Problem Frame Transformations:
Deriving Specifications from Requirements

Robert Seater, Daniel Jackson
Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Laboratory
Cambridge, Massachusetts, USA

{rseater,dnj}@mit.edu

ABSTRACT

The Problem Frames approach provides a framework for un-
derstanding the interaction between software and other sys-
tem components. It emphasizes decomposing an end-to-end
system requirement into a machine specification plus a set
of assumptions about domains in the problem world.

However, the standard approach does not provide the de-
signer with a means for performing such a decomposition,
apart from consulting a catalog of ‘frame concern’ patterns.
We suggest a more systematic method for transforming an
end-to-end system requirement into a machine specification
plus a set of domain properties.

Categories and Subject Descriptors

Categories and Subject Descriptors: D.2.1 Software:
Software Enigneering: Requirements/Specifications: Lan-
guages, Methodologies, Tools

General Terms: Design, Documentation

Keywords: Constraint, Domain Assumption, Goal Refine-
ment, Phenomena, Problem Frames, Problem Progression,
Requirements, Specification

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

IWAAPF’ 06, May 23, 2006, Shanghai, China.

Copyright 2006 ACM 1-59593-085-X/06/0005$5.00.

1. INTRODUCTION

Many system failures have resulted from implicit assump-
tions about component boundaries which, when made ex-
plicit, are easily recognized and corrected [2, 3, 6, 21, 24].
With the increasing deployment of software, component in-
teractions have become even more complex and subtle, in-
creasing the difficulty of avoiding overlooked assumptions.
Having all components satisfy their specifications is insuffi-
cient if those specifications do not, in combination, establish
the desired end-to-end requirement.

The Problem Frames approach offers a framework for de-
scribing the interactions amongst software and other system
components [15, 16]. It helps the developer understand the
context in which the software problem resides, and which of
its aspects are relevant to the design of a solution [8, 14, 19].

Problem Frames emphasize decomposing an end-to-end
system requirement into a machine specification plus a set
of domain properties — assumptions about domains in the
problem world. However, Problem Frames do not provide
the designer with a systematic means for performing such a
decomposition. The designer can try to match the subprob-
lems against a catalog of patterns, called frame concerns.
Each frame concern has an associated template for an infor-
mal argument of correctness. If the designer’s catalog does
not have an appropriate frame concern, there is no guidance
for correctly developing a new one.

We extend the Problem Frames approach to include a
systematic way to transform an end-to-end system require-
ment into a machine specification. Given a Problem Frame
description and an end-to-end requirement, a series of trans-
formations turn the requirement into a specification and
produce a set of breadcrumb assumptions about the prob-
lem world. The specification and breadcrumbs form a frame
concern correctness argument for why the machine enforces
the requirement.

Our work is very similar to the sample transformation
of a requirement into a specification performed by Jackson
and Zave [17]. Whereas their paper focuses more on the
individual steps of the transformation, our paper addresses
the overall structure, and we believe it suggests a promis-
ing strategy for oranizing transformations in large problem
frames with more complex topologies.

2. PROBLEM FRAMES

A system designer has an end-to-end requirement on the
world that some machine is to enforce. For example, a
traffic-light control unit should enforce the requirement that
cars do not collide, and the control unit of a radiation ther-
apy machine should enforce the requirement that the ra-
diation delivered to a patient never exceeds the prescribed
dose.

In order to implement or analyze the machine, one needs a
specification on the machine’s interface. Since the phenom-
ena referenced in the requirement are typically not shared by
the machine, the requirement cannot serve as a specification.
How, then, does one ensure that the specification is sufficient
to enforce the desired requirement? Problem Frames express
this disconnect diagramatically [16] (Figure 1).

—_ \
Machine b— shared Problem _ referenced 74/ End-to-End
phenomena World phenomena \| Requirement /
b —

Figure 1: A generic Problem Frames description.

The designer has written a requirement (right) describ-
ing a desired end-to-end constraint on the problem world
(center). The requirement references some subset of the
phenomena from the problem world (right arc). A machine
(left) is to enforce that requirement by interacting with the
problem world via shared phenomena (left arc).

Consider the case where the problem world is represented
by a single domain with two phenomena: the machine shares
pl with the problem domain, and the requirement references
p2 (Figure 2).

N

/7
II pt — Domain | —-p2 - =\ Requirement

Figure 2: An archetypal problem frame.

