
Chapter 6

Generalized Linear Models

In Chapters 2 and 4 we studied how to estimate simple probability densities over a single
random variable—that is, densities of the form P (Y ). In this chapter we move on to the
problem of estimating conditional densities—that is, densities of the form P (Y |X). Logically
speaking, it would be possible to deal with this problem simply by assuming that Y may
have an arbitrarily different distribution for each possible value of X, and to use techniques
we’ve covered already to estimate a different density P (Y |X = xi) for each possible value xi

of X. However, this approach would miss the fact that X may have a systematic effect on Y ;
missing this fact when it is true would make it much more difficult to estimate the conditional
distribution. Here, we cover a popular family of conditional probability distributions known
as generalized linear models. These models can be used for a wide range of data types
and have attractive computational properties.

6.1 The form of the generalized linear model

Suppose we are interested in modeling the distribution of Y conditional on a number of
random variables X1, . . . , Xn. Generalized linear models are a framework for modeling this
type of conditional distribution P (Y |X1, . . . , Xn) subject to four key assumptions:

1. The influences of the {Xi} variables on Y can be summarized into an intermediate
form, the linear predictor η;

2. η is a linear combination of the {Xi};

3. There is a smooth, invertible function l mapping η to the expected value µ of Y ;

4. The distribution P (Y = y;µ) of Y around µ is a member of a certain class of noise
functions and is not otherwise sensitive to the Xi variables.

1

Assumptions 1 through 3 can be expressed by the following two equations:

1The class of allowable noise functions is described in Section ??.
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Figure 6.1: A graphical depiction of the generalized linear model. The influence of the
conditioning variables X on the response Y is completely mediated by the linear predictor
η.

η = α + β1X1 + · · ·+ βnXn (linear predictor) (6.1)

η =l(µ) (link function) (6.2)

Assumption 4 implies conditional independence of Y from the {Xi} variables given η.
Various choices of l(µ) and P (Y = y;µ) give us different classes of models appropriate

for different types of data. In all cases, we can estimate the parameters of the models using
any of likelihood-based techniques discussed in Chapter 4. We cover three common classes
of such models in this chapter: linear models, logit (logistic) models, and log-linear models.

6.2 Linear models and linear regression

We can obtain the classic linear model by chooosing the identity link function

η = l(µ) = µ

and a noise function that adds noise

ǫ ∼ N(0, σ2)

to the mean µ. Substituting these in to Equations (6.1) and 6.2, we can write Y directly
as a function of {Xi} as follows:

Y =

Predicted Mean︷ ︸︸ ︷
α + β1X1 + · · ·+ βnXn +

Noise∼N(0,σ2)︷︸︸︷
ǫ (6.3)

We can also write this whole thing in more compressed form as Y ∼ N(α
∑

i βiXi, σ
2).

To gain intuitions for how this model places a conditional probability density on Y , we
can visualize this probability density for a single independent variable X, as in Figure 6.2—
lighter means more probable. Each vertical slice of constant X = x represents a conditional
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Figure 6.2: A plot of the probability density on the outcome of the Y random variable given
the X random variable; in this case we have η = 1

2
X and σ2 = 4.

distribution P (Y |x). If you imagine a vertical line extending through the plot at X = 0, you
will see that the plot along this line is lightest in color at Y = −1 = α. This is the point
at which ǫ takes its most probable value, 0. For this reason, α is also called the intercept

parameter of the model, and the βi are called the slope parameters.

6.2.1 Fitting a linear model

The process of estimating the parameters α and βi of a linear model on the basis of some
data (also called fitting the model to the data) is called linear regression. There are
many techniques for parameter estimation in linear regression; here we will cover the method
of maximum likelihood and also Bayesian linear regression.

Maximum-likelihood linear regression

Before we talk about exactly what the maximum-likelihood estimate looks like, we’ll intro-
duce some useful terminology. Suppose that we have chosen model parameters α̂ and {β̂i}.
This means that for each point 〈xj, yj〉 in our dataset y, we can construct a predicted

value for ŷj as follows:

ŷj = α̂ + β̂1xj1 + . . . β̂nxjn

where xji is the value of the i-th predictor variable for the j-th data point. This predicted
value is both the expectated value and the modal value of Yj due to the Gaussian-noise
assumption of linear regression. We define the residual of the j-th data point simply as
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yj − ŷj

—that is, the amount by which our model’s prediction missed the observed value.
It turns out that for linear models with a normally-distributed error term ǫ, the log-

likelihood of the model parameters with respect to y is proportional to the sum of the
squared residuals. This means that the maximum-likelihood estimate of the parameters
is also the estimate that minimizes the the sum of the squared residuals. You will often
see description of regression models being fit using least-squares estimation. Whenever
you see this, recognize that this is equivalent to maximum-likelihood estimation under the
assumption that residual error is normally-distributed.

6.2.2 Fitting a linear model: case study

The dataset english contains reaction times for lexical decision and naming of isolated
English words, as well as written frequencies for those words. Reaction times are measured
in milliseconds, and word frequencies are measured in appearances in a 17.9-million word
written corpus. (All these variables are recorded in log-space) It is well-established that
words of high textual frequency are generally responded to more quickly than words of low
textual frequency. Let us consider a linear model in which reaction time RT depends on the
log-frequency, F , of the word:

RT = α + βFF + ǫ (6.4)

This linear model corresponds to a formula in R, which can be specified in either of the
following ways:Introduction to

section 11.1
RT ~ F

RT ~ 1 + F

The 1 in the latter formula refers to the intercept of the model; the presence of an intercept
is implicit in the first formula.

The result of the linear regression is an intercept α = 843.58 and a slope βF = −29.76.
The WrittenFrequency variable is in natural log-space, so the slope can be interpreted as
saying that if two words differ in frequency by a factor of e ≈ 2.718, then on average the
more frequent word will be recognized as a word of English 26.97 milliseconds faster than the
less frequent word. The intercept, 843.58, is the predicted reaction time for a word whose
log-frequency is 0—that is, a word occurring only once in the corpus.

6.2.3 Conceptual underpinnings of best linear fit

Let us now break down how the model goes about fitting data in a simple example.
Suppose we have only three observations of log-frequency/RT pairs:
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Figure 6.3: Lexical decision reaction times as a function of word frequency

〈4, 800〉
〈6, 775〉
〈8, 700〉

Let use consider four possible parameter estimates for these data points. Three estimates
will draw a line through two of the points and miss the third; the last estimate will draw a
line that misses but is reasonably close to all the points.

First consider the solid black line, which has intercept 910 and slope -25. It predicts the
following values, missing all three points:

x ŷ Residual (ŷ − y)
4 810 −10
6 760 15
8 710 −10

and the sum of its squared residuals is 425. Each of the other three lines has only one non-zero
residual, but that residual is much larger, and in all three case, the sum of squared residuals
is larger than for the solid black line. This means that the likelihood of the parameter values
α = 910, βF = −25 is higher than the likelihood of the parameters corresponding to any of
the other lines.

What is the MLE for α, βF with respect to these three data points, and what are the
residuals for the MLE?
Results of a linear fit (almost every statistical software package supports linear regression)
indicate that the MLE is α = 9081

3
, β = −25. Thus the MLE has the same slope as the solid
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Figure 6.4: Linear regression with three points

black line in Figure 6.4, but the intercept is slightly lower. The sum of squared residuals is
slightly better too.

Take-home point: for linear regression, getting everything wrong by a little bit is better
than getting a few things wrong by a lot.

6.3 Handling multiple predictors

In many cases, we are interested in simultaneously investigating the linear influence of two
or more predictor variables on a single response. We’ll discuss two methods of doing this:
residualizing and multiple linear regression.

As a case study, consider naming reaction times from the english dataset, and now
imagine that we’re interested in the influence of orthographic neighbors. (An orthographic
neighbor of a word w is one that shares most of its letters with w; for example, cat has
several orthographic neighbors including mat and rat.) The english dataset summarizes
this information in the Ncount variable, which measures orthographic neighborhood

density as (I believe) the number of maximally close orthographic neighbors that the word
has. How can we investigate the role of orthographic neighborhood while simultaneously
taking into account the role of word frequency?

6.3.1 Residualizing

One approach would be a two-step process: first, construct a linear regression with frequency
as the predictor and RT as the response. (This is commonly called “regressing RT against
frequency”.) Second, construct a new linear regression with neighborhood density as the
predictor the residuals from the first regression as the response. The transformation of a raw
RT into the residual from a linear regression is called residualization. Figure 6.5):
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Figure 6.5: Plot of frequency-residualized word naming times and linear regression against
neighborhood density

> english.young <- subset(english,AgeSubject=="young")

> attach(english.young)

> rt.freq.lm <- lm(exp(RTnaming) ~ WrittenFrequency)

> rt.freq.lm

Call:

lm(formula = exp(RTnaming) ~ WrittenFrequency)

Coefficients:

(Intercept) WrittenFrequency

486.506 -3.307

> rt.res <- resid(rt.freq.lm)

> rt.ncount.lm <- lm(rt.res ~ Ncount)

> plot(Ncount, rt.res)

> abline(rt.ncount.lm,col=2,lwd=3)

> detach()

> rt.ncount.lm

Call:

lm(formula = rt.res ~ Ncount)

Coefficients:

(Intercept) Ncount

9.080 -1.449
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Even after linear effects of frequency have been accounted for by removing them from the
RT measure, neighborhood density still has some effect – words with higher neighborhood
density are named more quickly.

6.3.2 Multiple linear regression

The alternative is to build a single linear model with more than one predictor. A linear
model predicting naming reaction time on the basis of both frequency F and neighborhood
density D would look like this:

RT = α + βFF + βDD + ǫ

and the corresponding R formula would be either of the following:

RT ~ F + D

RT ~ 1 + F + D

Plugging this in gives us the following results:

> rt.both.lm <- lm(exp(RTnaming) ~ WrittenFrequency + Ncount, data=english.young)

> rt.both.lm

Call:

lm(formula = exp(RTnaming) ~ WrittenFrequency + Ncount, data = english.young)

Coefficients:

(Intercept) WrittenFrequency Ncount

493.638 -2.899 -1.465

Note that the results are qualitatively similar but quantitatively different than for the resid-
ualization approach: larger effect sizes have been estimated for both WrittenFrequency and
Ncount.

6.4 Confidence intervals and hypothesis testing for lin-

ear regression

Just as there was a close connection between hypothesis testing with the one-sample t-test
and a confidence interval for the mean of a sample, there is a close connection between
hypothesis testing and confidence intervals for the parameters of a linear model. We’ll start
by explaining the confidence interval as the fundamental idea, and see how this leads to
hypothesis tests.

Figure 6.6 illustrates the procedures by which confidence intervals are constructed for a
sample mean (one parameter) and for the intercept and slope of a linear regression with one
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Figure 6.6: The confidence-region construction procedure for (a) sample means and (b-c)
parameters of a linear model. The black dots are the maximum-likelihood estimates, around
which the confidence regions are centered.

predictor. In both cases, a dataset y is obtained, and a fixed procedure is used to construct
boundaries of a confidence region from y. In the case of the sample mean, the “region”
is in one-dimensional space so it is an interval. In the case of a linear regression model,
the region is in two-dimensional space, and looks like an ellipse. The size and shape of the
ellipse are determined by the variance-covariance matrix of the linear predictors, and
are determined using the fact that the joint distribution of the estimated model parameters
is multivariate-normal distributed (Section 3.5). If we collapse the ellipse down to only one
dimension (corresponding to one of the linear model’s parameters), we have a confidence
interval on that parameter; this one-dimensional confidence interval is t distributed with
N − k degrees of freedom (Section B.5), where N is the number of observations and k is the
number of parameters in the linear model.2

We illustrate this in Figure 6.7 for the linear regression model of frequency against word
naming latency.The model is quite certain about the parameter estimates; however, note
that there is a correlation between the parameter estimates. According to the analysis, if we
reran this regression many times by repeatedly drawing data from the same population and
estimating parameters, whenever the resulting intercept (i.e., average predicted RT for the
rarest class of word) is higher, the facilitative effect of written frequency would tend to be
larger, and vice versa. This is intuitively sensible because the most important thing for the
regression is where it passes through the centroid of the data; so that if the intercept drops
a bit, the slope has to rise to compensate.

Perhaps a more interesting example is looking at the confidence region obtained for the
parameters of two predictors. In the literature on word recognition, for example, there
has been some discussion over whether word frequency or word familiarity drives variabil-
ity in average word-recognition time (or whether both have independent effects). Because

2Formally this corresponds to marginalizing over the estimates of the other parameters that you’re col-
lapsing over.
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Figure 6.7: Confidence ellipse for parameters of regression of word naming latency against
written frequency

subjective ratings of word familiarity are strongly correlated with word frequency, it is em-
pirically difficult to disentangle the two. Figure 6.8a shows a scatterplot of word familiarity
against word frequency ratings for 2,197 English nouns and verbs (Spieler and Balota, 1997;
Balota and Spieler, 1998); the empirical correlation is 0.79. The naming study carried out by
Spieler and Balota (1997) was very large, and they obtained naming times for each of these
words from 31 undergraduate native English speakers. A multiple linear regression analysis
with frequency and familiarity as predictors puts 95% confidence intervals for their slopes in
the linear model at [-2.49,-1.02] and [-4.33,-1.96] respectively. Hence we can conclude that
each of frequency and familiarity contribute independently in determining naming time (in-
sofar as the measurements of frequency and familiarity themselves are accurately measured).

However, this was a very large study, and one might reasonably ask what conclusions
one could draw from a much smaller study. The same multiple linear regression based on a
random subsample of 200 of the words from Spieler and Balota’s study gives us confidence
intervals for the effects of word frequency and familiarity on naming time of [-3.67,1.16] and [-
7.26,0.82]. With this smaller dataset, we cannot confidently conclude that either predictor is
independently a determinant of naming time. Yet this negative result conceals an important
conclusion that we can still draw. Figure 6.8 plots confidence regions for the two model
parameters, as well as confidence intervals for each individual parameter, in models of the
full dataset (solid green lines) and the reduced, 200-word dataset (dashed magenta lines).
Although the reduced-dataset confidence region shows that we cannot be confident that
either parameter is negative (i.e. that it has a facilitatory effect on naming time), we can
be quite confident that it is not the case that both parameters are non-negative: the ellipse
does not come close to encompassing the origin. That is, we can be confident that some
combination of word frequency and familiarity has a reliable influence on naming time. We
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Figure 6.8: Confidence region on written word frequency and word familiarity for full dataset
of Spieler and Balota (1997), and reduced subset of 200 items

return to this point in Section 6.5.2 when we cover how to compare models differing by more
than one parameter through the F test.

6.5 Hypothesis testing in multiple linear regression

An extremely common use of linear models is in testing hypotheses regarding whether one
or more predictor variables have a reliable influence on a continuously-distributed response.
Examples of such use in the study of language might include but are not limited to:

• Does a word’s frequency reliably influence how rapidly it is recognized, spoken, or read?

