformation
quirement progression (problem progression in which only heuristics based on our experience with further case stud-

the constraints are changed) to be the most manageable Waes. That is, given the local structure of a problem diagram

of doing problem progression in complex systems. and a desired push, what are the right kinds of breadcrumbs

| our expeneréce Is that mostbprokallemsi even ;/ery Cl:())lm- and rephrasings to perform? Such heuristics are likely to
plex ones, can be represented by relatively simple problemy,, q into account which domains control which phenomena

diagrams but that those diagrams do not quite fit existing 4 he type of each domain (biddable, causal, lexical) —
frames and frame concerns. For example, in our work with information which we currently ignore

the BPTC, we have never needed a problem diagram with

more than a dozen domains. That said, the examples used in

this paper are still too small to adequately determine if our Acknowledgments

technique scales. To better explore the issues that arise in This work is part of an ongoing collaboration between

more complex problem diagrams, we are developing severalthe Software Design Group at MIT and the Burr Proton

more case studies involving the BPTC software, involving Therapy Center (BPTC) of the Massachusetts General Hos-

requirements such as overdose avoidance, patient identitypital. We appreciate the assistance of Jay Flanz and Doug

consistency, the accuracy of information presented to the Miller (BPTC), the advice of Michael Jackson and Jon Hall

therapist, and a more elaborate description of dose logging.(Open University), and the feedback of the anonymous re-
There currently is an incompatability between the for- viewers.

mal description of our requirement progression technique in - This research was supported by gradfi86154 (‘Design

general (Sections 5 and 6) and the models we write to vali- Conformant Software’) an895566 (‘Safety Mechanisms

date goal rephrasings in particular problem diagrams (Sec-for Medical Software’) from the ITR program of the Na-

tions 4 and 7). We have done some preliminary work on tional Science Foundation, and by the Brazilian Research

connecting those two kinds of models. That is, Alloy mod- Agency CNPq.

els of particular problem diagrams can be written as exten- This article extends previous work published at the 2006

sions to the metamodel of problem diagrams given in Sec- Requirement Engineering conference [34].

tion 5. One result would be that the analyst could check

that each proposed progression step is indeed following our

requirement progression process. For example, one can en-

sure that a breadcrumb is not added to a domain that does

notinvolve all of the necessary phenomena. In fact, building

26

Appendix: An Alloy Model of Requirement Progression

This Alloy model is analyzable with the current, freely available, version 4 of the Alloy Analyzer [7].

nodul e requi rement Progr essi on
open util/ordering[D agram as ord
-- for effective visualization, project over Di agram

/***************************************/

/* defining a problemdiagram*/

/***************************************/

si g Phenonenon, Domain, Constraint {}

-- the anatony of a probl emdiagram
sig Diagram{
phenonena: set Phenomnenon,
domai ns, machi nes: set Donai n,
constraints, requirenents, specifications: set Constraint,
connects: Domain -> Donain,
i nvol ves: Donmi n -> Phenonenon,
touches: Constraint -> Domain,
mentions: Constraint -> Phenonenon

}

pred wel | FornedDi agram [x: Di agram {
-- relations do not cross between diagrans
sel f Cont ai ned[x]
-- there is exactly one machi ne
one Xx. nmachi nes
-- domai ns connect iff they involve a shared phenonenon
connect | f f Shar e[x]
-- diagranms are non-trivial
nonTri vi al [X]
-- all constraints are well formed
all c: x.constraints | wellFormedConstraint][c, X]

}

run wel | For medDi agram for 4
run wel | FormedDi agramfor 35 --2 nminutes to sol ve

27

/***************************************/

/* helper functions for well fornedness */

/***************************************/

-- domains connect iff they involve a shared phenomenon
-- domains do not connect to thensel ves
pred connectlffShare [x: Diagram {
all d,d : Domain |
d” in x.connects[d] <=>
(d '=d and sorme x.involves[d] & x.involves[d'])

}

pred sel fContai ned [x: Diagram ({
-- domai ns don’t connect to dommins in other diagrans
(x. domai ns) . (x.connects) in (x.donains)
-- domai ns do not involve phenonena from ot her di agrans
(x. donmi ns). (x.involves) in (x.phenonmena)
-- requirenents and specifications are not from other diagrans
X.requirenents + x.specifications in x.constraints
-- the machine is not in another diagram
X. machi nes in x.domai ns

}

pred nonTrivial [x: Diagranl {
-- each constraint nentions some phenonena
all c: x.constraints | sonme x.nmentions[c]
-- each domain involves sonme phenonena
all d: x.domains | sone x.involves[d]
-- the diagramis connected
all d,d": x.domains | d in d.*(x.connects)
-- there is at |east one non-machi ne domain
some x.domai ns - x.machi nes