Given a requirement R(p2), the designer needs to de-
velop a specification S(pl) and a set of domain assumptions
{A1(p1,p2),...An(pl,p2)} such that

S(pl) AN A1(pl,p2) A ... A An(pl,p2) = R(p2)

In the conventional Problem Frames approach, the de-
signer examines a catalog of patterns to find a frame con-
cern that matches the problem at hand. The frame concern
comes with an informal template of a correctness argument.
A diagramatic view of a simple template is shown in Fig-
ure 3. When multiple domains are involved, a more elabo-
rate correctness argument is required.

Unfortunately, the designer’s catalog may not include a
relevant frame concern, or, worse, may include one with an
incomplete or inadequate correctness argument. A conven-
tional Problem Frames analysis does not offer guidance on
how to produce and verify a specification in such a situation.

-
/ ~
Machine p— p1 — Domain F—-p2 - A\ Requirement)
-
: s
' i
P HASEES
Specification Assumption
Ve emma! Nemmmmmemeeeeee
The Machine ...as long as p1 an .
satisfies this p2 are related by ~the Bequ'remem
e . . will hold.
specification, so... this Assumption...

Figure 3: A frame concern.

2.1 Problem Frame Transformations

We introduce a process for systematically transforming a
requirement into a specification. A by-product of the trans-
formation is a trail of domain assumptions, called bread-
crumbs, that justify the progression.

Requirements, specifications, and breadcrumbs are three
instances of domain constraints. Requirements connect only
to non-machine domains', specifications connect only to the
machine domain, and each breadcrumb connects only to a
single non-machine domain. Specifications and requirements
differ only in what sorts of domains they connect to; deriv-
ing a specification from a requirement is, in principle, just
a matter of replacing references to one set of phenomena
(from non-machine domains) with another set of phenom-
ena (from the machine domain). The transformation pro-
cess we propose serves to structure the task of making that
replacement.

2.2 Transformation Process

During the course of the transformation, the specification-
to-be may end up simultaneously connecting to both the
machine domain and one or more non-machine domains. It
is thus neither a requirement nor a specification and will be
called the goal.

There are three types of steps in the transformation pro-
cess: Adding a breadcrumb permits the goal to be rephrased,
which in turn enables a push to change which domains it
connects to. Figure 4 shows a diagramatic archetype of how
these steps take a goal from being a requirement to being a
specification.

(a) Add abreadcrumb constraint, representing an assump-
tion about a domain in the problem world. The bread-
crumb can only mention phenomena from a single do-
main connected to the goal (e.g. pl and p2). It is
chosen so as to enable a useful rephrasing (part b).
The breadcrumb is validated by a domain expert.

(b) Rephrase the goal so that it references different phe-

1Some users of Problem Frames permit requirements to
mention machine phenomena, but for simplicity we assume
that they do not. Relaxing this restriction would not affect
the applicability of our technique; it would just mean that
the requirement is that much closer to becoming a specifi-
cation.

(a)

——

~
Machine 1— Domain |-—p2- Goal >
p P (Requirement)
A
p1
p2
Breadcrumb
(b)
/T TN
} . L Rephrased |
Machine pt — Domain p1 ! Goal /
*
p'1
p2
E Breadcrumb i
(¢
© et
B 3
)) l Goal {
Machine Domain (Specification) 4
-
p1
p2
Breadcrumb :
-asssssssssssssnac-’

Figure 4: An archetypical transformation: (a) A
breadcrumb constraint is added, representing an as-
sumption about how the domain relates pl and p2.
(b) That breadcrumb permits the requirement to
be rephrased to reference pl instead of p2. (c¢) The
rephrasing enables us to push the requirement from
the domain onto the machine.

nomena than before (e.g. pl instead of p2), although it
still only references phenomena from domains to which
it connects. This is done to enable a useful push (part
c¢). The designer formally verifies that the breaderumb
is sufficiently strong to permit the rephrasing:

(breadcrumb A rephrased goal) = prior goal

(c) Push the requirement so that it connects to some do-
main d’ (e.g. the machine) instead of some domain d
(e.g. the intervening domain). A push from d to d’
is only enabled if d’ contains all phenomena from d
that are referenced by the goal. The constraint itself
is unchanged.

The designer continues to perform transformations until the
goal connects only to the machine domain. At that point, it
only references phenomena at the interface of the machine
and is a valid specification. The decisions of what bread-
crumbs to add, how to rephrase the goal, and which enabled
pushes to enact are qualitative assessments by the designer
based on experience or a catalog of patterns and heuristics.

2.3 Definitions

A Problem Frame description consists of the following el-
ements:

- A set of Phenomena P = {p1,p2,...}.