• Are words of different parts of speech recognized, spoken, or read at different rates
above and beyond the effects of word frequency (and perhaps other properties such as
word length)?

• Does the violation of a given syntactic constraint affect a native speaker’s rating of the
felicity of sentences with the violation (as compared to sentences without the violation)?

• Does the context in which a sound is uttered reliably influence one of its phonetic
properties (such as voice-onset time for stops, or format frequency for vowels)?

All of these questions may be addressed within the Neyman-Pearson paradigm frequen-
tist hypothesis-testing paradigm introduced in Section 5.4. Recall that the Neyman-Pearson
paradigm involves specifying a null hypothesis H0 and determining whether to reject it in
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favor of a more general and complex hypothesis HA. In many cases, we are interested in
comparing whether a more complex linear regression is justified by the data over a simpler
regression. Under these circumstances, we can take the simpler model M0 as the null hypoth-
esis, and the more complex model MA as the alternative hypothesis. There are two statistical
tests that you will generally encounter for this purpose: one based on the t statistic (which
we already saw in Section 5.3) and another, the F test, which is based on what is called the
F statistic. However, the former is effectively a special case of the latter, so here we’ll look
at how to use the F statistic for hypothesis testing with linear models; then we’ll briefly
cover the use of the t statistic for hypothesis testing as well.

6.5.1 Decomposition of variance

The F test takes advantage of a beautiful property of linear models to compare M0 and MA:
the decomposition of variance. Recall that the variance of a sample is simply the
sum of the square deviations from the mean:

Var(y) =
∑

j

(yj − ȳ)2 (6.5)

where ȳ is the mean of the sample y. For any model M that predicts values ŷj for the data,
the residual variance or residual sum of squares of M is quantified in exactly the
same way:

RSSM(y) =
∑

j

(yj − ŷj)
2 (6.6)

A beautiful and extraordinarily useful property of linear models is that the sample variance
can be split apart, or decomposed, into (a) the component that is explained by M , and
(b) the component that remains unexplained by M . This can be written as follows (see
Exercise 6.5):

Var(y) =

explained by M︷ ︸︸ ︷∑

j

(yj − ŷj)
2 +

RSSM (y),unexplained︷ ︸︸ ︷∑

j

(ŷj − ȳ)2 (6.7)

Furthermore, if two models are nested (i.e., one is a special case of the other), then the
variance can be futher subdivided among those two models. Figure 6.9 shows the partitioning
of variance for two nested models.

6.5.2 Comparing linear models: the F test statistic

The F test is widely used for comparison of linear models, and forms the foundation for
many analytic techniques including the analysis of variance (ANOVA).
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Figure 6.9: The partitioning of residual variance in linear models. Symbols in the box denote
the variance explained by each model; the sums outside the box quantify the variance in each
combination of sub-boxes.

Recall that our starting assumption in this section was that we had two linear models:
a more general model MA, and a special case M0—that is, for any instance of M0 we can
achieve an instance of MA with the same distribution over Y by setting the parameters
appropriately. In this situation we say that M0 is nested inside MA. Once we have found
maximum-likelihood estimates of M0 and MA, let us denote their predicted values for the
j-th observation as ŷ0j and ŷAj respectively. The sample variance unexplained by M0 and MA

respectively is

∑

j

(ŷj − ŷ0j )
2 (M0) (6.8)

∑

j

(ŷj − ŷAj )
2(MA) (6.9)

so the additional variance explained by MA above and beyond M0 is

∑

j

(ŷj − ŷAj )
2 −

∑

j

(ŷj − ŷ0j )
2 =

∑

j

(ŷAj − ŷ0j )
2 (6.10)

Let us suppose that M0 has k0 parameters, MA has kA parameters, and we have n observa-
tions. It turns out that the quantities in Equations (6.8), (6.9), and (6.10) are distributed
proportional to χ2 random variables with n− k0, n− kA, and kA − k0 degrees of freedom re-
spectively (Section B.4). These quantities are also independent of one another; and, crucially,
if M0 is the true model then the proportionality constants for Equations (6.9) and (6.10) are
the same.
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These facts form the basis for a frequentist test of the null hypothesis H0 : M0 is correct,
based on the F statistic, defined below:

F =

∑
j(ŷ

A
j − ŷ0j )

2/(kA − k0)∑
j(yj − ŷAj )

2/(n− kA)
(6.11)

Under H0, the F statistic follows the F distribution (Section B.6)—which is parameterized
by two degrees of freedom—with (kA− k0, n− kA) degrees of freedom. This follows from the
fact that under H0, we have

∑

j

(ŷAj − ŷ0j )
2/(kA − k0) ∼ Cχ2

kA−k0
;

∑

j

(ŷj − ŷAj )
2/(n− kA) ∼ Cχ2

n−kA

for some proportionality constant C; when the ratio of the two is taken, the two Cs cancel,
leaving us with an F -distributed random variable.

Because of the decomposition of variance, the F statistic can also be written as follows:

F =

[∑
j(yj − ŷ0j )

2 −∑
j(yj − ŷAj )

2
]
/(kA − k0)

[∑
j(yj − ŷAj )

2
]
/(n− kA)

which underscores that the F statistic compares the amount of regularity in the observed
data explained by MA beyond that explained by M0 (the numerator) with the amount of
regularity unexplained by MA (the denominator). The numerator and denominator are often
called mean squares.

Because of the decomposition of variance, the F test can be given a straightforward ge-
ometric interpretation. Take a look at the labels on the boxes in Figure 6.9 and convince
yourself that the sums in the numerator and the denominator of the F statistic correspond re-
spectively to the boxes MA−M0 and Unexplained. Thus, using the F statistic for hypothesis
testing is often referred to as evaluation of the ratio of mean squares.

Because of its importance for frequentist statistical inference in linear models, the F
distribution has been worked out in detail and is accessible in most statistical software
packages.

6.5.3 Model comparison: case study

We can bring the F test to bear in our investigation of the relative contributions of word
frequency and familiarity on word naming latency; we will focus on analysis of the reduced
200-item dataset. First let us consider a test in which the null hypothesis H0 is that only
word frequency has a reliable effect, and the alternative hypothesis HA is that both word
frequency (or “Freq” for short) and familiarity (“Fam”) have reliable effects. H0 corresponds
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to the model RT ∼ N (α + βFreqFreq, σ
2); HA corresponds to the model RT ∼ N (α +

βFreqFreq + βFamFam, σ2). After obtaining maximum-likelihood fits of both models, we can
compute the residual sums of squares

∑
j(ŷj − yj)

2 for each model; these turn out to be
76824.28 for M0 and 75871.58 for MA. M0 has two parameters, MA has three, and we have
200 observations; hence kA − k0 = 1 and N − kA = 197. The F statistic for our hypothesis
test is thus

F =
[76824.28− 75871.58] /1

[75871.58] /197

= 2.47

with (1,197) degrees of freedom. Consulting the cumulative distribution function for the F
statistic we obtain a p-value of 0.12.

We can also apply the F test for comparisons of models differing in multiple parameters,
however. For example, let M ′

0 be a model in which neither word frequency nor familiarity has
an effect on naming time. The residual variance in this model is the entire sample variance,
or 82270.49. For a comparison between M ′

0 and MA we obtain an F statistic of

F =
[82270.49− 75871.58] /2

[75871.58] /197

= 8.31

with (2,197) degrees of freedom. The corresponding p-value is 0.00034, indicating that our
data are extremely unlikely under M ′

0 and that MA is far preferable. Thus, although we
could not adjudicate between word frequency and familiarity with this smaller dataset, we
could say confidently that some combination of the two has a reliable effect on word naming
time.

Another widely used test for the null hypothesis that within a k-parameter model, a
single parameter βi is 0. This hypothesis can be tested through a t-test where the t statistic
is the ratio of the parameter estimate, β̂i to the standard error of the estimate, SE(β̂i). For a
dataset with N observations, this t-test has N−k degrees of freedom. However, a F statistic
with (1,m) has the same distribution as the square of a t statistic with m degrees of freedom.
For this reason, the t-test for linear models can be seen as a special case of the more general
F test; the latter can be applied to compare nested linear models differing in any number of
parameters.

6.6 Analysis of Variance

Recall that we just covered linear models, which are conditional probability distributions of
the form
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P (Y |X) = α + β1X1 + β2X2 + · · ·+ βnXn + ǫ (6.12)

where ǫ ∼ N (0, σ2). We saw how this paradigm can be put to use for modeling the predictive
relationship of continuous variables, such as word frequency, familiarity, and neighborhood
density, on reaction times in word recognition experiments.

In many cases, however, the predictors of interest are not continuous. For example, for
the english dataset in languageR we might be interested in how naming times are influenced
by the type of the initial phoneme of the word. This information is coded by the Frication
variable of the dataset, and has the following categories:

burst the word starts with a burst consonant
frication the word starts with a fricative consonant
long the word starts with a long vowel
short the word starts with a short vowel

It is not obvious how these categories might be meaningfully arranged on the real number
line. Rather, we would simply like to investigate the possibility that the mean naming time
differs as a function of initial phoneme type.

The most widespread technique used to investigate this type of question is the analysis
of variance (often abbreviated ANOVA). Although many books go into painstaking detail
covering different instances of ANOVA, you can gain a firm foundational understanding of
the core part of the method by thinking of it as a special case of multiple linear regression.

6.6.1 Dummy variables

Let us take the example above, where Frication is a categorical predictor. Categorical
predictors are often called factors, and the values they take are often called levels. (This
is also the nomenclature used in R.) In order to allow for the possibility that each level of the
factor could have arbitrarily different effects on mean naming latency, we can create dummy
predictor variables, one per level of the factor:

Level of Frication X1 X2 X3 X4

burst 1 0 0 0
frication 0 1 0 0
long 0 0 1 0
short 0 0 0 1

(Variables such as these which are 0 unless a special condition holds, in which case they are
1, are often referred to as indicator variables). We then construct a standard linear
model with predictors X1 through X4:

Y = α + β1X1 + β2X2 + β3X3 + β4X4 + ǫ (6.13)

Roger Levy – Probabilistic Models in the Study of Language draft, November 6, 2012 122



When we combine the dummy predictor variables with the linear model in (9.7), we get the
following equations for each level of Frication:

Level of Frication Linear model
burst Y = α + β1 + ǫ
frication Y = α + β2 + ǫ
long Y = α + β3 + ǫ
short Y = α + β4 + ǫ

This linear model thus allows us to code a different predicted mean (and most-likely predicted
value) for each level of the predictor, by choosing different values of α and βi.

However, it should be clear from the table above that only four distinct means can
be predicted in this linear model—one for each level of Frication. We don’t need five
parameters (one for α and four for the βi) to encode four means; one of the parameters is
redundant. This is problematic when fitting the model because it means that there is no
unique maximum-likelihood estimate.3 To eliminate this redundancy, we arbitrarily choose
one level of the factor as the baseline level, and we don’t introduce a dummy predictor for
the baseline level. If we choose burst as the baseline level,4 then we can eliminate X4, and
make X1, X2, X3 dummy indicator variables for frication, long, and short respectively,
giving us the linear model

Y = α + β1X1 + β2X2 + β3X3 + ǫ (6.14)

where predicted means for the four classes are as follows:5

Level of Frication Predicted mean
burst α
frication α + β1

long α + β2

short α + β3

6.6.2 Analysis of variance as model comparison

Now that we have completed the discussion of using dummy variables to construct a linear
model with categorical predictors (i.e., factors), we shall move on to discussing what analysis

3For example, if α = 0, β1 = β2 = β3 = β4 = 1 is a maximum-likelihood estimate, then α = 1, β1 = β2 =
β3 = β4 = 0 is as well because it encodes exactly the same model.

4By default, R chooses the first level of a factor as the baseline, and the first level of a factor is whatever
level comes first alphabetically unless you specified otherwise when the factor was constructed—see the
levels argument of the function factor() in the documentation.

5This choice of coding for the dummy variables is technically known as the choice of contrast ma-

trix. The choice of contrast matrix described here is referred to as the treatment contrast matrix, or
contr.treatment in R.
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of variance actually does. Consider that we now have two possible models of how word-
initial frication affects naming time. We have the model of Equation (6.14) above, in which
each class of frication predicts a different mean naming time, with noise around the mean
distributed the same way for each class. We might also consider a simpler model in which
frication has no effect on naming time. Such a model looks as follows:

Y = α + ǫ (6.15)

Now look again at Figure 6.9 and think of the simpler model of Equation (6.15) as M0, and
the more complex model of Equation (6.14) as MA. (Actually, the M0 explains no variance
in this case because it just encodes the mean.) Because ANOVA is just a comparison of
linear models, we can perform a hypothesis test between M0 and MA by constructing an
F statistic from the ratio of the amount of variance contained in the boxes MA − M0 and
Unexplained. The simpler model has one parameter and the more complex model has four,
so we use Equation (6.11) with k0 = 1, kA = 4 to construct the F statistic. The MLE of the
single parameter for M0 (aside from the residual noise variance) is the sample mean α̂ = 470,
and the sum of squared residuals in this model is 1032186. For MA with the dummy variable
coding we’ve used, the MLEs are α̂ = 471, β̂1 = 6, β̂2 = −4, and β̂3 = −16; the sum of
squared residuals is 872627. Thus the F statistic for this model comparison is

F (3, 2280) =
(1032186− 872627)/3

872627/2280

= 138.97

This F statistic corresponds to a p-value of 1.09× 10−82, yielding exceedingly clear evidence
that the type of initial segment in a word affects its average naming latency.

