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1 Summary

In this project, we have been addressing the pressing question of how to improve
the safety of medical software. Our concern is not only how to make the soft-
ware safe in an absolute sense, but also to provide means by which one can know
that the software is safe. Our work is therefore focused on the construction of
a safety case or dependability case that can serve as concrete and compelling
evidence for a system’s safety, allowing healthcare providers to deploy such
software with confidence. This work is rather unconventional for software en-
gineering research: rather than focusing on a single technique for analysis or
specification, it attempts to integrate a collection of techniques. Its novelty is
not primarily in the development of new techniques (although we have devel-
oped a new technique for decomposing arguments at the requirements level) but
in the framework that combines them into a cohesive end-to-end argument.

The research has been conducted on two parallel tracks: the theoretical
development of the ideas, and a realistic application to the proton radiation
delivery system of the Burr Proton Therapy Center (BPTC) at Massachusetts
General Hospital. As we have developed new ideas and refined our framework,
we have tested them by applying them in the context of the case study, and
our metric of success is that we demonstrate effectiveness of our ideas in this
challenging application.

The research has involved four distinct activities: structuring dependability
arguments, decomposing system requirements into domain specific assumptions,
performing code analysis to discharge software related domain assumptions, and
using Problem Frames to separate and organize top level system concerns. All
4 areas are described in detail below, along with our experiences applying these
techniques to the BPTC application.
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2 The Structure of Dependability Cases

There is widespread interest in a new approach to the development of software
for critical systems that support dependability claims with direct, reproducible
evidence, rather than process measures. Rather than taking the traditional
approach of relying on adherence to a strict development process, in conjunction
with results from system testing, one instead constructs an explicit dependability
case that gives a complete argument explaining why the desired end to end
properties follow from the properties of the components (software or hardware)
in combination with assumptions about the behaviour of users, operators, and
physical plant. The premise behind this approach is that it can offer a higher
degree of confidence, because the evidence is direct rather than indirect, and
that is can be scrutinized by a third party, because the evidence is structured
and reproducable.

Despite increasing support amongst certification agencies for this approach
(especially in Europe), little is known about how to construct a dependability
case. This research addresses that problem head on. Arguably, it addresses the
problem in a more challenging context than the one that would be expected in
practice. For dependability cases to be economical, it will usually be necessary
to construct the case hand in hand with the system itself; the structure of
the system can then be exploited to simplify the dependability argument, for
example by achieving certain separations of concerns. The context of our case
study, however, is a large and complex system that has already been built (and,
indeed, has been in operation for several years). The dependability case is
therefore more complicated and less clearly structured than it might have been
had the system design been informed by it. From a research perspective, this has
been a boon; it has allowed us to discover areas in which architectural decisions
had negative impact on the construction of the case, and it means that our work
has more general application, since it can be applied to legacy systems.

2.1 Our Progress

The research problems are twofold: (1) To find a way to represent the gross
structure of dependability cases; to decompose the argument into subarguments
that can be discharged effectively (either manually, or using tools). (2) In par-
ticular, to handle the apparent mismatches between levels of abstraction – for
example, where the behavior of low level code must be integrated with argu-
ments about how operators behave.

The results of the research activity so far are: (1) the development of a
general model for understanding the elements of dependability arguments and
how they fit together, and (2) an instantiation of this model for the proton
therapy system.
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2.2 Granularities

Figure 1 shows a classic decomposition of a system description, accompanied by
examples drawn from the BPTC. An artifact at one granularity comprises finer
granularity pieces plus some additional information about the structure of those
pieces. For example, a system is a collection of components plus an organization
of the interactions of those components, and each of those components is, in
turn, a collection of modules plus an organization of the interaction of those
modules.

world The coarsest granularity is the world outside the system in question,
including the stakeholder and the system itself. For BPTC, the world
contains domains such as investors, doctors, and FDA regulators, as well
as the delivery system itself. The internals of the systems are hidden from
view, but their interactions, communications, and goals are shown. Legal
and financial concerns are expressed at this granularity, although our work
focuses solely on safety concerns.

system The next finer granularity is the system, in which we look inside the
system domain from the previous granularity and consider its architecture.
The communication and control channels between such domains are repre-
sented at the system granularity. Refining our view of the BPTC system
reveals components such as operators, prescriptions, and the treatment
manager. It is at this granularity that we state safety concerns, such as
accurate dose delivery, consistent logging, and safe shutdown.