- A set of Domains D = {d1,ds,...}. There is a single
machine domain, m € D. A domain d involves a set
of phenomena I(d) C P.

- A set of Constraints C = {ci1,...,cn}. A constraint
¢ references some set of phenomena R(c) C P and
touches a set of domains T'(¢) = {d1,...,dn} C D. (Di-
agramatically, a dashed arc would be drawn to connect
¢ to each domain in T'(c).)

The touches relation must obey a well-formedness property:
For any constraint ¢ and phenomenon p € R(c), there must
be some domain d € T'(c) such that p € I(d). Furthermore,
for each d' € T(c) there must be some p’ € R(c) N I(d').
That is, if a constraint references a phenomenon then it must
touch some domain that involves that phenomenon, and if
it touches a domain then it much involve some phenomenon
included in that domain.

Using this terminology, the 3 special types of constraints
are defined as follows:

- A constraint c is a requirement iff m ¢ T'(c).
- A constraint c is a specification iff M = T(c).

- A constraint c is a breadcrumb iff there is a single do-
main d # m such that T'(c) = d.

The three components of a transformation can now be more
precisely defined as follows:

Preprocessing:

At all points in the transformation process, there will be
exactly one constraint designated as the goal. Initially there
are no breadcrumbs or specifications, and there is exactly
one requirement, which is the initial goal. The goal con-
straint will eventually be the derived specification.

Breadcrumb Addition:

Let g be the goal, and let d be some domain such that
g € T(d). Create a new breadcrumb constraint b for which
R(b) C I(d) and T'(b) = d.

Requirement Rephrasing:

Let g be the goal constraint. Add a new constraint, g’,
such that T(g") = T'(g). The sets of phenomena referenced
by ¢’ and g may (and are expected to) differ. There must
be some set of breadcrumb constraints B = {b1, ..., b, } such
that b1 A ... Ab, A g’ = g. Change ¢’ to be the goal, and
remove g.

Requirement Push:

Let g be the goal. Change T to a new T” such that T"(g) #
T(g) but Ve € C — g|T"'(c) = T(c). T’ must still satisfy the
well-formedness property.

Termination:
When the goal constraint is a specification, halt.

3. TWO-WAY TRAFFIC-LIGHT

Consider an informal Problem Frame description of a traffic-

light controlling two-way traffic used for road construction [16]
(Figure 5)2.

C?J"r:‘r'm signal pulses — | Light Un? light observations Cars
C
/71

-
-
e
car directions
car locations
-

-

—— -
77 satety: N7
/ the road segment
never contains a

\
‘ northward moving car
and a southward
moving car at the
same time

Figure 5: A Problem Frame description of a two-way
traffic light.

The unit has four physical lights: a red and a green in
each direction. The control unit sends signal pulses to the
light unit to toggle the four lights on and off. The cars mov-
ing in each direction observe those traffic signals, and then
decide whether or not to enter the road segment. The end-
to-end requirement is that cars do not collide, which we will
interpret to mean that no two cars are ever in the intersec-
tion at the same time going opposite directions. However,
the control unit has no knowledge of, or control over, the
cars; it can only send signal pulses to the light units and ob-
serve the history of what signals it previously sent. So what
specification should the control unit be expected to uphold?

In Figure 6, the Problem Frame description has been for-
malized; the phenomena have been concretized and the re-
quirement specified in formal language. For example,
NRpulse(t) designates that a signal pulse was sent to the
control unit at time t to toggle whether the northward fac-
ing red light is lit or not. NRobserve(c, t) designates that
a car c observes the northward red light to be lit at time t.
CarOnSegment (c, t) designates that a car c is on the road
segment at time t. CarDirection(c, t) designates the di-
rection car c is moving, and can evaluate to either north or
south.

We have chosen to write constraints (both requirements
and breadcrumbs) in a first-order relational logic — such log-
ics are amenable to analysis and are often a natural way to
express requirements [13].

The requirement is connected to the Cars domain via ob-
servation phenomena (e.g. NGobserve), whereas the specifi-
cation will have to connect to the Control Unit via signal
phenomena (e.g. NGpulse). In order to turn the requirement
into a specification, we will have to reconcile those two sets
of phenomena.

3.1 First Transformation

The first thing we would like to do is to push the require-
ment from the Cars domain onto the Light Units domain,

We use a slightly non-standard notation in our Problem
Frame diagrams for the arc indicating that domain D controls
phenomenon p. Rather than labeling the arc D!p, we label
it p and place an arrow head pointing away from D. When
not all phenomena shared by two domains are controlled by
the same domain, separate arcs are used.