6.6.3 Testing for interactions

The english dataset includes average naming latencies not only for college-age speakers but
also for speakers age 60 and over. This degree of age difference turns out to have a huge
effect on naming latency (Figure 6.10):

histogram(~ RTnaming | AgeSubject, english)

Clearly, college-age speakers are faster at naming words than speakers over age 60. We
may be interested in including this information in our model. In Lecture 10 we already saw
how to include both variables in a multiple regression model. Here we will investigate an
additional possibility: that different levels of frication may have different effects on mean
naming latency depending on speaker age. For example, we might think that fricatives,
which our linear model above indicates are the hardest class of word onsets, might be even
harder for elderly speakers than they are for the young. When these types of inter-predictor
contingencies are included in a statistical model they are called interactions.
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Figure 6.10: Histogram of naming latencies for young (ages ∼ 22.6) versus old (ages > 60
speakers)

It is instructive to look explicitly at the linear model that results from introducing in-
teractions between multiple categorical predictors. We will take old as the baseline value of
speaker age, and leave burst as the baseline value of frication. This means that the“baseline”
predictor set involves an old-group speaker naming a burst-initial word, and the intercept
α will express the predicted mean latency for this combination. There are seven other logi-
cally possible combinations of age and frication; thus our full model will have to have seven
dummy indicator variables, each with its own parameter. There are many ways to set up
these dummy variables; we’ll cover perhaps the most straightforward way. In addition to
X{1,2,3} for the non-baseline levels of frication, we add a new variable X4 for the non-baseline
levels of speaker age (young). This set of dummy variables allows us to encode all eight
possible groups, but it doesn’t allow us to estimate separate parameters for all these groups.
To do this, we need to add three more dummy variables, one for each of the non-baseline
frication levels when coupled with the non-baseline age level. This gives us the following
complete set of codings:

Frication Age X1 X2 X3 X4 X5 X6 X7

burst old 0 0 0 0 0 0 0
frication old 1 0 0 0 0 0 0
long old 0 1 0 0 0 0 0
short old 0 0 1 0 0 0 0
burst young 0 0 0 1 0 0 0
frication young 1 0 0 1 1 0 0
long young 0 1 0 1 0 1 0
short young 0 0 1 1 0 0 1

We can test this full model against a strictly additive model that allows for effects of
both age and initial phoneme class, but not for interactions—that is, one with only X{1,2,3,4}.
It is critical to realize that the additive model is a constrained model: five parameters (α
and β1 through β4) cannot be used to encode eight arbitrary condition means within the
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linear framework. The best this M0 can do—the predicted condition means in its MLE—are
compared with the true condition means below:

Predicted in M0

Young Older
Burst 662.23 470.23
Fricative 670.62 478.61
Long vowel 653.09 461.09
Short vowel 647.32 455.32

Actual (and predicted in MA)
Young Older

Burst 661.27 471.19
Fricative 671.76 477.48
Long vowel 647.25 466.93
Short vowel 647.72 454.92

The predicted per-category means in M0 can be recovered from the MLE parameter esti-
mates:

α̂ = 662.23 β̂1 = 8.39 β̂2 = −9.14 β̂3 = −14.91 β̂4 = −192

Recovering the predicted means in M0 from these parameter estimates is left as an exercise
for the reader.

When the MLEs of M0 and MA are compared using the F -test, we find that our F -
statistic turns out to be F (3, 4560) = 2.69, or p = 0.0449. Hence we also have some evidence
that initial segment type has different effects on average naming times for younger and for
older speakers—though this evidence is far less conclusive than that for differences across
initial-segment type among younger speakers.

6.6.4 Repeated Measures ANOVA and Error Stratification

In the foregoing sections we have covered situations where all of the systematicity across
observations can be summarized as deriving from predictors whose effects on the response
are systematic and deterministic; all stochastic, idiosyncratic effects have been assumed
to occur on level of the individual measurement of the response. In our analysis of average
response times for recognition of English words, for example, we considered systematic effects
of word frequency, familiarity, neighborhood density, and (in the case of word naming times)
initial segment.

Yet it is a rare case in the study of language when there are no potential idiosyncratic
effects that are incidental to the true interest of the researcher, yet affect entire groups
of observations, rather than individual observations. As an example, Alexopolou and Keller
(2007) elicited quantitative subjective ratings of sentence acceptability in a study of pronoun
resumption, embedding depth, and syntactic islands. One part of one of their experiments
involved investigating whether there might be an interaction between embedding and the
presence of a resumptive pronoun on sentence acceptability even in cases which are not
syntactic islands (Ross, 1967). That is, among the four syntactic frames below, (1-b) should
be much less acceptable than (1-a), but (1-d) should not be so much less acceptable than
(1-c).

(1) a. Who will we fire ? [unembedded, −resumption]
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b. Who will we evict him? [unembedded, +resumption]
c. Who does Lucy claim we will punish ? [embedded, −resumption]
d. Who does Emily claim we will arrest him? [embedded, +resumption]

As is no doubt evident to the reader, even if we were to find that such a pattern holds for
average acceptability ratings of these four sentences, a skeptic could reasonably object that
the pattern might well result from the choice of words—the lexicalizations—used to fill
in the four syntactic templates. For example, evict is the least frequent of the four critical
verbs above, and it is reasonable to imagine that sentences with less frequent words might
tend to be rated as less acceptable.

Hence we want to ensure that our results generalize across the specific choice of lexical-
izations used in this particular set of four sentences. One way of achieving this would be
to prepare k > 1 instances of syntactic frame, choosing a separate lexicalization randomly
for each of the k instances of each frame (4k lexicalizations total). We might reasonably
assume that the effects of choice of lexicalization on acceptability are normally distributed.
Following our previous examples, we could use the following dummy-variable encodings:

X1 X2 X3

[unembedded, −resumption] 0 0 0
[unembedded, +resumption] 1 0 0
[embedded, −resumption] 0 1 0
[embedded, +resumption] 1 1 1

If ǫL is the stochastic effect of the choice of lexicalization and ǫE is the normally-distributed
error associated with measuring the acceptability of a lexicalized frame, we get the following
linear model:

Y = α + β1X1 + β2X2 + β3X3 + ǫL + ǫE

Typically, we can think of speaker-level stochastic effects and measurement-level stochastic
effects as independent of one another; hence, because the sum of two independent normal
random variables is itself normally distributed (Section 3.5.1), we can just combine these two
stochastic components of this equation:

Y = α + β1X1 + β2X2 + β3X3 + ǫ

so we have a completely standard linear model. We could conduct hypothesis tests for
this model in the same way as we have done previously in this chapter. For example, we
could test the significance of an interaction between embedding and resumption—formally a
comparison between a null-hypothesis model M0 in which β3 = 0 and an alternative model
MA with unconstrained β3—by partitioning variance as in Table 6.1 and conducting an F
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test comparing the variance explained by adding β3 to the model with the residual variance
left unexplained by MA.

By choosing a different set of lexicalizations for each syntactic frame, however, we have
introduced additional noise into our measurements that will only increase the difficulty of
drawing reliable inferences regarding the effects of embedding, resumption, and their po-
tential interaction. It turns out that we can in general do much better, by using the same
lexicalizations for each syntactic frame. This is in fact what Alexopolou and Keller did,
contrasting a total of nine sentence cohorts of the following types:

(2) a. (i) Who will we fire ? [unembedded, −resumption]
(ii) Who will we fire him? [unembedded, +resumption]
(iii) Who does Mary claim we will fire ? [embedded, −resumption]
(iv) Who does Mary claim we will fire him? [embedded, +resumption]

b. (i) Who will we evict ? [unembedded, −resumption]
(ii) Who will we evict him? [unembedded, +resumption]
(iii) Who does Elizabeth claim we will evict ? [embedded, −resumption]
(iv) Who does Elizabeth claim we will evict him? [embedded,

+resumption]
c. . . .

Each cohort corresponds to a single lexicalization; in experimental studies such as these the
more generic term is item is often used instead of lexicalization. This experimental de-
sign is often called within-items because the manipulation of ultimate interest—the choice
of syntactic frame, or the condition—is conducted for each individual item. Analysis of
within-items designs using ANOVA is one type of what is called a repeated-measures

ANOVA, so named because multiple measurements are made for each of the items. The set
of observations obtained for a single item thus constitute a cluster that we hypothesize may
have idiosyncratic properties that systematically affect the response variable, and which need
to be taken into account when we draw statistical inferences regarding the generative process
which gave rise to our data. For this reason, repeated-measures ANOVA is an analytic tech-
nique for what are known as hierarchical models. Hierarchical models are themselves
an extremely rich topic, and we take them up in Chapter 8 in full detail. There is also,
however, a body of analytic techniques which uses the partitioning of variance and F tests
to analyze certain classes of hierarchical models using repeated-measures ANOVA. Because
these techniques are extremely widespread in many literatures in the study of language and
because these techniques do not require the full toolset for dealing with hierarchical models
in general, we cover the repeated-measures ANOVA here. The reader is strongly encouraged,
however, to compare the repeated-measure ANOVA with the analytic techniques introduced
in Chapter 8, which ultimately offer greater overall flexibility and depth of analysis.

Simple random-intercepts repeated-measures ANOVA

Exactly how to conduct repeated-measures ANOVA depends on the precise nature of the
idiosyncratic cluster-level properties assumed. In our current example, the simplest scenario
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would be if each item (lexicalization) contributed the same fixed amount to average per-
ceived acceptability regardless of the condition (syntactic frame) in which the lexicalization
appeared. If we call the contribution of item i to acceptability ai, then our model becomes

Y = α + β1X1 + β2X2 + β3X3 + ai + ǫ

We may consider the ai themselves to be stochastic: most canonically, they may be normally
distributed around 0 with some unknown variance. Happily, the stochasticity in this model
does not affect how we go about assessing the systematic effects—β1 through β3—of ultimate
interest to us. We can partition the variance exactly as before.

6.6.5 Condition-specific random effects and error stratification

More generally, however, we might consider the possibility that idiosyncratic cluster-level
properties themselves interact with the manipulations we intend to carry out. In our case
of embedding and resumption, for example, it could be the case that some of the verbs
we choose might be particularly unnatural embedded in a complement clause, particularly
natural with an overt resumptive-pronoun object, and/or particularly sensitive to specific
combinations of embedding and resumptivity. Such a more general model would thus say
that

Y = α + β1X1 + β2X2 + β3X3 + ai + bi1X1 + bi2X2 + bi3X3 + ǫ

where 〈ai, b1i, b2i, b3i〉 are jointly multivariate-normal with mean zero and some unknown
covariance matrix Σ. 6

With this richer structure of idiosyncratic cluster-level properties, it turns out that we
cannot partition the variance as straightforwardly as depicted in Figure ?? and draw reliable
inferences in hypothesis tests about β1, β2, and β3. It is instructive to step through the
precise reason for this. Suppose that we were to test for the presence of an interaction
between resumption and embedding—that is, to test the null hypothesis M0 : β3 = 0 against
the alternative, more general MA. Even if M0 is correct, in general the fit of MA will account
for more variance than M0 simply because MA is a more expressive model. As in all cases,
the amount of variance that MA fails to explain will depend on the amount of noise at the
level of specific observations (the variance of ǫ). But if M0 is true, the variance explained by
MA beyond M0 will depend not only the amount of observation-level noise but also on the

6Technically, the F -tests covered in this chapter for repeated-measures ANOVA is fully appropriate only
when the covariance matrix Σ is such that all differences between pairs of cluster-specific properties have
equal variance: technically, for all x, y ∈ {a, b1, . . . , bn}, σ2

x + σ2
y − 2σxy is constant. This condition is known

as sphericity. Violation of sphericity can lead to anti-conservativity of F -tests; remedies include corrections
for this anti-conservativity [insert references] as well as adopting hierarchical-model analyses of the type
introduced in Chapter 8.

Roger Levy – Probabilistic Models in the Study of Language draft, November 6, 2012 129



amount and nature of cluster-level noise—that is, the variance of bi3 and its correlation with
ai, bi1, and bi2. Exercise 6.7 asks you to demonstrate this effect through simulations.

Fortunately, there does turn out to be a way to test hypotheses in the face of such a
rich structure of (normally-distributed) cluster-level properties: the stratification of

variance. [TODO: summary of how to determine what comparisons to make]
As a first example, let us simply examine the simple effect of adding a level of embedding

to object-extracted cases without resumptive pronouns: Example (1-c) versus (1-c). In these
cases, according to our dummy variable scheme we haveX1 = X3 = 0, giving us the simplified
linear equation:

Y = α + β2X2 + aibi2X2 + ǫ (6.16)

Figure 6.11 demonstrates the stratification of variance. Although everything except the box
labeled “Residual Error” is part of the complete model of Equation (6.16), our F -test for the
presence of a significant effect of embedding will pit the variance explained by embedding
against the variance explained by idiosyncratic subject sensitivities to embedding condition.

Here is code that demonstrates the execution of the repeated-measures ANOVA:

> set.seed(2)

> library(mvtnorm)

> n <- 20

> m <- 20

> beta <- c(0.6,0.2) ## beta[1] corresponds to the intercept; beta[2] corresponds to the

> Sigma.b <- matrix(c(0.3,0,0,0.3),2,2) ## in this case, condition-specific speaker sensitivities

> sigma.e <- 0.3

> df.1 <- expand.grid(embedding=factor(c("Unembedded","Embedded")),lexicalization=facto

> df <- df.1

> for(i in 1:(n-1))

+ df <- rbind(df,df.1)

> B <- rmvnorm(m,mean=c(0,0),sigma=Sigma.b)

> df$y <- with(df,beta[embedding] + B[cbind(lexicalization,(as.numeric(embedding)))] +

> m <- aov(y ~ embedding + Error(lexicalization/embedding),df)

Alexopolou & Keller 2007 data

> library(lme4)

6.6.6 Case study: two-way analysis of variance for self-paced read-
ing

Here we cover a slightly more complex case study: a two-way (so named because we
examine possible effects of two predictors and their potential interaction) ANOVA of word-
by-word reading times (RTs) in a moving-window self-paced reading experiment conducted
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Figure 6.11: Stratification of variance in a simple repeated-measures ANOVA.

by Rohde et al. (2011).7 In addition to the pure mathematical treatment of the ANOVA,
we also cover some preliminary aspects of data analysis. The question under investigation
was whether certain kinds of verbs (implicit causality (IC) verbs) such as “detest”, which
intuitively demand some sort of explanation, can affect readers’ online syntactic attachment
preferences.

(3) a. John detests the children of the musician who is generally arrogant and rude
(ic,low)

b. John detests the children of the musician who are generally arrogant and rude
(ic,high)

c. John babysits the children of the musician who is generally arrogant and rude
(nonIc,low)

d. John babysits the children of the musician who are generally arrogant and rude
(nonIc,high)

We hypothesized that the use of an IC verb should facilitate reading of high-attached
RCs, which are generally found in English to be harder to read than low-attached RCs

7Moving-window self-paced reading involves presenting sentences one word or group of words at a time,
masking previously presented material as new material is revealed, e.g.:

-----------.

The -------.

--- cat ---.

------- sat.

Participants control the pace at which they read through the material by pressing a button to reveal each new
chunk of input; the time between consecutive button presses constitutes the reading time on the pertinent
chunk of input.
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(Cuetos and Mitchell, 1988). The reasoning here is that the IC verbs demand an explana-
tion, and one way of encoding that explanation linguistically is through a relative clause.
In these cases, the most plausible type of explanation will involve a clause in which the
object of the IC verb plays a role, so an RC modifying the IC verb’s object should become
more expected. This stronger expectation may facilitate processing when such an RC is seen
(Levy, 2008).

The stimuli for the experiment consist of 20 quadruplets of sentences of the sort above.
Such a quadruplet is called an experimental item in the language of experimental psychol-
ogy. The four different variants of each item are called the conditions. Since a participant
who sees one of the sentences in a given item is liable to be strongly influenced in her reading
of another sentence in the item, the convention is only to show each item once to a given
participant. To achieve balance, each participant will be shown five items in each condition.

Item
Participant 1 2 3 4 5 . . .

1 ic,high nonIc,high ic,low nonIc,low ic,high . . .
2 nonIc,low ic,high nonIc,high ic,low nonIc,low . . .
3 ic,low nonIc,low ic,high nonIc,high ic,low . . .
4 nonIc,high ic,low nonIc,low ic,high nonIc,high . . .
5 ic,high nonIc,high ic,low nonIc,low ic,high . . .
...

...
...

...
...

...
. . .