component At the next granularity, we see a software component of the system
described as a collection of software modules. The use and call structure
between modules is represented at the software component granularity,
as are any communication channels between modules (e.g. shared global
variables). The BPTC treatment manager component contains modules
such as messaging procedures and data structure definitions.

module Each module can be decomposed into blocks of straight line code. The
non-linear flow between such blocks, such as loops and conditionals, is
represented at the module granularity. For example, the “set equipment”
procedure includes a block that initializes some variables, the code inside
the loop that constructs an array of data, and a block that constructs a
message from the array and sends it to the hardware device driver.

block Within each block are actual lines of code, the finest granularity of de-
scription of the program. Like any other granularity, a block is a collection
of lines of code plus the structure between those lines. In this case, struc-
ture between the lines is defined by the semantics of the programming
language, and includes things like the order of the lines of code and the
data flow between read and write statements.
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Figure 2: The space of arguments that can be constructed about a software
system and the traceability each provides. Each point represents a style of ar-
gument in which a property is stated at one level (x-axis) and established at
another (y-axis). Each point is labeled with sample techniques often used to
constructed arguments of that style. Dependability arguments (Goal) are not
addressed by conventional requirements engineering (RE) or program anlay-
sis (PA) techniques. Such arguments must address system level properties (or
higher) and establish those properties at the module level (or deeper).
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2.3 The Space of Arguments

In system analysis, a claim is often stated at one granularity but established at a
lower granularity. For example, a performance goal might be stated at the world
(highest) granularity but established by examining the reliability of interactions
at the component (middle) granularity. An argument relates a claim at the
stated level with a collection of claims at the established level. An argument
justifies the believe that enforcing the finer grained properties will be sufficient
to enforce the coarser grained property.

An argument’s breadth is the granularity of the stated goal, while its depth is
the granularity into which it recasts that goal. A collection of arguments can be
strung together to build larger, composite arguments that connect more varied
granularities.

Figure 2 characterizes a wide array of argument styles that might be used
when analyzing or designing a software-intensive system. The x-axis position
of an argument is its breadth. The narrowest (left-most) arguments deal with
goals stated about code blocks, such as assertions and invariants. The broadest
arguments deal with goals stated about the context in which the system oper-
ates, such as safety requirements imposed by regulatory agencies. The y-axis
position of an argument is its depth. The shallowest arguments are established
at the world granularity, looking at the interactions between the system and
its stakeholders, but without considering the architecture of the system. The
deepest arguments are established at the code block granularity, looking at the
full semantics of the software.

Thus, an <x, y> point on the graph indicates a style of argument with
breadth x and depth y. Each point is also labeled with examples of techniques
commonly used to construct arguments of that style.
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2.4 Synthesis

In order to build more powerful arguments that can address questions of system-
wide dependability, we will need to build composite arguments out of the small
pieces. Under our approach, a composite argument is an alternating sequence
of glue and transition arguments; the transition arguments make progress in
refining and justifying the top-level claim, and the glue arguments link the
transitions together.

Synthesis is more than picking two techniques that, between them, have
sufficient breadth and depth. The composed techniques must match up, there
must be glue to bind them, they must be inexpensive enough to be practical,
and they must be thorough enough to provide sufficient confidence.

• (a) The techniques need to match up.
We can’t reach the bottom right corner (<world, block>) with a customer
interview (<world, world>) and manual reviews of code fragments(<block,
block>). While they have sufficient breadth and depth, they do not con-
nect to each other: a customer interview produces a claim at the world
level, but manual code reviews only establish claims about individual
blocks of code. Code reviews simply cannot address the kinds of claims
generated by a customer interview.

• (b) There needs to be glue between the techniques.

We can’t reach <system, module> using just functional decomposition
(<system, component>) and UML (<component, module>). The claims
generated by function decomposition are at the right level to be established
by a UML analysis, but they may not be in the right form. In order to
connect up the two arguments, a glue argument must be provided (at
<component, component>) to recast the claims generated by functional
decomposition with the claims established by the UML analysis.

• (c) The composed techniques must provide sufficient confidence at eco-
nomical cost.

We can reach the bottom right corner (<world, block>) using just deploy-
ment testing (<world, block>), but doing so will not provide sufficient
confidence. While it has sufficient breadth and depth, testing the entire
system on real patients and observing the results does not give us the con-
fidence needed to certify the system as dependable. Testing fundamentally
cannot provide the level of confidence needed to certify a complex system.
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Figure 3: The components of our synthesis that allow us to produce practical
certification arguments.
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2.5 Our Approach

Figure 3 shows the techniques we combine, using our general framework , to form
a composite technique for building dependability arguments for the BTPC.