NRpulse NRobserve
Control NGpulse . NGobserve
Unit SRpulse Light Unit SRobserve Cars
SGpulse) SGobserve B E

-
-
-

-
CarDirection
CarOnSegment

-

/ not:time | some ¢1, ¢2: Cars | \
! CarDirection(ct, 1) = north and \
| CarDirection(c2, t) = south and

CarOnSegment(c1, 1) and
CarOnSegment(c2, t)

Figure 6: A formalization of the requirement and
phenomena in the two-way traffic light example.

as that will obey our heuristic of trying to get it closer to
the Control Unit machine domain. However, no push is
currently enabled.

In order to enable such a push, we add a breadcrumb con-
straint on Cars which permits us to rephrase the requirement
so that the only phenomena it references are NRobserve,
NGobserve, SRobserve, and SGobserve. We will then be
able to push the requirement from Cars onto Light Unit.

These three steps are illustrated in Figure 7 and narrated
below.

(A) Add a Breadcrumb

We need to make an assumption about the Cars domain that
will help us reconcile CarDirection and CarOnSegment with
the four observation phenomena. If we assume that cars
obey traffic signals that they observe, then we can substitute
information about observations of light colors for informa-
tion about car behavior. We do so by adding the following
breadcrumb constraint to Cars:

pred BreadCrumb_Cars() {
all t: time |
! NGobserve(t) =>
no c: Cars |
CarDirection(c, t) = north
and CarOnSegment(c,t)

all t: time |
! SGobserve(t) =>
no c: Cars |
CarDirection(c, t) = south
and CarOnSegment(c, t)
}

which says that, at any given time, if a car does not observe
a green light in its direction, then it cannot be on the road
segment. For the sake of simplicity, we will ignore the de-
lays between when an observation is made, when a car has
reacted and entered the road segment, and when the car has
exited the road segment. We therefore omit a yellow light.

(B) Rephrase the Requirement

Instead of requiring that no two cars be in the intersec-
tion moving in opposite directions at the same time, we can
instead require that opposing green lights are never both
observed to be green at the same time.

(a)

Cars
q —- B
CarDirection
CarOnSegment

NGobserve
SGobserve

! all t: time | | NGobserve(t) =>
noc: Cars |
CarDirection(c, t) = north
J and CarOnSegment(c,t)

\ / all t: time | ! SGobserve(t) => E

noc: Cars |
CarDirection(c, t) = south
and CarOnSegment(c, t)

(b)

| | Cars
4 — P % B

NGobserve
§Gobserve

4)
no t: time |

(NGobserve(t) and |
\ SGobserve(t) /

I NRobserve
)) NGobserve
Light Unit SRobserve Cars
C SGobserve _ E
|

NGobserve
SGobserve
|

|
—_——

/
| not time | \

NGobserve(t) and
SGobserve(t)

Figure 7: The first transformation: (a) A breadcrumb constraint is added to the Cars domain, representing
the assumption that car behavior can be determined by knowing what traffic signals were observed. (b)
Taking advantage of that assumption, the requirement is rephrased so that it refers to observations instead
of car behaviors. (c) Because the requirement refers only to phenomena shared between the Cars and Light
Unit domains, it can be pushed from one to the other.

(a)

Light Unit

C

NGobserve
SGobserve
NGpulse

SGpulse

)

all t: time | 1

NGobserve(t) <=> odd(NGpulse, t) and
SGobserve(t) <=> odd(SGpulse, t)

(b)

I Light Unit

|
NGpulse
SGpulse
|

B

| not:timel

\
odd(NGpulse, t) and
\ odd(SGpulse, t))

NRpulse ‘
Control NGpulse) .
Unit SRpulse Light Unit ‘
- SGpulse d -
~ ~ ;

NGpulse
SGpuIse\

no t: time |

\
{ odd(NGpulse, t) and
\ odd(SGpulse, t))

Figure 8: The second transformation: (a) a breadcrumb constraint is added to the Light Unit domain, rep-
resenting the assumption that signal pulses completely determine how the cars observe the traffic light. (b)
Taking advantage of that assumption, the requirement is rephrased that that it refers to signal pulses instead
of observations. (c) Because the requirement refers only to phenomena shared between the Light Unit and
Control Unit domains, it can be pushed from one to the other.

pred Rephrased_Goal() {
no t: time |
NGobserve(t) and
SGobserve (t)

To validate the rewrite, we are obliged to show that the
new requirement, conjoined with the new breadcrumb, im-
plies the old requirement.

assert Transformation_1 {
Rephrased_Goal() and BreadCrumb_Cars()
=> Original_Requirement ()
}

check Transformation_1 for 10

In general, how such implications are discharged will de-
pend on the problem domain. Since our constraints are writ-
ten in first-order relational logic, we used the Alloy Analyzer
to perform a bounded, exhaustive check [13, 7]. The check
passed for a scope of 10, meaning that the property is not
violated by any situation with up to 10 cars and up to 10
points in time®.