The experimental data will be analyzed for effects of verb type and attachment level,
and more crucially for an interaction between these two effects. For this reason, we plan to
conduct a two-way ANOVA.

In self-paced reading, the observable effect of difficulty at a given word often shows up
a word or two downstream, particularly when the word itself is quite short as in this case
(short words are often read very quickly, perhaps because the preliminary cue of word length
suggests that linguistic analysis of the input will be easy, inducing the reader to initiate
the motor activity that will move him/her on to the next word before the difficulty of the
linguistic analysis is noticed). Here we focus on the first word after the disambiguator—
generally in III—often called the first spillover region.

Figure 6.12 provides scatterplots and kernel density estimates (Section 2.11.2) of RT
distributions observed in each condition at this point in the sentence. The kernel density
estimates make it exceedingly clear that these RTs are far from normally distributed: they
are severely right-skewed. ANOVA—in particular repeated-measures ANOVA as we have
here—is robust to this type of departure from normality: the non-normality will not lead to
anti-conservative inferences in frequentist hypothesis tests. However, the presence of a non-
negligible proportion of extremely high values means that the variance of the error is very
high, which leads to a poor signal-to-noise ratio; this is a common problem when analyzing
data derived from distributions heavier-tailed than the normal distribution. One common
means of remedying this issue is adopting some standardized criterion for identifying some
observations as outliers and excluding them from analysis. The practices and reasoning
behind outlier removal will vary by data type. In self-paced reading, for example, one
rationale for outlier removal is that processes unrelated to sentence comprehension can affect
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Figure 6.12: Density plots for reading times at the first spillover region for the experiment
of Rohde et al. (2011)

recorded reaction times (e.g., the participant sneezes and takes a few seconds to recover);
these processes will presumably be independent of the experimental manipulation itself, so if
data that were probably generated by these processes can be identified and removed without
biasing the outcome of data analysis, it can improve signal-to-noise ratio.

Here we’ll adopt a relatively simple approach to outlier removal: binning all our obser-
vations, we determine an upper threshold of ȳ + 4

√
S2 where ȳ is the sample mean and

S2 is the unbiased estimate of the sample variance (Section 4.3.3). That threshold is plot-
ted in Figure 6.12 as a dotted line; and any observations above that threshold are simply
discarded. Note that 12 of the 933 total observations are discarded this way, or 1.3% of
the total; consultation of the normal cumulative density function reveals that only 0.0032%
would be expected if the data were truly normally distributed.

The comparisons to make

In this experiment, two factors characterize each stimulus: a particular individual reads
a particular item that appears with particular verbtype (implicit-causality—IC—or non-
implicit-causality) and attachment level of the relative clause (high or low) manipulations.
verb and attachment have two levels each, so if we had m participants and n items we
would in principle need at least 2 × 2 ×m × n observations to consider a full linear model
with interactions of all possible types. However, because each subject saw each item only
once, we only have m × n observations. Therefore it is not possible to construct the full
model.

For many years dating back to Clark (1973), the standard ANOVA analysis in this situ-
ation has been to construct two separate analyses: one in which the , and one for items. In
the analysis over subjects, we take as our individual data points the mean value of all the
observations in each cell of Subject×Verb×Attachment—that is, we aggregate, or aver-
age, across items. Correspondingly, in the analysis over items, we aggregate across subjects.
We can use the function aggregate() to perform this averaging: aggregate()

with()
sp.1.subj <- with(spillover.1.to.analyze,aggregate(list(rt=rt),
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Subject
Verb Attachment 1 2 3 4 5 . . .

IC
High 280.7 396.1 561.2 339.8 546.1 . . .
Low 256.3 457.8 547.3 408.9 594.1 . . .

nonIC
High 340.9 507.8 786.7 369.8 453.0 . . .
Low 823.7 311.4 590.4 838.3 298.9 . . .

Table 6.1: Repeated-measures (within-subjects) view of item-aggregated data for subjects
ANOVA

Subj

Subj:Attach

Attach

Subj
:

Verb
Verb

Subj:
Verb:
Attach

Verb:Attach

Residual Error

Figure 6.13: The picture for this 2 × 2 ANOVA, where Verb and Attachment are the fixed
effects of interest, and subjects are a random factor

list(subj=subj,verb=verb,attachment=attachment),mean))

sp.1.item <- with(spillover.1.to.analyze,aggregate(list(rt=rt),

list(item=item,verb=verb,attachment=attachment),mean))

The view of the resulting data for the analysis over subjects can be seen in Table 6.1. This
setup is called a within-subjects or repeated-measures design because each subject
participates in each condition—or, in another manner of speaking, we take multiple measure-
ments for each subject. Designs in which, for some predictor factor, each subject participates
in only one condition are called between-subjects designs.
The way we partition the variance for this type of analysis can be seen in Figure 6.13. Because
we have averaged things out so we only have one observation per Subject/Verb/Attachment
combination, there will be no variation in the Residual Error box. Each test for an effect
of a predictor sets of interest (verb, attachment, and verb:attachment) is performed by
comparing the variance explained by the predictor set P with the variance associated with
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arbitrary random interactions between the subject and P . This is equivalent to performing a
model comparison between the following two linear models, where i range over the subjects
and j over the conditions in P :

rtij = α + BiSubji + ǫij (null hypothesis) (6.17)

rtij = α + BiSubji + βjPj + ǫij (alternative hypothesis) (6.18)

(6.19)

There is an added wrinkle here, which is that the Bi are not technically free parameters
but rather are themselves assumed to be random and normally distributed. However, this
difference does not really affect the picture here. (In a couple of weeks, when we get to
mixed-effects models, this difference will become more prominent and we’ll learn how to
handle it in a cleaner and more unified way.)

Fortunately, aov() is smart enough to know to perform all these model comparisons in
the appropriate way, by use of the Error() specification in your model formula. This is done
as follows, for subjects:

> summary(aov(rt ~ verb * attachment

+ Error(subj/(verb *attachment)), sp.1.subj))

Error: subj

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 54 4063007 75241

Error: subj:verb

Df Sum Sq Mean Sq F value Pr(>F)

verb 1 48720 48720 7.0754 0.01027 *

Residuals 54 371834 6886

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Error: subj:attachment

Df Sum Sq Mean Sq F value Pr(>F)

attachment 1 327 327 0.0406 0.841

Residuals 54 434232 8041

Error: subj:verb:attachment

Df Sum Sq Mean Sq F value Pr(>F)

verb:attachment 1 93759 93759 6.8528 0.01146 *

Residuals 54 738819 13682

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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and for items:

> summary(aov(rt ~ verb * attachment

+ Error(item/(verb *attachment)), sp.1.item))

Error: item

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 19 203631 10717

Error: item:verb

Df Sum Sq Mean Sq F value Pr(>F)

verb 1 21181 21181 3.5482 0.075 .

Residuals 19 113419 5969

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Error: item:attachment

Df Sum Sq Mean Sq F value Pr(>F)

attachment 1 721 721 0.093 0.7637

Residuals 19 147299 7753

Error: item:verb:attachment

Df Sum Sq Mean Sq F value Pr(>F)

verb:attachment 1 38211 38211 5.4335 0.03092 *

Residuals 19 133615 7032

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Fortunately, the by-subjects and by-items analysis yield largely similar results: they
both point towards (a) a significant main effect of verb type; and (b) more interestingly, a
significant interaction between verb type and attachment level. To interpret these, we need
to look at the means of each condition. It is conventional in psychological experimentation
to show the condition means from the aggregated data for the by-subjects analysis:

> with(sp.1.subj,tapply(rt,list(verb),mean))

IC nonIC

452.2940 482.0567

> with(sp.1.subj,tapply(rt,list(verb,attachment),mean))

high low

IC 430.4316 474.1565

nonIC 501.4824 462.6309

The first spillover region was read more quickly in the implicit-causality verb condition than
in the non-IC verb condition. The interaction was a crossover interaction: in the high
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attachment conditions, the first spillover region was read more quickly for IC verbs than for
non-IC verbs; but for the low attachment conditions, reading was faster for non-IC verbs
than for IC verbs.

We interpreted this result to indicate that IC verbs do indeed facilitate processing of
high-attaching RCs, to the extent that this becomes the preferred attachment level.

6.7 Other generalized linear models

Recall that we’ve looked at linear models, which specify a conditional probability density
P (Y |X) of the form

Y = α + β1X1 + · · ·+ βnXn + ǫ (6.20)

Linear models thus assume that the only stochastic part of the data is the normally-distributed
noise ǫ around the predicted mean. Yet many—probably most—types of data do not meet
this assumption at all. These include:

• Continuous data in which noise is not normally distributed;

• Categorical data, where the outcome is one of a number of discrete classes;

• Count data, in which the outcome is restricted to non-negative integers.

By choosing different link and noise functions, you can help ensure that your statistical
model is as faithful a reflection of possible of the major patterns in the data you are interested
in representing. In the remainder of this chapter, we look at two other major classes of GLM:
logit and log-linear models.

6.7.1 Logit models

Suppose we want a GLM that models binomially distributed data from n trials. We will use
a slightly different formulation of the binomial distribution from what that of Chapter 2:
instead of viewing the response as the number of successful trials r, we view the response
as the proportion of successful trials r

n
; call this Y . The mean proportion for binomial

distribution is simply the success parameter π; hence, π is also the predicted mean µ of our
GLM. This gives us enough information to specify precisely the resulting model (from now
on we replace µ with π for simplicity):

P (Y = y; π) =

(
n

yn

)
πny(1− π)n(1−y) (or equivalently, replace µ with π) (6.21)

which is just the binomial distribution from back in Equation 3.8.
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This is the second part of designing a GLM: choosing the distribution over Y , given
the mean µ (Equation 6.1). Having done this means that we have placed ourselves in the
binomial GLM family. The other part of specifying our GLM is choosing a relationship
between the linear predictor η and the mean µ. Unlike the case with the classical linear
model, the identity link function is not a possibility, because η can potentially be any real
number, whereas the mean proportion µ of successes can only vary between 0 and 1. There
are many link functions that can be chosen to make this mapping valid, but here we will use
the most popular link function, the logit transform:8

log
π

1− π
= η (6.22)

or equivalently the inverse logit transform:

π =
eη

1 + eη
(6.23)

Figure 6.14 shows the relationship between η and π induced by the logit transform
When we insert the full form of the linear predictor from Equation (6.1) back in, we

arrive at the final formula for logit models:

π =
eα+β1X1+···+βnXn

1 + eα+β1X1+···+βnXn
(6.24)

Fitting a logit model is also called logistic regression.

6.7.2 Fitting a simple logistic regression model

The most common criterion by which a logistic regression model for a dataset is fitted is
exactly the way that we chose the parameter estimates for a linear regression model: the
method of maximum likelihood. That is, we choose the parameter estimates that give our
dataset the highest likelihood.

We will give a simple example using the dative dataset. The response variable here is
whether the recipient was realized as an NP (i.e., the double-object construction) or as a PP
(i.e., the prepositional object construction). This corresponds to the RealizationOfRecipient
variable in the dataset. There are several options in R for fitting basic logistic regression mod-
els, including glm() in the stats package and lrm() in the Design package. In this case
we will use lrm(). We will start with a simple study of the effect of recipient pronominality
on the dative alternation. Before fitting a model, we examine a contingency table of the
outcomes of the two factors:

8Two other popular link functions for binomial GLMs are the probit link and the complementary

log-log link. See Venables and Ripley (2002, Chapter 7) for more details.
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Figure 6.14: The logit transform

> library(languageR)

> xtabs(~ PronomOfRec + RealizationOfRecipient,dative)

RealizationOfRecipient

PronomOfRec NP PP

nonpronominal 600 629

pronominal 1814 220

So sentences with nonpronominal recipients are realized roughly equally often with DO and
PO constructions; but sentences with pronominal recipients are recognized nearly 90% of the
time with the DO construction. We expect our model to be able to encode these findings.

It is now time to construct the model. To be totally explicit, we will choose ourselves
which realization of the recipient counts as a “success” and which counts as a “failure” (al-
though lrm() will silently make its own decision if given a factor as a response). In addition,
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our predictor variable is a factor, so we need to use dummy-variable encoding; we will satis-
fice with the R default of taking the alphabetically first factor level, nonpronominal, as the
baseline level.

> library(rms)

> response <- ifelse(dative$RealizationOfRecipient=="PP",

+ 1,0) # code PO realization as success, DO as failure

> lrm(response ~ PronomOfRec, dative)

The thing to pay attention to for now is the estimated coefficients for the intercept and
the dummy indicator variable for a pronominal recipient. We can use these coefficients to
determine the values of the linear predictor η and the predicted mean success rate p using
Equations (6.1) and (6.24):

η−− = 0.0472 + (−2.1569)× 0 = 0.0472 (non-pronominal receipient) (6.25)

η+ = 0.0472 + (−2.1569)× 1 = −2.1097 (pronominal recipient) (6.26)

pnonpron =
e0.0472

1 + e0.0472
= 0.512 (6.27)

ppron =
e−2.1097

1 + e−2.1097
= 0.108 (6.28)

When we check these predicted probabilities of PO realization for nonpronominal and pronom-
inal recipients, we see that they are equal to the proportions seen in the corresponding rows
of the cross-tabulation we calculated above: 629

629+600
= 0.518 and 220

220+1814
= 0.108. This is

exactly the expected behavior, because (a) we have two parameters in our model, α and β1,
which is enough to encode an arbitrary predicted mean for each of the cells in our current
representation of the dataset; and (b) as we have seen before (Section 4.3.1), the maximum-
likelihood estimate for a binomial distribution is the relative-frequency estimate—that is,
the observed proportion of successes.

6.7.3 Multiple logistic regression

Just as we were able to perform multiple linear regression for a linear model with multiple
predictors, we can perform multiple logistic regression. Suppose that we want to take into
account pronominality of both recipient and theme. First we conduct a complete cross-
tabulation and get proportions of PO realization for each combination of pronominality
status:apply()

> tab <- xtabs(~ RealizationOfRecipient + PronomOfRec + PronomOfTheme, dative)

> tab

, , PronomOfTheme = nonpronominal
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PronomOfRec

RealizationOfRecipient nonpronominal pronominal

NP 583 1676

PP 512 71

, , PronomOfTheme = pronominal

PronomOfRec

RealizationOfRecipient nonpronominal pronominal

NP 17 138

PP 117 149

> apply(tab,c(2,3),function(x) x[2] / sum(x))

PronomOfTheme

PronomOfRec nonpronominal pronominal

nonpronominal 0.4675799 0.8731343

pronominal 0.0406411 0.5191638

Pronominality of the theme consistently increases the probability of PO realization; pronom-
inality of the recipient consistently increases the probability of DO realization.