}

pred wel | FormedConstraint [c: Constraint, x: Diagram {
-- constraints can only touch the domai ns that involve phenomena they mention
-- constraints nust touch the donains that involve the phenomena they nmention
all p: x.nentions[c] | sonme d: x.touches[c] | p in x.involves[d]
all d: x.touches[c] | some x.involves[d] & X.nentions[c]
-- specifications only touch nachi nes
c in x.specifications <=> x.touches[c] in x.nmachines
-- cis contained entirely within x
ful l yCont ai nedConstraint [c, X]

}

pred fullyContainedConstraint [c: Constraint, x: Diagran] {
-- ¢ nust be one of x's constraints
C in x.constraints
-- constraints do not touch domains in other diagrans
X.touches[c] in x.donmains
-- constraints do not mention constraints in other diagrans
X. mentions[c] in x.phenonmena

}

28

/***************************************/

/* requirenent progression transformations */

/***************************************/

pred addBreadcrunb [before, after: Diagran] {
--not hi ng changes except for the addition of a single breadcrunb
struct ureEqui val ent [before, after]
sone bc: Constraint {
addConstraint[bc, before, after]
-- bc is a well formed valid breadcrunb
one after.touches|bc]
wel | For medConstrai nt[bc, after]
-- bc is not a requirenent or a spec
bc lin after.requirenents + after.specifications
}
}

pred rephraseRequi renment [before, after: Diagram {
--not hing changes except for r’ replacing r
structureEqui val ent[before, after]
some r: before.requirenents, r’': after.requirements {
wel | FormedConstraint[r’, after]
replace[r,r’,before, after]

onl yChanges[r, r’, before, after]

-- r and r' have different phenonena but sane donains
before.nentions[r] != after.mentions[r’]
before.touches[r] = after.touches[r’]

-- the change is justified by the other constraints
implication[after.constraints, r, after]
}
}

pred pushRequirenment [before, after: Diagran] {
structureEqui val ent[before, after]
onl yTouchesChanges[bef ore, after]
-- one requirenent changes what it touches
sonme r: before.requirenents & after.requirenments {
before.touches[r] != after.touches[r]
before.touches - (r -> univ) = after.touches - (r -> univ)
wel | For medConstraint[r, after]
}
}

29

/***************************************/

/* simulation and invariant preservation */

/***************************************/

pred comonTransformation [x,x’: Diagran] ({
sonme y, z: Diagram {
addBr eadcrunb[x, y]
rephraseRequi renent[y, z]
pushRequi renent [z, x’]
}
}

pred soneTransformation [x,y: D agran {
addBr eadcrunmb[x, y] or
rephraseRequi renent [x,y] or
pushRequi renent [x,y] or
comonTr ansf ormati on[x, y]

}

pred simulation [] {
-- the first diagramis well forned
wel | ForrmedDi agranf first[]]
-- it has no spec,
no first[].specifications
-- and it has a requirenent
some first[].requirenents

-- a spec is eventually derived via transformations
some final: Diagram- first[] {
all x: prevs[final] | soneTransformation[x, next[x]]
final.requirenents in final.specifications
}
}

run sinulation for 4

assert wel | FormednessPreservation {
all x,y: Diagram |
wel | For medDi agr ani x] and someTransformati on[x, y]
=> wel | For medDi agr anf y]

}
check wel | For nednessPreservation for 4
-- the check executes faster if comonTransformation
-- is elimnated from sonmeTransformation

30

/***************************************/

/* hel per functions for the transfornmations */

/***************************************/

-- add a non-requirenent, non-specification constraint
pred addConstraint [c: Constraint, x,y: D agran {

onl yChange[c, X, V]

C = y.constraints - x.constraints

X.requirenents = Xx.requirements

y.specifications = y.specifications }

-- only constraints, requirenments, specifications, touches, nentions vary
pred structureEquivalent [x,y: Diagran] {
X. domai ns = y. domai ns
X. machi nes = y. machi nes
X. phenonena = y. phenonena
X.connects = y.connects
X.involves = y.involves }

-- approxi mates neaning of the inplication (a 0" a 1 an=>bhb)
pred inplication [a: set Constraint, b: Constraint, x: D agran] {
X.mentions[b] in x.mentions[a] }

-- r disappears and r’ appears to replace it
pred replace [r,r’: Constraint, x,y: D agran] {
r in x.requirements

r lin y.requirenents

r’ lin x.requiremnments

r' in y.requirenents }

-- only constraints in ¢ change

pred onl yChange [c: set Constraint, x,y: Diagram {
X.specifications - ¢ = y.specifications - ¢

.touches - (c -> univ) = y.touches - (c -> univ)