(C) Push the Requirement

The only phenomena referenced by the new requirement
are NGobserve and SGobserve. Since those phenomena are
shared by both the Cars and Light Unit domains, we are
now permitted to push the requirement from one to the
other.

3.2 Second Transformation

The requirement is now one step away from being a spec-
ification. The second transformation is to push the require-
ment the rest of the way onto the Control Unit domain. In
order to do so, we will need add another breadcrumb and
rephrase the requirement.

These three steps are illustrated in Figure 8 and narrated
below.

(A) Add a Breadcrumb

We need to make an assumption about the Light Unit do-
main that will help us reconcile the observation and signal
pulse phenomena. If we assume that the parity of signal
pulses determines how the lights are observed, then we can
substitute references to signal pulses for references to ob-
servations. We do so by adding the following breadcrumb
constraint to Light Unit about the electrical wiring of the
unit and about the reliability of observations:

pred BreadCrumb_LightUnit {
all t: time |
NGobserve (t) <=>
odd (NGpulse, t) and
SGobserve(t) <=>
odd (SGpulse, t)
}

3The Alloy model included the requirements exactly as they
are stated in the diagrams, plus a few supporting definitions
and data structures to describe the structure of the problem
domain. It was solved instantaneously on a 133MHz G4
PowerMac with 800Mb of RAM, using the downloadable
version of Alloy 3 [7]. More detail on using Alloy to model
Problem Frames and check transformation steps is given in
another paper [28].

which says that, at any point in time, if an odd number of
signal pulses have been sent to a particular light, then that
light is on and will be observed. If an even number have
been sent, then it is off and will not be observed.

(B) Rephrase the Requirement

Dividing the requirement by our breadcrumb produces a new
requirement which refers to signal pulses instead of observa-
tions:

pred Specification {
no t: time |
odd (NGpulse, t) and
odd (SGpulse, t)
}

assert Transformation_2 {
Specification() and BreadCrumb_LightUnit ()
=> Rephrased_Goal()

}

check Transformation_1 for 10

where odd is a function that determines the parity of the
occurences of the given phenomenon up to the given time.

We use the Alloy Analyzer to verify that the new require-
ment plus the breadcrumb imply the prior requirement. It
passes, so the breadcrumb is strong enough.

(C) Push the Requirement

The requirement now reference only phenomena shared by
both the Light Unit and Control Unit domains, so we can
push it from one to the other.

3.3 Specification

Now that the requirement has been pushed all the way
onto the machine domain, it only refers to phenomena known
about by the machine and is a legal specification for that ma-
chine. We have derived a specification for the control unit, a
correctness argument for why it enforces the desired require-
ment, and a set of assumptions about the world upon which
we are relying. The designer can hand that specification
off to an engineer to guide or validate an implementation,
knowing that (as long as the breadcrumb assumptions hold)
the specification is, by construction, sufficient to enforce the
requirement.

3.4 Lessons Learnt

One of the primary benefits of Problem Frames is that it
forces the designer to be explicit about what assumptions
are being made. Those assumptions can then be checked
by domain experts, rather than being left hidden inside of
the designer’s head. In fact, there is a possible mistake
in this example, which might have escaped attention had
the breadcrumbs not been explicitly recorded in a formal
language as part of our technique.

Recall that the first breadcrumb states that a car will not
enter the road segment if the green light in its direction is off.
Upon closer inspection, suppose the designer realized that
this is not true — if neither the red nor the green lights are
on, then cars might assume that the system is off and enter
the road segment. That breadcrumb needs to be strength-
ened to mention red observations as well as green ones. The
corrected breadcrumb and resulting specification is shown
in Figure 9.