We can construct a logit model with independent effects of theme and recipient pronom-
inality as follows:

> library(rms)

> dative.lrm <- lrm(response ~ PronomOfRec + PronomOfTheme, dative)

> dative.lrm

And once again, we can calculate the predicted mean success rates for each of the four
combinations of predictor variables:

Recipient Theme η p̂
nonpron nonpron -0.1644 0.459
pron nonpron -3.0314 0.046

nonpron pron 2.8125 0.943
pron pron -0.0545 0.486

In this case, note the predicted proportions of success are not the same as the observed
proportions in each of the four cells. This is sensible – we cannot fit four arbitrary means
with only three parameters. If we added in an interactive term, we would be able to fit four
arbitrary means, and the resulting predicted proportions would be the observed proportions
for the four different cells.

6.7.4 Transforming predictor variables

***TODO***
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Predictor Coefficient Factor Weight
Multiplicative
effect on odds

Intercept -0.1644 0.4590 0.8484
Pronominal Recipient -2.8670 0.0538 0.0569
Pronominal Theme 2.9769 0.9515 19.627

Table 6.2: Logistic regression coefficients and corresponding factor weights for each predictor
variable in the dative dataset.

6.7.5 Multiplicativity of the odds

Let us consider the case of a dative construction in which both the recipient and theme are
encoded with pronouns. In this situation, both the dummy indicator variables (indicating
that the theme and recipient are pronouns) have a value of 1, and thus the linear predictor
consists of the sum of three terms. From Equation (6.22), we can take the exponent of both
sides and write

p

1− p
= eα+β1+β2 (6.29)

= eαeβ1eβ2 (6.30)

The ratio p
1−p

is the odds of success, and in logit models the effect of any predictor
variable on the response variable is multiplicative in the odds of success. If a predictor has
coefficent β in a logit model, then a unit of that predictor has a multiplicative effect of eβ

on the odds of success.
Unlike the raw coefficient β, the quantity eβ is not linearly symmetric—it falls in the range

(0,∞). However, we can also perform the full reverse logit transform of Equation

(6.23), mapping β to eβ

1+eβ
which ranges between zero and 1, and is linearly symmetric around

0.5. The use of logistic regression with the reverse logit transform has been used in quantita-
tive sociolinguistics since Cedergren and Sankoff (1974) (see also Sankoff and Labov, 1979),
and is still in widespread use in that field. In quantitative sociolinguistics, the use of logistic
regression is often called VARBRUL (variable rule) analysis, and the parameter estimates
are reported in the reverse logit transform, typically being called factor weights.

Tables 6.2 and 6.3 show the relationship between the components of the linear predictor,
the components of the multiplicative odds, and the resulting predictions for each possible
combination of our predictor variables.

6.8 Confidence intervals and model comparison in logit

models

We’ll close our introduction to logistic regression with discussion of confidence intervals and
model comparison.
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Recip. Theme Linear Predictor Multiplicative odds P(PO)
–pron –pron −0.16 0.8484 0.46
+pron –pron −0.16− 2.87 = −3.03 0.85× 0.06 = 0.049 0.046
–pron +pron −0.16 + 2.98 = 2.81 0.85× 19.6 = 16.7 0.94
+pron +pron −0.16− 2.87 + 2.98 = −0.05 0.85× 0.06× 19.63 = 0.947 0.49

Table 6.3: Linear predictor, multiplicative odds, and predicted values for each combination of
recipient and theme pronominality in the dative dataset. In each case, the linear predictor
is the log of the multiplicative odds.

6.8.1 Frequentist Confidence intervals for logit models

When there are a relatively large number of observations in comparison with the number of
parameters estimated, the standardized deviation of the MLE for a logit model parameter θ
is approximately normally distributed:

θ̂ − θ

StdErr(θ̂)
∼ N (0, 1) (approximately) (6.31)

This is called the Wald statistic9. This is very similar to the case where we used the t
statistic for confidence intervals in classic linear regression (Section 6.4; remember that once
the t distribution has a fair number of degrees of freedom, it basically looks like a standard
normal distribution). If we look again at the output of the logit model we fitted in the
previous section, we see the standard error, which allows us to construct confidence intervals
on our model parameters.

Coef S.E. Wald Z P

Intercept -0.1644 0.05999 -2.74 0.0061

PronomOfRec=pronominal -2.8670 0.12278 -23.35 0.0000

PronomOfTheme=pronominal 2.9769 0.15069 19.75 0.0000

Following the exact same logic as in Section 6.4, we find that the 95% confidence interval
for each parameter βi is bounded below by β̂i − 1.96SE(β̂i), and bounded below by β̂i +
1.96SE(β̂i). This gives us the following bounds:

a -0.1673002 0.2762782

b1 -3.1076138 -2.6263766

b2 2.6815861 3.2722645

The Wald statistic can also be used for a frequentist test on the null hypothesis that an
individual model parameter is 0. This is the source of the p-values given for the model
parameters above.

9It is also sometimes called the Wald Z statistic, because of the convention that standard normal variables
are often denoted with a Z, and the Wald statistic is distributed approximately as a standard normal.
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6.8.2 Bayesian confidence intervals for logit models

In order to construct a Bayesian confidence interval for a logit model, we need to choose prior
distributions on the weights α and {βi} that go into the linear predictor (Equation (6.1)),
and then use sampling-based techniques (Section 4.5). As a simple example, let us take the
multiple logistic regression of Section 6.7.3. The model has three parameters; we will express
agnosticism about likely parameter values by using a diffuse prior. Specifically, we choose a
normally-distributed prior with large variance for each parameter:

α ∼ N (0, 10000)

β1 ∼ N (0, 10000)

β2 ∼ N (0, 10000)

With sampling we can recover 95% HPD confidence intervals (Section 5.1) for the parameters:

a -0.1951817 0.2278135

b1 -3.1047508 -2.6440788

b2 2.7211833 3.2962744

There is large agreement between the frequentist and Bayesian confidence intervals in this
case. A different choice of prior would change the HPD confidence intervals, but we have
a lot of data relative to the complexity of the model we’re trying to estimate, so the data
dominates the prior in our case.

6.8.3 Model comparison

Just as in the analysis of variance, we are often interested in conducting tests of the hy-
pothesis that introducing several model parameters simultaneously leads to a better overall
model. In this case, we cannot simply use a single Wald statistic for hypothesis testing.
Instead, the most common approach is to use the likelihood-ratio test, first introduced
in Section 5.4.4. To review, the quantity

G2 = 2 [log LikM1(y)− log LikM0(y)] (6.32)

is approximately distributed as a χ2
k random variable, where k is the difference in the number

of free parameters between M1 and M0.
As an example of using the likelihood ratio test, we will hypothesize a model in which

pronominality of theme and recipient both still have additive effects but that these effects
may vary depending on the modality (spoken versus written) of the dataset. We fit this
model and our modality-independent model using glm(), and use anova() to calculate the
likelihood ratio:
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> m.0 <- glm(response ~ PronomOfRec + PronomOfTheme,dative,family="binomial")

> m.A <- glm(response ~ PronomOfRec*Modality + PronomOfTheme*Modality,dative,family="bi

> anova(m.0,m.A)

We can look up the p-value of this deviance result in the χ2
3 distribution:

> 1-pchisq(9.07,3)

[1] 0.02837453

Thus there is some evidence that we should reject a model that doesn’t include modality-
specific effects of recipient and theme pronominality.

6.8.4 Dealing with symmetric outcomes

In the study of language, there are some types of categorical outcomes that are symmetrical
in a way that can make it difficult to see how to properly assign values to explanatory vari-
ables. Consider, for example, the study of word order in the coordination of like categories.
Suppose we are interested in the joint effect of word frequency and word length on ordering
preferences in word pairs conjoined by and (called, appropriately enough, binomials), and
our observation is the phrase evasive and shifty. The word evasive is longer (has more syl-
lables) than shifty, but it is less frequent as well. How do we characterize these independent
variables, and do we call the outcome a “success” or a “failure”?

Fortunately, we can address this problem by noticing that the central issue is really not
whether evasive and shifty is a success or failure; the central issue is, rather, the pattern
of how the explanatory variables are aligned with observed orderings. We now cover an
example of how to deal with this problem taken from Benor and Levy (2006), a corpus
study of English binomials. We will restrict ourselves to word pairs occurring exactly once
in Benor and Levy’s dataset, and look at the effects of perceptual markedness, weight (in
terms of number of syllables), and word frequency. The covariates in the model are thus
comparative properties—for example, whether one of the words denotes a property that is
more perceptually salient, or which of the words is more frequent (also chanted). We can
code each property Pi as a quantitative variable Xi by arbitrarily choosing an alignment
direction for the property, and giving the binomial a positive value for the Xi if Pi is aligned
with the binomial, a negative value of equal magnitude if Pi is aligned against the binomial,
and zero if Pi is inactive. The logit response variable now serves as a dummy variable—it is
always a “success”. For perceptual markedness, word length, and word frequency we choose
the following alignments:

• Perceptual markedness is positive if the first word in the binomial is more perceptually
salient than the last word;

• Word length (in number of syllables) is positive if the last word has more syllables than
the first word;
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• Word frequency is positive if the first word is more frequent than the last word.

These aligned properties can be thought of as soft (or gradient) constraints in
the sense of Optimality Theory and similar frameworks, with statistical model fitting as a
principled means of investigating whether the constraints tend not to be violated, and how
strong such a tendency may be. A few such observations in the dataset thus coded are:

Word.Pair Percept Freq Syl Response

chanted and chortled 1 1 0 1

real and vibrant 0 -1 -1 1

evasive and shifty 0 1 -1 1

Note that chanted and chortled has a perceptual markedness value of 1, since chortling is
a quieter action; vibrant and real has a response of 0 since it is observed in the opposite
ordering; and the Syl covariate value for evasive and shifty is −1 because evasive has more
syllables than shifty.

It would be nonsensical to use an intercept when fitting a model to this dataset: setting
the intercept arbitrarily high, and the other model parameters to zero, would be the best
fit. If, however, we remove the intercept from the model, the model expresses the tendency
of each covariate to align with the binomial ordering:

> dat <- read.table("../data/binomials_data/single_count_binomials.txt",header=T,fill=T

> summary(glm(Response ~ Percept + Syl + Freq - 1, dat,family="binomial"))$coef

Estimate Std. Error z value Pr(>|z|)

Percept 1.1771339 0.5158658 2.281861 0.022497563

Syl 0.4926385 0.1554392 3.169332 0.001527896

Freq 0.3660976 0.1238079 2.956981 0.003106676

All three constraints have positive coefficients, indicating significant alignment with bino-
mial ordering: the constraints do indeed tend not to be violated. It’s worth noting that
even though perceptual markedness is estimated to be the strongest of the three constraints
(largest coefficient), its standard error is also the largest: this is because the constraint is
active (non-zero) least often in the dataset.

6.9 Log-linear and multinomial logit models

A class of GLM very closely related to logit models is log-linear models. Log-linear
models choose the log as the link function:

l(µ) = log µ = η µ = eη (6.33)

and the Poisson distribution, which ranges over non-negative integers, as the noise function:
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P (Y = y;µ) = e−µµ
y

y!
(y = 0, 1, . . . ) (6.34)

When used to model count data, this type of GLM is often called a Poisson model or
Poisson regression.

In linguistics, the log-linear model is most often used to model probability distributions
over multi-class outcomes. Suppose that for there are M classes of possible outcomes, each
with its own linear predictor ηi and random variable Yi. If we conditionalize on the total
count of all classes being 1, then the only available count outcomes for each class are 0 and
1, with probabilities:

P (Yi = 1;µi = eηi) = eµieηi P (Yi = 0;µi = eηi) = eµi (6.35)

and the joint probability of the single observation falling into class i is

P (Yi = 1, {Yj 6=i} = 0) =
eµieηi

∏
j 6=i e

µj

∑
i′ e

µi′eηi′
∏

j 6=i′ e
µj

=
eηi

∏
j e

µj

∑
i′ e

η
i′

∏
j e

µj

=
eηi

∏
j e

µj

∏
j e

µj
∑

i′ e
η
i′

P (Yi = 1, {Yj 6=i} = 0) =
eηi∑
i′ e

η
i′

(6.36)

When we are thinking of a log-linear model as defining the probability distribution over
which class each observation falls into, it is often useful to define the class-specific success

probabilities πi
def
= P (Yi = 1, {Yj 6=i} = 0). This allows us to think of a log-linear model as

using a multinomial noise distribution (Section 3.4.1).

Expressive subsumption of (multinomial) logit models by log-linear models∗

Basic logit models are used to specify probability distributions over outcomes in two classes
(the “failure” class 0 and the “success” class 1). Log-linear models can be used to specify
probability distributions over outcomes in any number of classes. For a two-class log-linear
model, the success probability for class 1 is (Equation (6.24)):

π1 =
eα1+β1,1X1+···+β1,nXn

eα0+β0,1X1+···+β0,nXn + eα1+β1,1X1+···+β1,nXn
(6.37)

(6.38)
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If we divide both the numerator and denominator by eα0+β0,1X1+···+β0,nXn , we get

π1 =
e(α1−α0)+(β1,1−β0,1)X1+···+(β1,n−β0,n)Xn

1 + e(α1−α0)+(β1,1−β0,1)X1+···+(β1,n−β0,n)Xn
(6.39)

This is significant because the model now has exactly the same form as the logit model
(Equation (6.24), except that we have parameters of the form (α1−α0) and (β1,i−β0,i) rather
than α and βi respectively. This means that log-linear models expressively subsume logit
models: any logit model can also be expressed by some log-linear model. Because of this,
when maximum-likelihood estimation is used to fit a logit model and a log-linear model
with the same set of variables, the resulting models will determine the same probability
distribution over class proportions. There are only three differences:

1. The log-linear model can also predict the total number of observations.

2. The logit model has fewer parameters.

3. When techniques other than MLE (e.g., Bayesian inference marginalizing over model
parameters) are used, the models will generally yield different predictive distributions.

6.10 Log-linear models of phonotactics

We introduce the framework of log-linear or maximum-entropy models by turning to
the linguistic problem of phonotactics. A speaker’s phonotactic knowledge is their
knowledge of what logically possible sound sequences constitute legitimate potential lexical
items in her language. In the probabilistic setting, phonotactic knowledge can be expressed
as a probability distribution over possible sound sequences. A good probabilistic model of
phonotactics assigns low probability to sequences that are not possible lexical items in the
language, and higher probability to sequences that are possible lexical items. A categorical
characterization of sound sequences as being either impossible or possible in the language
could be identified with respective assignment of zero or non-zero probability in the model.
The classic example of such a distinction is that whereas native English speakers judge the
non-word blick [blIk] to be a possible word of English, they judge the non-word bnick [bnIk]
not to be a possible word of English. [citations here] However, probabilistic phonotactic
models have the further advantage of being able to make gradient distinctions between forms
that that are “more” or “less” appropriate as possible lexical items.