.requirenents - ¢ = y.requirenents - ¢

.constraints - ¢ = y.constraints - ¢

.specifications - ¢ = y.specifications - ¢

.mentions - (¢ -> univ) = y.nentions - (c -> univ) }

X X X X X

-- only constraint c changes
pred onl yChange [c: set Constraint, x,y: Diagran] {
onl yChanges [c,c, x,y] }

-- only changes are c in x and ¢’ iny’

pred onl yChanges [c,c’: set Constraint, x,y: Diagram {
x.specifications - ¢ = y.specifications - ¢

.touches - (¢ -> univ) = y.touches - (¢’ -> univ)

.requirenments - ¢ = y.requirenents - ¢’

.constraints - ¢ = y.constraints - ¢’

.specifications - ¢ = y.specifications - c’

.mentions - (c ->univ) = y.mentions - (¢’ -> univ) }

X X X X X

31

-- nothing but the touches relation differs between x and y
pred onl yTouchesChanges[x,y: Diagram {

X.requirements = y.requirenments

X.constraints = y.constraints

X. mentions = y.nentions }

32

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

[11]

Air Force, Space Division. System safety handbook

for the acquisition manager, January 1987. SDP 127- 1

1. [

T. E. Bell and T. A. Thayer. Software requirements:
are they really a problem? IRroceedings of the
2nd International Conference on Software Engineer-
ing (ICSE'67), pages 61-68. IEEE Society Press,
1967.

Anne Dardenne, Axel van Lamsweerde, and Stephen [14]

Fickas. Goal-directed requirements acquisiti&oi-
ence of Computer Programming, 20(1-2):3-50, 1993.

Robert Darimont and Axel van Lamsweerde. Formal

refinement patterns for goal-driven requirements elab- [15]

oration. InProceedings of the 4th International Sym-
posium on the Foundations of Software Engineering
(FSE'96), pages 179-190, San Francisco, Oct 1996.

Food and Drug Administration. FDA state-

ment on radiation overexposures in panama. [16]

http://www.fda.gov/cdrh/ocd/panamaradexp.html.

Sol Greenspan, John Mylopoulos, and Alex Borgida.
On formal requirements modeling languages: RML
revisited.
Conference on Software Engineering (ICSE'94),

pages 135-147. IEEE Computer Society Press, 1994.

Software Design Group. The Alloy Analyzer. website,
2007. http://alloy.mit.edu.

Charles B. Haley, Robin C. Laney, and Bashar Nu-
seibeh. Using Problem Frames and projections to ana-
lyze requirements for distributed systemsPhoceed-

ings of the 10th International Workshop on Require-
ments Engineering: Foundation for Software Quality
(REFSQ'04), volume 9, pages 203-217. Essener In-
formatik Beitéige, 2004. Editors: B. Regnell, E. Kam-
sties, and V. Gervasi.

Daniel Jackson.Software Abstractions: Logic, Lan-
guage, and Analysis. MIT Press, Cambridge, MA,
March 2006.

[20]

Daniel Jackson and Michael JacksoRigorous De-
velopment of Complex Fault Tolerant Systems, chapter
Separating Concerns Requirements Analysis: An Ex-
ample. Springer-Verlag. To appear.

Daniel Jackson, llya Shlyakhter, and Manu Sridha-
ran. A micromodularity mechanism. IRroceed-
ings of the 8th European Software Engineering Con-
ference / Proceedings of the 9th ACM SIGSOFT Syp-

33

InProceedings of the 16th International [

[18]

[19]

[21]

mosium on the Foundations of Software Engineer-
ing (ESEC/FSE’01), pages 62-73, Vienna, Austria,
September 2001.

Michael Jackson.Software Requirements and Speci-
fications: a lexicon of practice, principles and preju-
dice. Addison-Wesley, 1995.

Michael Jackson. Problem analysis using small Prob-
lem FramesSouth African Computer Journal, 22:47—
60, March 1999.

Michael Jackson. Problem Frames. analyzing and
structuring software devel opment problems. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2001.

Michael Jackson and Pamela Zave. Deriving specifi-
cations from requirements: an example. Firoceed-
ings of the 17th International Conference on Software
Engineering (ICSE’95), pages 15-24, New York, NY,
USA, 1995. ACM Press.

W. Lewis Johnson. Deriving specifications from re-
quirements. IrProceedings of the 10th International
Conference on Software Engineering (ICSE’88),
pages 428-438. IEEE Computer Society, 1988.

7] Michael A. Jackson Jon G. Hall, Lucia Rapanotti.

Problem oriented software engineering. Technical Re-
port 2006/10, Department of Computing, The Open
University, 2006.