NRpulse NRobserve
Control NGpulse e Ui NGobserve
Unit SRpulse Light Unit SRobserve Cars
SGpuise 5 SGobserve B
" : :
|

| NRobserve CarDirection

i NGobserve CarOnSegment
NRobserve SRabserve NRobserve
NGobserve SGobserve NGobserve
SRobserve NRpulse SRobserve
SGobserve NGpulse SGobserve
! SRpulse H
SGpulse

: {allt:time | i
] i i and () |
Y i N {) { =noc:Cars|
,/ ot time | \ {allt:time | | i CarDirection(c,t) = north

odd(NGpulse, tyand | i NGobserve(t) <= odd(NGpulse, t) and | and CarOnSegment(c, t)
I even(NRpulse, 1) and { NRobserve(t) <=>odd(NRpulse, t) and | i

odd(SGpulse, 1) and { SGobserve(t) <=>odd(SGpulse,) and | {allt:time |

even(SRpulse, t) i SRobserve(t) <=> odd(SRpulse, 1) i i 1SGobserve(t) * SRobserve(t)

H { =>noc:Cars|
CarDirection(c.t) = south

and CarOnSegment(c, t)
{ i

Figure 9: The result of correcting the erroneous
breadcrumb.

4. LIMITATIONS AND FUTURE WORK

4.1 Decisions

The transformation process we propose serves to structure
the task of decomposing a requirement into a specification
plus a set of domain assumptions. It offers a guarantee that
if each individual step is sound then the resulting specifica-
tion will be sufficient to enforce the desired requirement. It
does mot automate the task or substitute for a skilled hu-
man designer. Which transformations are made (how it is
are made) is still up to the designer’s intuition and experi-
ence. Poor choices by the designer along the way will never
produce an incorrect specification, but they may

(1) produce specifications that are excessively complex and
useless for guiding an actual implementation, and/or

(2) make later pushes difficult or impossible. For example,
a breadcrumb strong enough to enable the next desired
push may be too weak to permit a later push.

We hope that this framework can be expanded to include
patterns which will help designers avoid and recover from
such situations.

4.2 Topologies

The traffic light example we use in this paper has a se-
quential topology; the domains in the problem world are laid
out in a chain, with the machine at one end and the require-
ment at the other. In such a case, the transformations are
just a matter of pushing the requirement down the sequence
of domains until it rests on the machine.

We have applied the technique in a limited fashion to
parts of a Proton Therapy device [28], for which the Prob-
lem Frame description had a parallel topology — the machine
and the requirement both connect to each of the domains in
the problem world. The requirement thus has several differ-
ent dashed arcs connecting it to problem domains. Each of
those arcs can be pushed towards the machine, independent
of each other, in exactly the same manner as the sequential
case.

More generally, a problem frame description might have
both sequential and parallel parts, forming diamonds and
loops. In such cases, pushing an arc will sometimes involve
splitting it into several arcs, each labeled with a subset of
the phenomena on the original arc. Similarly, if several arcs

are pushed onto a common domain then they can be merged.
Apart for split and merge operations on arcs, the technique
functions the same as in the sequential and parallel cases.

In both the parallel and diamond cases, there is a risk
that choices make on the two paths may end up contradict-
ing each other when they reconverge, preventing progress.
Such cases can have the undesirable effect of forcing the de-
signer to reason about the system as a whole, undoing the
modularity that our technique provides.

5. RELATED WORK

5.1 Non-Problem Frames

Many approaches to system analysis involve some kind
of decomposition of end-to-end requirements into subcon-
straints, often recursively. Assurance and safety cases [1,
21], for example, decompose a critical safety property. They
tend to operate at a larger granularity than problem frames,
in which the elements represent arguments or large group-
ings of evidence, rather than constraints. Analyses that
focus on failures rather than requirements (such as HA-
ZOP [25]) are duals of these approaches, in which decompo-
sition is used to identify the possible root causes of failure.

More similar to our approach are frameworks, such as
i* [29] and KAOS [4], that decompose system-level proper-
ties by assigning properties to agents that work together to
achieve the goal. For KAOS, patterns have been developed
for refining a requirement into subgoals [5]. In our approach,
we have not given a constructive method for obtaining the
new constraint systematically, and the refinement strategies
of KAOS may fill this gap.

The four-variable model [26] makes a distinction, like Prob-
lem Frames, between the requirements, the specification,
and domain assumptions. However, in Problem Frame terms,
it assumes that a particular frame always applies, in which
there is a machine, an input device domain, an output device
domain, and a domain of controlled and monitored phenom-
ena.