Construct a probabilistic phonotactic model entails putting a probability distribution
over the possible sound sequences of the language. There are many approaches that could be
taken to this problem; here we examine two different approaches in the context of modeling
one of the best-studied problems in phonotactics: constrants on of English word onsets—the
consonant sequences with which words begin. For simplicity, we restrict discussion here to
onsets consisting of exactly two segments drawn from a subset of the inventory of English
consonants, namely [f], [v], [s], [z], [sh], [p], [b], [t], [d], [l], and [r]. Table 6.4 presents a list
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of the two-segment word onsets which can be constructed from these segments and which
are found in the Carnegie Mellon Pronouncing Dictionary of English (Weide, 1998). Of the
121 logically possible onsets, only 30 are found. They are highly disparate in frequency, and
most of the rarest (including everything on the right-hand side of the table except for [sf] as
in sphere) are found only in loan words. In the study of phonotactics; there is some question
as to exactly what counts as an “attested” sequence in the lexicon; for present purposes, I
will refer to the twelve most frequent onsets plus [sf] as unambiguously attested.

We begin the problem of estimating a probability distribution over English two-segment
onsets using simple tools from Chapters 2 and 4: multinomial models and relative frequency
estimation. Let us explicitly represent the sequence structure of an English onset x1x2 as a
#Lx1x2#R, where #L represents the left edge of the onset and #R represents the right edge
of the onset. Every two-segment onset can be thought of as a linearly ordered joint event
comprised of the left edge, the first segment, the second segment, and the right edge. We
can use the chain rule to represent this joint event as a product of conditional probabilities:

P (#Lx1x2#R) = P (#L)P (x1|#L)P (x2|#Lx1)P (#R|#Lx1x2) (6.40)

The left edge is obligatory, so that P (#L) = 1; and since we are restricting our attention to
two-segment onsets, the right edge is also obligatory when it occurs, so that P (#R|#Lx1x2) =
1. We can thus rewrite Equation 6.40 as

P (#Lx1x2#R) = P (x1|#L)P (x2|#Lx1) (6.41)

We consider three possible methods for estimating this probability distribution from our
data:

1. Treat each complete onset #Lx1x2#R as a single outcome in a multinomial model,
with 121 possible outcomes; the problem then becomes estimating the parameters of
this single multinomial from our data. As described in Chapter XXX, the maximum
likelihood estimate for multinomials is also the relative frequency estimate, so the
probability assigned to an onset in this model is directly proportional to the onset’s
frequency of occurrence.

With this model it is also useful to note that for any segment x, if the event y immedi-
ately preceding it is not the left edge #L, then y itself is preceded by #L. This means
that P (x2|#Lx1) = P (x2|x1). This allows us to rewrite Equation ??:

P (#Lx1x2#R) = P (x1|#L)P (x2|x1) (6.42)

Hence this model can also be thought of as a bigram model in which the probability
of an event is, given the immediately preceding event, conditionally independent on
everything earlier in the sequence. Note here that if we have N possible segments, we
must fit N + 1 multinomial distributions.
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2. We can introduce the strong independence assumption that the probability of a segment
is entirely independent of its context: P (xi|x1...i−1) = P (xi). This is a unigram model,
giving

P (#Lx1x2#R) = P (x1)P (x2) (6.43)

Here we need to fit only one multinomial distribution.

3. We can introduce the somewhat weaker independence assumption that the probability
of a segment depends on whether it is the first or second segment in the onset, but not
on what other segments occur in the onset.

P (#Lx1x2#R) = P (x1|#L)P (x2|#L ) (6.44)

where indicates the presence of any segment. We might call this a positional unigram
model to emphasize the position-dependence. This model requires that we fit two
multinomial distributions.

Columns 3–5 of Table 6.4 show estimated probabilities for attested onsets in these three
models. Major differences among the models are immediately apparent. Among unam-
biguously attested onsets, [st] is much more probable in the bigram model than in either
unigram model; [tr] and [sf] are much more probable in the unigram model than in the
other two models; and [sp] is much less probable in the positional unigram model (see also
Exercise 6.12).

A substantive claim about the nature of phonotactic knowledge put forth by researchers
including Hayes and Wilson (2007) as well as XXX is that probabilistic models which do
a good job accounting for the distribution of segment sequences in the lexicon should also
be able to accurately predict native-speaker judgments of the acceptability of “nonce” words
(sequences that are not actually words) such as blick and bnick as potential words of the
language. Challenges for this approach become apparent when one examines existing datasets
of native-speaker nonce-word judgments. For example, Scholes (1966) conducted a study of
English onsets in nonce-word positions and uncovered regularities which seem challenging
for the multinomial models we considered above. Among other results, Scholes found the
following differences between onsets in the frequency with which nonce words containing
them were judged acceptable:

(4) [br] > [vr] > [sr], [ml] > [sf] > [zl], [fs] > [zv]

The fact that the unattested onset [ml] leads to greater acceptability than the unambiguously
attested onset [sf] clearly indicates that English phonotactic knowledge involves some sorts of
generalization beyond the raw contents of the lexicon; hence the bigram model of Table 6.4 is
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Segment Freq Punigram Punipos Pbigram Segment Freq Punigram Punipos Pbigram

st 1784 0.0817 0.0498 0.1755 vl 15 0.0011 0.0006 0.0015
br 1500 0.1122 0.112 0.1476 vr 14 0.003 0.0016 0.0014
pr 1494 0.1405 0.1044 0.147 sf 12 0.0395 0.0003 0.0012
tr 1093 0.1555 0.0599 0.1075 sr 10 0.1553 0.154 0.001
fr 819 0.0751 0.0745 0.0806 zl 9 0.0003 0.0003 0.0009
sp 674 0.0738 0.0188 0.0663 zb 4 0.0003 0.0 0.0004
bl 593 0.0428 0.0427 0.0583 sht 4 0.0067 0.0041 0.0004
fl 572 0.0286 0.0284 0.0563 dv 3 0.0002 0.0001 0.0003
pl 458 0.0535 0.0398 0.0451 zv 2 0.0 0.0 0.0002
dr 441 0.0239 0.0239 0.0434 tv 2 0.0016 0.0003 0.0002
sl 379 0.0592 0.0587 0.0373 dz 2 0.0001 0.0 0.0002
shr 155 0.0128 0.0128 0.0152 tl 1 0.0593 0.0228 0.0001
shl 79 0.0049 0.0049 0.0078 shv 1 0.0001 0.0001 0.0001
ts 23 0.0817 0.0003 0.0023 sb 1 0.059 0.0001 0.0001
sv 19 0.0016 0.0008 0.0019 fs 1 0.0395 0.0003 0.0001

Table 6.4: The attested two-segment onsets of English, based on the segments [f], [v], [s], [z],
[sh], [p], [b], [t], [d], [l], and [r], sorted by onset frequency. Probabilities are relative frequency
estimates, rounded to 4 decimal places.

unacceptable. At the same time, however, [br] is clearly preferred to [sr], indicating that both
unigram models are too simplistic. One might consider a mixture model which interpolates
between bigram and unigram models. The difficulty with this approach, however, is that
no simple mixture is obvious that would achieve the preferences necessary. The preference
of [sr] over [sf] would seem to indicate that unigrams should receive considerable weighting;
but the preference of [vr] over [sr] would be undermined by heavy unigram weighting.

To motivate our next development, let us consider specifically the mystery of the relative
acceptability of [vr] and [sr] among onsets that are not unambiguously attested. A key piece
of information we have not yet considered is the phonological substructure of the segments in
question. There are many ways of representing phonological substructure, but one straight-
forward approach for consonants is a representation that decomposes each segment into three
phonological features: its place of articulation, manner of articulation, and voicing

[refs]. The value of each of these features for each consonant used in our current example can
be found in Table 6.5. The set of segments picked out by some conjunction of phonological
features or their exclusion is often called a natural class. For example, among the conso-
nants currently under consideration, the phonological feature [+labial] picks out the natural
class {[p],[b]}; the feature [-stop] picks out {[s],[z],[f],[v],[sh],[r],[l]}; the phonological feature
conjunction [+labiodental,-voiced] picks out the natural class {[f]}; and so forth.

6.10.1 Log-linear models

With multinomial models, it is not obvious how one might take advantage of the featu-
ral decomposition of segments in constructing a probability distribution over the discrete
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Place
Labial Labiodental Alveolar Alveopalatal Velar
[p],[b] [f],[v] [s],[z],[t],[d],[r],[l] [sh] [k],[g]

Manner
Stop Fricative Liquid
[p],[b],[t],[d],[k],[g] [s],[z],[f],[v],[sh] [r],[l]

Voicing
Voiced Unvoiced
[b],[d],[g],[v],[z],[r],[l] [p],[t],[k],[f],[s],[sh]

Table 6.5: Simple phonological decomposition of the consonants used in Table 6.4

set of possible phoneme sequences. We now turn to a modeling framework that allows
such decompositions to be taken into account in modeling such discrete random variables:
the framework of log-linear models. In this framework, which is intimately related to
the logistic-regression models covered previously (see Section XXX), the goal is once again
modeling conditional probability distributions of the form P (Y |X), where Y ranges over a
countable set of response classes {yi}. Unlike the cases covered previously in this chapter,
however, the log-linear framework is relatively agnostic to the representation of X itself.
What is crucial, however, is the presence of a finite set of feature functions fj(X, Y ),
each of which maps every possible paired instance of X and Y to a real number. Taken in
aggregate, the feature functions map each possible response class yi to a feature vector

〈f1(x, yi), f2(x, yi), . . . , fn(x, yi)〉. Finally, each feature function fj has a corresponding pa-
rameter λj. Given a collection of feature functions, corresponding parameter values, and a
value x for the conditioning random variable X, the conditional probability of each class yi
is defined to be:

P (Y = yi|X = x) =
1

Z
exp

[∑

j

λjfj(x, yi)

]
(6.45)

where Z is a normalizing term ensuring that the probability distribution is proper.
In order to translate our phonotactic learning problem into the log-linear framework,

we must identify what serves as the conditioning variable X, the response Y , and what
the feature functions fi are. Since we are putting a probability distribution over logically
possible English onsets, the response must be which onset found in a (possible) lexical item.
The feature functions should correspond to the phonological features identified earlier.10

Finally, since we are only trying to fit a single probability distribution over possible English
onsets that is not dependent on any other information, whatever we take the conditioning
variable X to be, our feature functions will not depend on it; so we can simplify our problem
somewhat so that it involves fitting the distribution P (Y ) using feature functions fj(Y ) with

10Note that the term feature is being used in two different here: on the one hand, as part of a decomposition
of individual phonological segments, on the other hand as a function that will apply to entire onsets and
which is associated with a parameter in the log-linear model. Although phonological features could be used
directly as features in the log-linear model, the space of possible log-linear model features is much richer
than this.
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parameters λj (also called feature weights), with the functional form of the probability
distribution as follows:

P (Y = yi) =
1

Z
exp

[∑

j

λjfj(yi)

]
(6.46)

Simple log-linear models of English onsets

What remains is for us to choose the feature functions for our phonotactic model. This
choice of feature functions determines what generalizations can be directly encoded in our
model. As a first, highly oversimplified model, we will construct exactly one feature function
for each natural class specifiable by a single phonological feature of manner or voicing. This
feature function will return the number of segments in that natural class contained in the
onset. That is,

fj(yi) =





2 if both segments in onset i belong to the j-th natural class;

1 if only one segment in onset i belongs to the j-th natural class;

0 if neither segment in onset i belongs to the j-th natural class.

(6.47)

There are four manner/voicing phonological features for our segment inventory; each can
be negated, giving eight natural classes.11 Each onset is thus mapped to an eight-dimensional
feature vector. In the onset [sr], for example we would have the following counts:

Natural class Matching segments in [sr] Natural class Matching segments in [sr]
[+stop] 0 [-stop] 2
[+fric] 1 [-fric] 1
[+liquid] 1 [-liquid] 1
[+voiced] 1 [-voiced] 1

so that the feature vector for [sr] in this model would be 〈0, 2, 1, 1, 1, 1, 1, 1〉.
What remains is for us to fit the parameter values λ1, . . . , λ8 corresponding to each of

these features. For a simple model like this, in which there are relatively few parameters
(eight) for many outcome classes (121) and many observations (10,164), maximum likelihood
estimation is generally quite reliable. We find the following maximum-likelihood estimates
four our eight feature weights:

[+stop] -0.0712 [-stop] 0.0928
[+fric] -0.5472 [-fric] 0.5012
[+liquid] 0.5837 [-liquid] -0.6679
[+voiced] -0.4713 [-voiced] 0.7404

11We omit the phonological feature of unvoicedness because, since voicing here is a binary distinction,
[+unvoiced] would be equivalent to [-voiced].
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Onset Freq PM1 PM2 PM3A PM3B Onset Freq PM1 PM2 PM3A PM3B

st 1784 0.0097 0.1122 0.1753 0.1587 vl 15 0.0035 0.0007 0.0013 0.0018
br 1500 0.0086 0.1487 0.1473 0.1415 vr 14 0.0035 0.0018 0.0014 0.0034
pr 1494 0.0287 0.1379 0.1468 0.1442 sf 12 0.004 0.0003 0.0009 0.001
tr 1093 0.0287 0.0791 0.1075 0.1033 sr 10 0.0119 0.0915 0.0014 0.0155
fr 819 0.0119 0.0443 0.0802 0.0726 zl 9 0.0035 0.0004 0.0009 0.0017
sp 674 0.0097 0.0423 0.066 0.056 zb 4 0.0009 0.0001 0.0001 0.0001
bl 593 0.0086 0.0567 0.0582 0.0541 sht 4 0.0097 0.0093 0.0003 0.0039
fl 572 0.0119 0.0169 0.0561 0.0454 dv 3 0.0009 0.0001 0.0001 0.0001
pl 458 0.0287 0.0526 0.045 0.046 zv 2 0.0004 0 0.0001 0
dr 441 0.0086 0.0317 0.0432 0.0391 tv 2 0.0029 0.0001 0.0001 0.0002
sl 379 0.0119 0.0349 0.0374 0.0359 dz 2 0.0009 0 0 0.0001
shr 155 0.0119 0.0076 0.0153 0.0143 tl 1 0.0287 0.0301 0.0006 0.0106
shl 79 0.0119 0.0029 0.0077 0.0067 shv 1 0.0012 0.0001 0 0
ts 23 0.0097 0.0005 0.0017 0.0002 sb 1 0.0029 0.0002 0.0002 0.0016
sv 19 0.0012 0.0011 0.0017 0.0002 fs 1 0.004 0.0003 0.0001 0.0005

Table 6.6: Probabilities estimated from four log-linear models for attested English onsets
consisting of pairs from the segment inventory [f], [v], [s], [z], [sh], [p], [b], [t], [d], [l].

Similar to the case in logistic regression, positive feature weights indicates preference for
onsets with large values for the feature in question, and negative feature weights indicate
dispreference for such onsets. The model has learned that stops are slightly dispreferred to
non-stops; fricatives and liquids are strongly preferred to non-fricatives and non-liquids; and
unvoiced consonants are strongly preferred to voiced consonants. A sharper view, however, of
the generalizations made by the model can be seen in Table 6.6, which shows the probabilities
placed by this model on attested onsets. Although there are some things that seem to be
correct about this model’s generalizations—for example, none of the unambiguously attested
onsets are given probability below 0.004—the model makes far too few distinctions, leading
to problems such as the assignment of high probability to [tl], and the assignment of identical
probabilities to [ts] and [st]. This failure should have been expected, however, given that our
feature functions failed to encode any positional information, or to distinguish at all between
certain segments, such as [t] and [p].