Problem Diagram : <system, system>

The system requirement is initially expressed with a problem diagram,
from the Problem Frames approach. This step recasts the requirement
from its original (possibly informal) statement into a form that is be
amenable to requirement progression.

Requirement Progression : <system, component>
The system requirement is transformed into a software specification using
requirement progression. This step recasts the system requirement into a
collection of domain assumptions about components.

Interpretation : <component, component>
The domain properties inferred by Requirement Progression are inter-
preted back into the languages of their domains, making them amenable
to domain specific analysis. In the case of software properties, we translate
the assumptions into the logic of the Forge Intermediate Language.

Trace Extraction : <component, module>

The problem diagram is used to guide a human in determining the relevant
portions of the code base relevant to a particular assumption.

Translation & Abstraction <module, module>

The relevant portions of the code base are abstracted and translated into
the Forge Intermediate Language. This process is currently performed
manually, but full or partial automation is possible.

Forge Analysis : <module, block>

The individual pieces are discharged using existing analysis techniques.
Separability assumptions are addressed with impact analysis, and correct-
ness properties are addressed using a combination of manual inspection
and automatic analysis with Forge.

Together, these component techniques provide an argument at <system,
block>, well within our the zone for Dependability Arguments. The component
techniques provide sufficient confidence to allow the overall argument to be used
to certify the system.

3 Requirement Progression

An important feature of system-level dependability arguments, which distin-
guishes them from the more traditional kinds of arguments made in computer
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science (in reasoning about code for example), is the important role of assump-
tions. These assumptions represent properties of (typically non-software) com-
ponents of the system that are assumed by other components, and which, if they
fail to hold, will undermine the end-to-end properties of the systems as a whole.
Unlike assumptions made in code reasoning, these assumptions may be artic-
ulated and elaborated on the fly as the system is developed or the argument
is constructed. For a component such as a human organization or operator,
these assumptions are formalizations of informal facts, and are drawn from a
potentially unbounded pool. There is therefore a much more fluid relationship
between the articulation of assumptions and their use in an argument.

In order to make it easier to identify, articulate and elaborate the necessary
assumptions as a dependability argument is constructed, we have developed a
reasoning strategy that we call “requirement progression” that allows end-to-
end system arguments to be decomposed into component assumptions in an
incremental and systematic way.
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Figure 4: Problem Frames problem diagram for the patient identity subproblem.
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sig String {}
sig Number { interpretation: set Number }
sig ID {
map, namesInfo, inactive, queryListResult, sendLISTmsg, readLISTmsg: set String,
doses: set Number

}{inactive in namesInfo}

one sig nameInfo, selection in String {}
one sig settings, dose, queryDosesResult in Number {}
one sig sendIDmsg, readIDmsg, queryDosesRequest in ID {}

pred Requirement [] { (namesInfo.nameInfo).doses = dose }
pred allBreadcrumbs [] {
Therapist[] and GUI[] and Network[] and TM[] and DB[] and HW[] }

pred Therapist [] {
nameInfo = selection }

pred GUI[] {
map = readLISTmsg
map.selection = sendIDmsg }

pred Network[] {
sendLISTmsg = readLISTmsg
sendIDmsg = readIDmsg }

pred TM[] {
queryDosesRequest = readIDmsg
queryListResult = sendLISTmsg
settings.interpretation = queryDosesResult }

pred DB[] {
queryListResult = namesInfo - inactive
queryDosesResult = queryDosesRequest.doses
all n: String | one namesInfo.n }

pred HW[] {
settings.interpretation = dose
all n: Number | one n.interpretation }

assert end2end {allBreadcrumbs[] => Requirement[]}
check end2end for 6

Figure 6: An Alloy model verifying that the argument diagram is consistent; if
the breadcrumbs hold, then the requirement will hold.
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3.1 Dose Delivery Case Study

For example, Figure 4 shows a Problem Frame describing a the dose delivery
concern in the BPTC system – the requirement that each patient be delivered
the prescription stored for that patient in the prescription database. Overdoses
may damage sensitive surrounding tissue, and underdoses may fail to eliminate
the cancerous tissue – both are high severity hazards. The requirement – for-
malized in the Alloy language and represented in the dotted ellipse – stipulates
that the radiation dose delivered to the patient (dose) matches the dose stored
for that patient in the prescription database ((names.name).doses).