Johnson made an early use of the phrase “deriving spec-
ifications from requirements” in 1988 when he showed how
requirements written in the relational logic language Gist
can be transformed into specifications through iterative re-
finement [18]. To him, specifications and requirements only
differ in how specific they are about what parts of the state
elements of the problem domain can know, what their capa-
bilities are to change the state, and to what extend they can
violate given constraints. Initially, a requirement permits
domain elements to know everything and have unlimited
capability, but they must completely obey all given con-
straints. As a requirement is refined into a specification,
limitations are placed on knowledge and capabilities, and
exceptions are added to the constraints. Consequently, a
specification is not guaranteed to logically imply the require-
ment it grew out of, and the two descriptions may even be
logically inconsistent with each other.

In contrast, our use of problem frames means that we
take the opposite view. As we transform a requirement into
a specification, we add assumptions (breadcrumbs) which
expand our assumptions about the domains rather than re-
stricting them. Furthermore, a specification and its require-
ment are always consistent; in fact, the specification con-
joined with the breadcrumbs will logically imply the original
requirement.

Letier and Lamsweerde show how a goal (requirement)
produced from requirement elicitation can be transformed
into a specification which is formal and precise enough to
guide implementation [20]. They are interested in produc-
ing operational specifications from requirements expressed
in temporal logic, and focus on proving the correctness of a
set of inference patterns. These inference patterns are cor-
rect regardless of context, in contrast to our approach in
which transformations are only made through the introduc-
tion of domain assumptions.

5.2 Problem Frames

Jackson and Zave use a coin-operated turnstyle to demon-
strate how to turn a requirement into a specification by
adding appropriate environmental properties (domain as-
sumptions) [17]. Their work is very similar to our own,
and uses a logical constraint language to express domain as-
sumptions. Our work attempts to generalize the process to
be applicable in broader circumstances, and to help guide
the designer through the process with the visual notion of
pushing the requirement towards the machine.

Jackson sketches out a notion of problem progression in
the Problem Frames book [16]. A progression of problems is
a sequence of Problem Frame descriptions, beginning with
the full description (including the original requirement) and
ending with a description containing only the machine and
its specification. In each successive description, the domains
connected to the requirement are eliminated and the require-
ment is reconnected and altered as needed. He does not work
out the details of how one would derive the successive de-
scriptions, but it is clear that he had a similar vision to our
own. Rather than eliminating elements of the diagram, our
approach actually adds to it; as the requirement is shifted
towards the machine domain, it leaves a trail of breadcrumbs
as a record of the designer’s reasoning.

Rapanotti, Hall, and Li show how causal reasoning can be
used as one way to formalize problem progression for Prob-
lem Frames [23]. They are interested not only in problem
progression, but also in requirements traceability, the ability
to relate requirements written during different phases of a
product’s lifecycle.

Hall and Rapanotti have developed a notion of a prob-
lem transformation, which attempts to do for solutions what
Problem Frames do for problem contexts [10]. They focus
on understanding how one solution can lead to, or be trans-
formed into, another solution for a similar problem. One
of the components of a problem transformation is a require-
ment progression, in which a requirement is replaced by a
weaker (or equivalent) requirement in a different form. This
differs from our notion of a problem frame transformation
in that our transformations change a requirement into a dif-
ferent requirement, and justify the difference with a set of
explicit assumptions.

Hall, Jackson, Laney, Nuseibeh, and Rapanotti extend
Problem Frames to allow architectural structures and ser-
vices to be represented as part of the problem domain [9,
27]. One can then identify frame concerns that match parts
of the architecture and apply their associated correctness
arguments to questions of system correctness and stability.
Like our own work, they are concerned with how to relate
Problem Frame descriptions to the specifics of a machine,
but their focus is on representing the structure of the ma-
chine rather than relating a specification to a requirement.

Acknowledgments

This research was supported, in part, by grants 0086154
(‘Design Conformant Software’) and 6895566 (‘Safety Mech-
anisms for Medical Software’) from the ITR program of the
National Science Foundation.

We appreciate the feedback we received from Michael Jack-
son, Jon Hall, and our anonymous reviewers.

6. REFERENCES

[1] Space Division Air Force. System safety handbook for
the acquisition manager, January 1987.

[2] T. E. Bell and T. A. Thayer. Software requirements:
are they really a problem? In Proceedings of the 2nd
International Conference on Software Engineering,
pages 61-68. IEEE Society Press, 1967.

[3] Mars Climate Orbiter Mishap Investigation Board.
Phase I report. 1999.

[4] Anne Dardenne, Axel van Lamsweerde, and Stephen
Fickas. Goal-directed requirements acquisition. Science
of Computer Programming, 20(1-2):3-50, 1993.