We address some of these concerns by moving on to a more complex model, which allows
the following generalizations as feature functions:

• Preferences for particular segments to occur in position 1;

• Preferences for particular segments to occur in position 2;

• Preferences for particular bigrams of natural classes specifiable by a single phonological
feature of either manner or voicing.

The first two types of features give the log-linear model the same generalizational power
as the positional unigram model we covered earlier. The third type of feature, however,
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goes beyond the positional unigram model, and allows the model to make use of abstract
phonological features in generalizing over possible lexical items. Formally speaking, we have
one feature function for each segment in position 1, one feature function for each segment
in position 2, and one feature function for each possible pairing of single-feature natural
classes. This gives us twenty-two possible single-segment feature functions and 8*8=64
possible bigram feature functions, for a total of 86. We will let each serve as an indicator

function mapping those onsets it correctly describes to the value 1, and all other onsets to
the value 0:

fj(yi) =

{
1 if the j-th feature describes yi;

0 otherwise.
(6.48)

As a concrete example of how these feature functions would be applied, let us again
consider the onset [sr]. It satisfies the following descriptions:

• [s] is in position 1 (we represent this feature as s., with . indicating that anything
can appear in position 2)

• [r] is in position 2 (we represent this feature as .r)

• [-liquid][+voice]

• All pairwise combinations of [-liquid],[-stop],[+fric],[-voice] in position 1 with [+liquid],[-
stop],[-fric],[+voice] in position (16 combinations in total)

Thus the feature vector for [sr] would have eighteen entries of 1 and 68 entries of 0. Using
the method of maximum likelihood to estimate values for the 86 parameters of the model, we
find that the features with strongest absolute preferences and dispreferences are as follows:

[-voice][-voice] 5.62962436676025390625
.v 3.64033722877502441406
[-liquid][-stop] 2.91994524002075195312
[-voice][-stop] 2.36018443107604980469
s. 1.81566941738128662109
[-liquid][+liquid] 1.72637474536895751953
.t 1.68454444408416748047
[-stop][-liquid] 1.56158518791198730469
. . .
.b -1.03666257858276367188
z. -1.07121777534484863281
[-liquid][-liquid] -1.20901763439178466797
[-stop][+fric] -1.24043428897857666016
.f -1.30032265186309814453
[-stop][-stop] -1.85031402111053466797
.d -1.97170710563659667969
.sh -3.09503102302551269531
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Brief inspection indicates that most of the model’s strongest preferences involve general-
ization on natural class cooccurences: preference for onsets to involve pairs of unvoiced
segments, dispreference for pairs matching in manner of articulation, and so forth. In ad-
dition, some strong segment-specific positional dispreferences are also found, such as the
preference for initial [s] and dispreference for initial [sh]. Caution is required, however, in
interpreting individual feature weights too simplistically—for example, it is clear from the
lexicon of English that [sh] is dispreferred even more strongly in the second position than in
the first position, yet second-position [sh] feature does not appear in the list of most strongly
dispreferred features. The reason for this is that several other features—including the four
with the largest negative weights—strongly penalize second-position [sh] already. As with
linear and logistic regression models, the proper interpretation of a feature weight is what
effect a change in the associated feature value would have, if all other feature values were
kept constant.

The other way of inspecting the generalizations made by the model is by looking at the
predictive distribution on the response variable itself, as seen in Table 6.6. This model has
a number of clear advantages over our simplest model: it is relatively successful at giving
unambiguously attested onsets higher probability than attested onsets, but at the same time
gives [sr] higher probability than many other onsets, including some that are unambiguously
attested. However, it also has some weaknesses: for example, the probability for [sf] has
dropped below many onsets that are not unambiguously attested, such as [vl].

Overparameterization and regularization

At some level, we might want to allow our model to have specific sensitivity to the frequency
of every possible onset, so that each instance of a given onset x1x2 contributes directly
and idiosyncratically to the probability of other words with that onset; but at the same
time, we clearly want our model to generalize to onsets that do not occur in the English
lexicon as well. Within the maximum-likelihood log-linear framework we have developed
thus far, these two requirements are in conflict with one another, for the following reason.
In order to allow the model sensitivity to the frequency of specific onsets, we would want to
introduce one feature function for each possible onsets, giving us 121 feature functions and
thus 121 parameters to estimate. However, this parameterization allows the encoding of any
probability distribution over the 121 possible response classes. As we saw in Chapter 4, the
maximum-likelihood estimate for a multinomial distribution is just the relative-frequency
estimate. Hence a maximum-likelihood log-linear model with onset-specific feature functions
would simply memorize the relative frequencies of the onsets. Since adding more natural
class-based features to the model can only increase its expressivity, no ML-estimated model
with these 121 features will generalize beyond relative frequencies.

It is possible, however, to learn both onset-specific knoweldge and natural-class-level gen-
eralizations simultaneously within the log-linear framework, however, by moving away from
maximum-likelihood point estimation and instead adopting a Bayesian framework. Recall
that in the Bayesian approach, the posterior probability of the model parameters λ is pro-
portional to the likelihood of the data under λ times the prior probability of λ, which in our
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case works out to:

P (λ|Y ) = P (Y |λ)P (λ) (6.49)

=

[∏

i

1

Z
exp

[∑

j

λjfj(yi)

]]
P (λ) (6.50)

with Z a normalizing factor dependent on λ. The next step is to choose a prior distribution
over the model parameters, P (λ). In principle, any prior could be used; in practice, a
popular choice is a multivariate Gaussian prior distribution (Section 3.5) with center µ and
covariance matrix Σ, so that the prior probability of an N -dimensional parameter vector λ
is

P (λ) =
1√

(2π|Σ|)N
exp

[
(λ− µ)TΣ−1(λ− µ)

2

]
(6.51)

This choice of prior is popular for three reasons: (i) it has an intuitive interpretation as
encoding a bias toward the parameter vector µ that is weak in the vicinity of µ but grows
rapidly stronger with increasing distance from µ; (ii) for log-linear models, the posterior dis-
tribution over λ remains convex with a Gaussian prior; and (iii) Gaussian priors have been
found to work well in allowing fine-grained learning while avoiding overfitting with log-linear
models. The simplest choice of prior is one in which with mean µ = 0 and a diagonal covari-

ance matrix whose nonzero entries are all the same value: Σ =



σ2 . . . 0
...

. . .
...

0 . . . σ2


. Multivariate

Gaussian distributions like this are often called spherical, because surfaces of equal prob-
ability are (hyper-)spheres. With a spherical Gaussian prior, the posterior distribution can
be written as follows:

P (λ|Y ) ∝ P (Y |λ)P (λ) (6.52)

=

[∏

i

1

Z
exp

[∑

j

λjfj(yi)

]]
exp

[∑

j

−λ2
j

2σ2

]
(6.53)

If we shift to log space we get

logP (λ|Y ) ∝

Log-likelihood︷ ︸︸ ︷
∑

i

[
log

1

Z
+
∑

j

λjfj(yi)

]
−

Negative log-prior probability︷ ︸︸ ︷[∑

j

λ2
j

2σ2

]
(6.54)
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Figure 6.15: A multivariate Gaussian prior (µ = 0, σ = 1) for a simple log-linear model with
three possible response classes and two indicator features functions: f1 associated with class
1 and f2 associated with class 2. First panel is model likelihood for class 1–3 frequencies of
7, 4, and 1 respectively; second panel is the prior distribution; third panel is the posterior
distribution.

Note that the log-posterior probability falls off quadratically with the sum of the feature
weights. For this reason, a Gaussian prior is sometimes called a quadratic prior.

The effect of a Gaussian prior of this form can be seen in Figure 6.15: the prior penalizes
deviations from its mode of 0 (a symmetric model in which all outcomes are equally likely),
so that the posterior mode falls in between the MLE and the prior mode.

Let us now turn back to our study of English onsets, ready to apply our Bayesian log-
linear model. We are now in a position to deploy a richer set of feature functions: on top of
the positional single-segment and paired natural-class features we included in the previous
model, we add paired-segment and positional single-natural-class features. This gives us
an inventory of 223 total feature functions; the feature-vector representation for the onset
[sr], for example, would now have the paired-segment feature sr, as well as the positional
single-natural-class features [-stop]., [+fric]., [-liquid]., [-voiced]., .[-stop], .[-fric], .[+liquid],
and .[+voiced].

As is always the case with Bayesian inference, we have a number of choices as to handle the
problems of parameter estimation and prediction. Unlike the case with multinomial models,
however, there are no readily available analytic techniques for dealing with Bayesian log-
linear models, and sampling techniques can be quite computationally intensive. A popular
approach is to use maximum a-posteriori (MAP) estimation to find the set of feature weights
with (near-)maximum posterior probability, and to approximate Bayesian prediction by using
these MAP parameter estimates. In our problem, using a symmetric Gaussian prior centered
around 0 with standard deviation σ = 1, the features with largest and smallest weights in
the MAP estimate are as follows:
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st 3.24827671051025390625
sp 2.78049993515014648438
fl 2.51510095596313476562
ts 2.09755825996398925781
s. 1.87449419498443603516
[-voice][-voice] 1.80559206008911132812
fr 1.80392193794250488281
.v 1.72066390514373779297
. . .
[-stop][+fric] -0.67749273777008056641
[+voice][-voice] -0.70867472887039184570
.d -1.00191879272460937500
shp -1.00633215904235839844
ss -1.12540340423583984375
fp -1.57261526584625244141
.sh -1.64139485359191894531
zr -1.65136361122131347656
ft -1.85411751270294189453
dl -2.24138593673706054688
tl -3.16438293457031250000
sr -4.12058639526367187500

Comparison with the previous model indicates important overall similarities, but it is clear
that the new features are also being used by the model, perhaps most notably in encoding id-
iosyncratic preferences for [st] and dispreferences for [sr] and [sh]. The predictive distribution
of this model, M3A, can be found in Table 6.6. As expected, there is more probability mass on
unambiguously attested onsets in this model than in either previous model, since this model
is able to directly encode idiosyncratic preferences for specific onsets. Additionally, much of
the apparent weakness of M2 has been partly remedied—for example, the probability of [sr]
has dropped below all the other unambiguously attested sequences except for [sf] while the
lower probability of [vr] has stayed about the same.

Strength of the prior and generalization in log-linear models

What is the effect of increasing the strength of the prior distribution, as encoded by decreas-
ing the standard deviation σ of the spherical multivariate Gaussian? There are two key effects
we’ll cover here consideration. The first effect is an overall tendency for the posterior to look
more like the prior, a straightforward and intuitive consequence of the fact that in Bayesian
inference, prior and likelihood stand on equal ground in determining posterior beliefs. There
is a second, more subtle effect that merits attention, however, and which becomes clear from
careful inspection of Equation 6.54. Consider the contribution of an individual feature weight
λj to the posterior probability of the complete parameter vector λ. The choice of λj con-
tributes directly to the log-likelihood once for every observation for which the corresponding
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feature is implicated, but contributes to the prior log-probability only once regardless of how
many observations in which the corresponding feature is implicated. This fact leads has an
important consequence: a stronger prior penalizes feature weights more heavily the sparser
the corresponding feature—that is, the less often that feature is unambiguously implicated
in the data.

We can illustrate this consequence by re-fitting our previous log-linear phonotactic model
using a much stronger prior: a spherical Gaussian distribution with standard deviation
σ = 0.01. The resulting probability distribution over attested onsets is shown in Table 6.6
as model M3B. Compared with M3A (which had σ = 1), there is an overall shift of probabil-
ity mass away from unambiguously attested onsets; this is the first effect described above.
However, the remaining onsets do not all undergo similar increases in probability: the onsets
[sr] and [tl], for example, undergo very large increases, whereas onsets such as [vl] and [zb]
stay about the same. The reason for this is as follows. The more general features—natural-
class and segment unigrams and natural-class bigrams—favor [sr] and [tl]: in our data, [s]
and [t] are common as the first segment of two-segment onsets, [r] and [l] are common as
the second segment of two-segment onsets, and [-voiced][+liquid] is a common natural-class
bigram. The burden of fitting the low empirical frequency of [sr] and [tl] falls on the most
specific features—segment bigrams—but large weights for specific features are disfavored
by the strong prior, so that the resulting predictive probabilities of these onsets rises. In
contrast, [vl] and [zb] are not favored by the more general features, so that their predictive
probability does not rise appreciably with this moderate increase in prior strength.

A word of caution

Finally, a word of caution is necessary in the practical use of MAP estimation techniques
with overparameterized log-linear models: even using Bayesian techniques so that the MAP
estimate is well-defined, the posterior distribution can be very flat in the vicinity of its
optimum, which can make it difficult to be sure how close the obtained solution may be to
the true optimum. In these cases, one would do well to impose stringent convergence criteria
on whatever optimization algorithm is used to search for the MAP estimate.

Log-linear distributions are maximum-entropy distributions

*mention the term maxent, and point out that log-linear models satisfy the maxent property*

6.10.2 Translating between logit models and log-linear models

Although we have demonstrated in Section 6.9 that log-linear models expressively subsume
logit models, translating between the two can be require some care. We go through a brief
example here.

***SAY MORE***

Gabe’s needs doing example.
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> dat <- read.table("../data/needs_doing_data/needs.txt",header=T)

> dat$Response <- ifelse(dat$Response=="ing",1,0)

> dat$Anim1 <- factor(ifelse(dat$Anim=="abst","abst","conc"))

> model.logit <- glm(Response ~ Anim1 + sqrt(Dep.Length), data=dat, family=binomial)

> # data processing to get data in format for log-linear/Poisson model

> dat.for.loglin <- with(dat,as.data.frame(as.table(tapply(Response, list(Anim1=Anim1,Dep.Length=De

> names(dat.for.loglin)[4] <- "x"

> dat.for.loglin$DL <- dat.for.loglin$Dep.Length

> dat.for.loglin$Dep.Length <- as.numeric(as.character(dat.for.loglin$DL))

> dat.for.loglin$Response <- as.numeric(as.character(dat.for.loglin$Response))

> dat.for.loglin$x <- sapply(dat.for.loglin$x, function(x) ifelse(is.na(x), 0, x))

> model.loglin <- glm(x ~ Anim1*DL + Response + Response:(Anim1 + sqrt(Dep.Length)),data=dat.fo

> summary(model.loglin)$coef[c(32,62,63),]

Estimate Std. Error z value Pr(>|z|)

Response -0.2950173 0.11070848 -2.664812 7.703144e-03

Anim1conc:Response 1.3333414 0.14315638 9.313880 1.232457e-20

Response:sqrt(Dep.Length) -0.6048434 0.06369311 -9.496215 2.176582e-21

> summary(model.logit)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.2950173 0.11070848 -2.664812 7.703141e-03

Anim1conc 1.3333414 0.14315636 9.313881 1.232446e-20

sqrt(Dep.Length) -0.6048434 0.06369308 -9.496218 2.176519e-21

What we see here is that the “effect of the response variable category” in the log-linear
model corresponds to the intercept in the logit model; and the interactions of response with
animacy and dependency length in the log-linear model correspond to the animacy and
dependency length effects in the logit model. Of course, the logit model is far more efficient
to fit; it involved only three parameters, whereas the log-linear model required sixty-three.