Using Requirement Progression, we derive the argument diagram shown in
Figure 5. By revealing the structure of the overall argument, the argument
diagram decomposes the end-to-end system property (dose delivery) into a col-
lection of finer grained, domain-specific assumptions Each domain assumption
is local to a particular domain – it references only phenomena from that do-
main and is thus amenable to analysis and verification by tools and experts
specialized to that domain. For example, assumptions about the behavior of
the Therapist might be verified with a human-factors analysis of the operators,
and enforced with an ongoing training program informed by that analysis. In
contrast, the assumptions about the Treatment Manager domain can be verified
using program analysis, such as the technique we describe in the next section,
and enforced with runtime checks and hardware interlocks informed by that
analysis.

Figure 6 shows an Alloy model generated during requirement progression;
automatic analysis of this model confirms that the domain-specific assumptions
shown in the argument diagram are sufficient to enforce the end-to-end require-
ment given in the problem diagram. If the domain experts and local analyses
are trusted, then the system as a whole can be treated as dependable.

4 Code Analysis

The dependability argument of a dependability case must establish the high-
level end-to-end properties (such as “the right dose is delivered to the right
patient”) but it must do so by accounting for the lowest level properties of
the code. Our approach therefore integrates Forge, a new code analysis devel-
oped within our research group that uses the Alloy language as a specification
language and SAT solving as an analysis technique for finding counterexample
traces. The integration of the code analysis into the overall dependability argu-
ment is not easy, because the codebase is large and involves many interacting
functions, only a few of which are relevant to the particular safety property be-
ing established. Our approach involves identifying the relevant code fragments
by a preliminary reasoning step; identifying the required properties of the code
in context (which become a partial specification of the relevant code fragments);
and then performing a code analysis that establishes those properties for the
fragments.
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4.1 Dose Delivery Case Study

Our code analysis approach is guided by a flow diagram, a version of the problem
diagram annotated with information about the flow of information through the
system.

Figure 7 shows the flow diagram for the dose delivery concern, and indicates
the subset of the code base relevant to this particular system requirement. The
argument diagram, derived by requirement progression, provides us with the
local assumptions that must be enforced along this flow. Together, these two
pieces tell the analyst which pieces of software must obey which specifications
in order for the desired requirement to hold. Each domain assumption is inter-
preted based on its local context in the flow diagram, mapped into an analyzable
form, and discharged using analysis techniques appropriate for that domain.

In the case of software domains, such as the Treatment Manager, we dis-
charge the assumptions using the Forge program analysis framework, developed
in our research group by Greg Dennis. The derived property is translated into
the Forge logic, and automatic analysis discovers counterexamples in which the
assumption fails. After an iterative process of adjusting the code and strength-
ening precondition assumptions, the property passes, providing a greater degree
of confidence that the Treatment Manager will properly play its role in the dose
delivery problem.

5 Separating Concerns

A significant change in how computer scientists think about software verifi-
cation is that the notion of a single, monolithic (and complete) specification
against which correctness can be determined is no longer regarded as desirable
or achievable. Instead, there are a variety of properties one might want to
analyze software against, of varying degrees of criticality.

Michael Jackson has argued, further, that the very structure of the software
development problem should be viewed as a composition of subproblems. That
is, the software developer’s challenge is to solve a collection of problems that
not only have different degrees of criticality, but which are to some extent inde-
pendent of one another. By focusing on the individual subproblems, important
difficulties become clearer, and can be tackled more effectively. The solutions
to the individual subproblems must still be composed in the development of the
final system, but delaying the composition can reduce the cost of the entangling
of the subproblems, by allowing each to be treated in a simpler context before
the composition is handled.

In a collaboration with Michael Jackson, we explored the impact that this
approach might have on the proton therapy system by analyzing a small but
significant problem that had arisen in the deployed system, in which the gantry
appeared to experience creep, so that its position would gradually change with-
out explicit instructions having been issued for that to happen. We constructed
a formal model to analyze this issue, using problem frames as a guiding structure
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and the Alloy language and analyzer for the model proper, and demonstrated
that the problem can be easily accounted for when this separation of concerns,
brought about by addressing a subproblem in isolation, is available. We were
able to demonstrate in a very simple and clean model that the solution that had
been adopted by the development team did in fact have the desired effect, with-
out having to encounter the complexities that had prevented the development
team itself from constructing such an argument.
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