[5] Robert Darimont and Axel van Lamsweerde. Formal
refinement patterns for goal-driven requirements
elaboration. In Proceedings of the 4th ACM Symp. on
the Foundations of Software Engineering (FSE-4),
pages 179-190, San Francisco, Oct 1996.

[6] Sol Greenspan, John Mylopoulos, and Alex Borgida.
On formal requirements modeling languages: RML
revisited. In Proceedings of the 16th International
Conference on Software Engineering (ICSE’94), pages
135-147. IEEE Computer Society Press, 1994.

[7] MIT Software Design Group. The Alloy Analyzer.
http://alloy.lcs.mit.edu.

[8] C. B. Haley, R. Laney, and B. Nuseibeh. Using
Problem Frames and projections to analyze
requirements for distributed systems. In Proceedings of
the 10th International Workshop on Requirements
Engineering: Foundation for Software Quality
(REFSQ’04), pages 203—217. Essener Informatik
Beitrage, 2004. Editors: B. Regnell, E. Kamsties, and
V. Gervasi.

[9] J. Hall, M. Jackson, R. Laney, B. Nuseibeh, and
L. Rapanotti. Relating software requirements and
architectures using Problem Frames. IEEE Computer
Society Press, pages 137-144, Sept 2002.

[10] John G. Hall and Lucia Rapanotti. A framework for
software problem analysis, 2006. Tecnical Report.

[11] Jon G. Hall, Lucia Rapanotti, and Michael Jackson.
Problem Frame semantics for software development.
Journal of Software and Systems Modeling, 4(2):189 —
198, 2005.

[12] C. A. R. Hoare and Jifeng He. The weakest
prespecification. Inf. Process. Lett., 24(2):127-132,
1987.

[13] Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan.
A micromodularity mechanism. In ACM SIGSOFT
Conference on Foundations of Software Engineering /
European Software Engineering Conference, Vienna,
September 2001.

[14] M. A. Jackson. Problem analysis using small Problem
Frames. South African Computer Journal, 22:47-60,
March 1999.

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

Michael Jackson. Software Requirements and
Specifications: a lexicon of practice, principles and
prejudice. Addison-Wesley, 1995.

Michael Jackson. Problem Frames: analyzing and
structuring software development problems.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

Michael Jackson and Pamela Zave. Deriving
specifications from requirements: an example. In
ICSE’95: Proceedings of the 17th international
conference on Software engineering, pages 15-24, New
York, NY, USA, 1995. ACM Press.

W. Lewis Johnson. Deriving specifications from
requirements. In Proceedings of the Tenth
International Conference on Software Engineering,
pages 428-438. IEEE Computer Society, 1988.

Robin Laney, Leonor Barroca, Michael Jackson, and
Bashar Nuseibeh. Composing requirements using
Problem Frames. In Proceedings of the 2004
International Conference on Requirements
Engineering (RE04). IEEE Computer Science Press.
E. Letier and A. van Lamsweerde. Deriving
operational software specifications from system goals.
2002.

Nancy G. Leveson. Safeware: system safety and
computers. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1995.

Zhi Li, Jon G. Hall, and Lucia Rapanotti. A
constructive approach to Problem Frame semantics.
Technical Report 2004/26, compdep, 2005.

23]

(24]

25]

(26]

Zhi Li Lucia Rapanotti, Jon G. Hall. Problem
reduction: a systematic technique for deriving
specifications from requirements, 2006. Technical
Report 2006/02.

Peter Naur and Brian Randell. Software engineering,
January 1969.

Henry Ozog. Hazard identification, analysis, and
conrol. Hazard Prevention, pages 11-17, May-June
1985.

D. L. Parnas and J. Madey. Functional documentation
for computer systems engineering, vol. 2. Technical
Report Technical Report CRL 237, McMaster
University, Hamilton, Ontario, Sept 1991.

Lucia Rapanotti, Jon G. Hall, Michael Jackson, and
Bashar Nuseibeh. Architecture-driven problem
decomposition. In Proceedings of the 2004
International Conference on Requirements Engineering
(RE04). IEEE Computer Science Press, 2004.
Robert Seater and Daniel Jackson. Problem Frame
transformations in the context of a proton therapy
system. Unpublished manuscript.

Eric S. K. Yu. Towards modelling and reasoning
support for early-phase requirements engineering. In
Proceedings of the 3rd IEEE Int. Symp. on
Requirements Engineering (RE’97), pages 226235,
Washington D.C., USA, Jan 1997.

Pamela Zave and Michael Jackson. Four dark corners
of requirements engineering. ACM Transactions on
Software Engineering and Methodology, 6(1):1-30,
1997.