Robin C. Laney, Leonor Barroca, Michael Jackson,
and Bashar Nuseibeh. Composing requirements us-
ing Problem Frames. IfProceedings of the 12th
IEEE International Requirements Engineering Con-
ference (RE’'04), pages 121-131. IEEE Computer Sci-
ence Press, 2004.

Emmanuel Letier and Axel van Lamsweerde. De-
riving operational software specifications from sys-
tem goals. InProceedings of the 10th International
Symposium on Foundations of Software Engineering
(FSE'02), pages 119-128, 2002.

Nancy G. LevesonSafeware: system safety and com-
puters. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

Nancy G. Leveson. A new approach to hazard analysis
for complex systems. Imternational Conference of
the System Safety Society, August 2003.

[22] Nancy G. Leveson. A systems-theoretic approach to

safety in software-intensive systems. 1:66—86, 2004.

[23] Nancy G. Leveson and C. Turner. An investigation of [33] James Rumbaugh, Michael Blaha, William Premer-

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

the Therac-25 accidentdEEE Computer, 7(26):18—
41, 1993.

Zhi Li, Jon G. Hall, and Lucia Rapanotti. A construc-

tive approach to Problem Frame semantics. Technical[34]

Report 2004/26, Department of Computing, The Open
University, 2005.

Zhi Li, Jon G. Hall, and Lucia Rapanotti. From
requirements to specifications: a formal approach.
In Proceedings of the 2nd International Workshop

on Applications and Advances in Problem Frames
(IWAAPF’ 06), co-located with the 28th International
Conference on Software Engineering (ICSE’06),
page 65, Shanghai, China, May 2006. ACM Press.

Derek Mannering, Jon G. Hall, and Lucia Rapan-
otti. Relating safety requirements and system design
through problem oriented software engineering. Tech-

nical Report 2006/11, Department of Computing, The [36]

Open University, 2006.

Derek Mannering, Jon G. Hall, and Lucia Rapanotti.
A problem-oriented approach to normal design for
safety critical systems. IRroceedings of Fundamen-

tal Approaches to Software Engineering (FASE' Q7).
European Joint Conferences on Theory and Practice

of Software (ETAPS 07), Braga, Portugal, 24 March -
1 April 2007.

Henry Ozog. Hazard identification, analysis, and
control. Hazard Prevention, pages 11-17, May-June
1985.

David L. Parnas and Jan Madey. Functional docu-
mentation for computer systems engineering, vol. 2.
Technical Report Technical Report CRL 237, McMas-
ter University, Hamilton, Ontario, Sept 1991.

Lucia Rapanotti, Jon G. Hall, and zhi Li. Deriving
specifications from requirements through problem re-
duction. InlEE Proceedings — Software, volume 153:
Issue 5, pages 183-198, October 2006. ISSN: 1462-
5970.

Lucia Rapanotti, Jon G. Hall, and Zhi Li. Problem
reduction: a systematic technique for deriving specifi-
cations from requirements. Technical Report 2006/02,
Department of Computing, The Open University, Feb
2006. ISSN 1744-1986.

Robert C. Ricks, Mary Ellen Berger, Elizabeth C. Hol-
loway, and Ronald E. Goan®EACTS Radiation Ac-
cident Registry: Update of Accidents in the United
Sates. International Radiation Protection Association,
2000.

34

lani, Frederick Eddy, and William Lorensefbject-
oriented modeling and design. Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA, 1991.

Robert Seater and Daniel Jackson. Requirement pro-
gression in problem frames applied to a proton therapy
system. IrProceedingsof the 14th | EEE I nternational
Reguirements Engineering Conference (RE’ 06), Min-
neapolis, MN, September 2006.

Elizabeth A. Strunk and John C. Knight. The es-
sential synthesis of problem frames and assurance
cases. InProceedings of the 2nd International
Workshop on Applications and Advances in Prob-

lem Frames (IWAAPF’06), co-located with the 28th
International Conference on Software Engineering
(ICSE’06), pages 81-86, Shanghai, China, May 2006.
ACM Press.

Jeffrey M. Thompson, Mats P. E. Heimdahl, and
Steven P. Miller. Specification based prototyping for
embedded systems. PRroceedings of the 6th Euro-
pean Software Engineering Conference/ Proceedings
of the 7th ACM S GSOFT Symposium on the Founda-
tions on Software Engineering (ESEC/FSE’99), num-
ber 1687 in LNCS, pages 163-179, September 1999.

Eric S. K. Yu. Towards modelling and reasoning sup-
port for early-phase requirements engineering2rio
ceedings of the 3rd |EEE International Symposium on
Requirements Engineering (RE’97), pages 226-235,
Washington DC, USA, Jan 1997.