***WHAT ABOUT MODELS WHERE WE HAVE NO BASELINE CLASS BUT ALSO
DON’T NEED ALL THOSE EXTRA PARAMETERS TO MODEL THE COUNTS?***

...

6.11 Guide to different kinds of log-linear models

Because we have covered several types of log-linear models in this chapter, it is useful to
take a moment to carefully consider the relationship among them. A diagram making these
relationships explicit is given in Figure 6.16. This section briefly describes these relation-
ships. For brevity, we have used dot-product notation instead of summation notation: model
parameters and feature-function outcomes are both denoted with vectors λ and f(x, yi), so
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Two-class logistic

P (yi = 1|x) = eλi·f i(x)

1 + eλi·f i(x)

Poisson regression

P (ci = n) ∝ enλ·f(yi)/n!

Asymmetric multi-class logit
model with baseline class y0

P (yi|x) ∝
{
eλi·f(x) yi 6= y0

1 yi = y0

Unconditional log-linear

P (yi) ∝ eλ·f(yi)

Symmetric multi-class logit

P (yi|x) ∝ eλi·f(x)

General conditional log-linear

P (yi|x) ∝ eλ·f(x,yi)

f ignores
conditioning
variable x

Predict only
event pro-
portions, not
total counts

f ignores response
class yi; different
parameters for each
response class

Choose a baseline
class y0 for which
all parameters λ0

are effectively zero

Only two response
classes, “failure”
and “success”

Figure 6.16: A guide to converting between different types of log-linear models

that the weighted sums
∑

j λjfj(x, yi) we have seen previously can be succinctly expressed
as dot products λ · f(x, yi).

In the bottom-right corner of Figure 6.16 is the general conditional log-linear model we
covered in Section XXX. In this model, there is a collection of feature functions fj each
of which maps an input x paired with a response class yi to a real number. Each feature
function fj has an associated parameter weight λj. In the general conditional log-linear
model, no further constraints are placed on the nature of these feature functions.

It is a common modeling decision, however, to assume that there should effectively be a
single set of feature functions shared identically by all possible response classes. As an exam-
ple, consider the problem of relativizer choice for non-subject extracted relative clauses with
animate head nouns, such as in the actress you mentioned. In modeling this problem with
conditional distributions P (Relativizer|Context), one might consider three possible response
classes: that, who(m), and relativizer omission. To examine the effect of frequency of the
head noun (here, actress), we might want to come up with a single numerical encoding (say,
log of Brown-corpus frequency) which is associated with a different feature function for each
response class. Thus we would have three feature functions f1,2,3, each of which is defined as
follows:
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fj(x, yi) =

{
Log head-noun frequency j = i

0 otherwise

An equivalent approach, however, would be to say that there is only one feature function
f1 which always returns log head-noun frequency, but has a different parameter λ1i for
each response class. Taking this approach moves us to the lower-left corner of Figure 6.16:
symmetric multi-class logistic regression. This category of model is more restrictive than
the general conditional log-linear model: the latter can express probability distributions
unavailable to the former, by using feature functions that are active for more than one
response class, or by using feature functions active for one response class which have no
matching feature function for another response class.

Some readers may have noticed that the symmetric multi-class logit model has more
parameters than it needs. Let us identify one of the N response classes y0 as the baseline

class. Then for an input x, we can the probability of any outcome yi is as follows:

P (yi|x) =
eλif(x)

eλ0f(x) + eλ1f(x) + · · ·+ eλNf(x)
(6.55)

Let us now divide both the top and bottom of this fraction by eλ0f(x):

P (yi|x) =
eλif(x) 1

eλ0f(x)

[eλ0f(x) + eλ1f(x) + · · ·+ eλNf(x)] 1
eλ0f(x)

(6.56)

=
e[λi−λ0]f(x)

e[λ0−λ0]f(x) + e[λ1−λ0]f(x) + · · ·+ e[λN−λ0]f(x)
(6.57)

But λi − λ0 = 0, so e[λ0−λ0]f(x) = 1. If we now define λ′
i ≡ λi − λ0, we have:

P (yi|x) =
eλ

′

if(x)

1 + eλ
′

1f(x) + · · ·+ eλ
′

Nf(x)
(6.58)

This is a new expression of the same model, but with fewer parameters. Expressing things in
this way leads us to the middle-left model in Figure 6.16. This is an asymmetric multiclass
logit model in that we had to distinguish one class as the“baseline”, but it is just as expressive
as the symmetric multiclass logit model: any probability distribution that can be represented
with one can be represented with the other. Therefore, any predictive inferences made
using maximum-likelihood estimation techniques will be the same for the two approaches.
Other techniques—such as Bayesian MAP parameter estimation or Bayesian prediction while
“integrating out”—may lead to different results, however, due to the sensitivity of the prior
to the structure of model parameterization.

Cases of this model where there are only two possible outcome classes are traditional
two-class logit models (top left corner of Figure 6.16), which we covered in detail in Section
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XXX. This is the type of log-linear model that the majority of readers are likely to have
encountered first.

Returning to the general conditional log-linear case in the bottom-right corner of Fig-
ure 6.16, another option is to omit any sensitivity of feature functions to the input x. This
is equivalent to throwing out the conditioning-variable part of the model altogether, and is
sensible in cases such as our modeling of phonotactic knowledge (Section XXX), where sim-
ply wanted to infer a single probability distribution over English two-segment onsets. This
decision takes us to the middle-right cell in Figure 6.16, unconditional log-linear models.

Finally, the unconditional log-linear model that we have here is closely related to an-
other type of generalized linear model: Poisson regression. The key difference between
unconditional log-linear models as we have described them here and Poisson regression is
as follows: whereas our models have placed multinomial distributions over a set of possi-
ble response classes, the goal of Poisson regression is to put a probability distribution over
counts of observed events in each possible response class. The two models are intimately
related: if we take a fitted Poisson-regression model and use it to compute the joint proba-
bility distribution over counts in response class subject to the constraint that the total count
of all response classes is 1, we get the same probability distribution that would be obtained
using an unconditional log-linear model with the same parameters (Exercise 6.18). Although
Poisson regression is popular in statistical modeling in general, we have not covered it here;
it does turn up in some work on language modeling the frequencies of event counts in large
corpora (e.g., Baayen, 2001).

6.12 Feed-forward neural networks

XXX

6.13 Further reading

There are many places to go for reading more about generalized linear models and logistic
regression in particular. The classic comprehensive reference on generalized linear models
is McCullagh and Nelder (1989). For GLMs on categorical data, Agresti (2002) and the
more introductory Agresti (2007) are highly recommended. For more information specific to
the use of GLMs and logistic regression in R, Venables and Ripley (2002, Section 7), Harrell
(2001, Chapters 10–12), and Maindonald and Braun (2007, Section 8.2) are all good places
to look.

Scheffé (1959) and Bock (1975) are comprehensive references for traditional ANOVA
(including repeated-measures).
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6.14 Notes and references

There are many good implementations of log-linear/maximum-entropy models publicly avail-
able; one that is simple to use from the command line, flexible, and fast is MegaM (Daumé and Marcu,
2006).

• Mention L1 prior in addition to L2 prior.

6.15 Exercises

Exercise 6.1: Linear regression

1. The elp dataset contains naming-time and lexical-decision time data by college-age
native speakers for 2197 English words from a datset collected by Balota and Spieler
(1998), along with a number of properties of each word. (This dataset is a slightly
cleaned-up version of the english dataset provided by the languageR package; Baayen,
2008.) Use linear regression to assess the relationship between reaction time neigh-

borhood density (defined as the number of words of English differing from the target
word by only a single-letter edit). Is higher neighborhood density associated with faster
or slower reaction times? Introduce written word (log-)frequency as a control variable.
Does the direction of the neighborhood-density effect change? Is it a reliable effect
(that is, what is its level of statistical significance)? Finally, is there an interaction
between neighborhood density and word frequency in their effects on reaction time?

Carry out this analysis for both word-naming and lexical-decision recognition times.
In both cases, write a careful interpretation of your findings, describing not only what
you found but what it might imply regarding how word recognition works. Construct
visualizations of the main effects, and also of any interactions you find. If you find any
qualitative differences in the way that the two predictors (and their interaction) affect
reaction times, describe them carefully, and speculate why these differences might exist.

2. The dataset nonwordsLexdec presents average reaction times for 39 non-word letter
sequences of English in a primed lexical decision experiment by Bicknell et al. (2010).
The prime preceding the non-word always was a word, so trials were of the form dish–
kess, otter–peme, and so forth. The dataset also contains neighborhood densities for
each of the non-words, and word log-frequencies for the primes. Use linear regression
to assess the relationship between neighborhood density and lexical-decision reaction
time, controlling for prime log-frequency. Is the relationship between neighborhood
density and reaction time the same as for the english dataset? Is the relationship
reliable? Why do you see the results you see?

Exercise 6.2: Linear regression
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The durationsGe dataset has as dependent variable the length of the Dutch prefix ge- in
seconds. Use linear regression to investigate which of the following predictors have significant
effects on prefix length:

• Word frequency

• Speaker sex

• Speech rate

Make sure to account for the possibility of interactions between the predictors. In addition,
for word frequency and speech rate, use data visualization and loess() to get an intuition
for whether to transform the predictors before putting them in the regression. (Hint: to get
rid of rows in a data frame with NA’s in them, the function is.na() is useful.)

Exercise 6.3: Analysis of variance
We talked about the idea of using a log-transformation on response variables such as

reaction times to make them look more normal and hence be more faithful to the assumptions
of linear models. Now suppose you are conducting a two-way ANOVA and are interested
in the possibility of an interaction between the two factors. Your data are reaction times
and look more normal when log-transformed. What are the potential consequences of log-
transforming your response variable for investigating whether there is an interaction between
your two predictors of interest? Hint: try constructing a set of four condition means for a
two-by-two that reflect an additive pattern, and then look at the pattern when you take the
log of each cell.

Exercise 6.4: Linear regression
Compare the residualization and multiple linear regression approaches. Imagine an un-

derlying model of reading time of words in sentences in which the negative logs of raw word
frequency (Flog) and contextual predictability (Plog) both play a role in determining the av-
erage reading time (RT , measured in milliseconds) of a given word. Take as the model of
average reading time

RT = 300− 50Flog − 10Plog + ǫ

ǫ ∼ N (0, 40)

and suppose that Flog and Plog are generated from a multivariate normal distribution centered
at (−4,−4) with variance-covariance matrix ( 0.7 0.5

0.5 1.2 ). In this case where predictability and
frequency are positively correlated, is your intuition that residualization or multiple linear
regression will have greater statistical power in detecting the effect of predictability? (That
is, on average which approach will yield a higher proportion of successful detections of a
significance effect of predictability?) Test your intuitions by comparing residualization versus
multiple linear regression approaches for detecting the effect of Plog. Generate 1000 sample
datasets, each of size 200. Which approach has more statistical power in detecting the effect
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of predictability? Hint: You can automatically extract a p-value from the t-statistic for a
regression model parameter by looking at the fourth component of the summary() of an lm

object (the result of summary() is a list), which is an array. For example:

> lexdec.lm <- lm(RT ~ Frequency, lexdec)

> summary(lexdec.lm)[[4]]

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.58877844 0.022295932 295.514824 0.000000e+00

Frequency -0.04287181 0.004532505 -9.458744 1.026564e-20

> summary(lexdec.lm)[[4]][2,4]

[1] 1.026564e-20

Exercise 6.5: Decomposition of variance
Prove Equation 6.7.

Exercise 6.6: F tests and t statistics
With a randomly-selected 200-sample subset of the Spieler and Balota (1997) dataset,

replicate the model comparisons reported in Section 6.5.2 and XXX

Exercise 6.7: Repeated measures and stratification of error
In English, the best-studied phonetic property distinguishing unvoiced stops ([p],[t],[k])

from voiced stops ([b],[d],[g]) is voice onset time (VOT): the time (typically measured
in milliseconds) between (a) the acoustic burst corresponding to release of the stoppage of
airflow in the vocal tract and (b) the onset of vibration of the vocal folds in the following
sound (Liberman et al., 1958; Lisker and Abramson, 1967). Among other manipulations and
measurements, Cho and Keating (2009) measured VOT for the first [t] in the invented name
“Tebabet” (intended pronunciation [tEb@bEt]) in utterance-initial versus utterance-medial
position, when the name was stressed:

(5) a. Tebabet fed them [Utterance-initial]
b. One deaf Tebabet [Utterance-medial]

Multiple native English speakers participated in this study, and Cho and Keating recorded
several utterances of each sentence for each speaker. Hence this experiment involves a
repeated-measures design. If we assume that different speakers may have individual id-
iosyncracies for the utterance-initial versus utterance-medial contrast, then we get the linear
model

Y = α + βX + ai + biX + ǫ

where X is the contrast between utterance-initial and utterance-medial position; ai and bi
are the idiosyncracies of speaker i, distributed multivariate-normal around 0 with covariance
matrix Σ; and ǫ is utterance-specific noise, also normally distributed around 0 with variance
σ2.
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1. Demonstrate that applying a traditional (not repeated-measures) ANOVA according to
Figure 6.9 for a repeated-measures study, in which we test a null-hypothesis modelM0 :
β = 0 against an alternative-hypothesis model MA with unconstrained β by comparing
the variance explained by MA over M0 with the residual variance unexplained by MA,
will in general lead to anti-conservative inference. That is: assume β = 0; choose
values of α, Σ, and σ2, the number of speakers m > 1 and utterances per speaker
n > 1; randomly generate N datasets using this model; analyze each dataset using a
non-repeated-measures procedure; and report the proportion of models in which the
null hypothesis would be rejected by the criterion p < 0.05.

2. Now demonstrate that the stratification-of-error procedure introduced in Section 6.6.5
avoids anti-conservative inference, through repeated generation of simulated data as in
the first part of this problem.

Exercise 6.8: Outlier removal

Does outlier removal of the type introduced in Section 6.6.6 lead to anti-conservative
inferences regarding differences between experimental conditions? Use simulations and/or
mathematical analysis to support your claim. What if the criteria for outlier removal are
determined separately for each experimental condition, instead of uniformly across conditions
as done in Section 6.6.6?

Exercise 6.9: Analysis of variance.

Perform by-subjects and by-items repeated-measures ANOVA analyses of the second
spillover region (RC_VERB+2) the Rohde et al. (2011) self-paced reading dataset. Try the
results both with and without applying outlier removal; a typical outlier-removal criterion
would be to discard observations more than either three or four standard deviations above
the mean, with “mean” and “standard deviation” determined using only observations from
the specific region being analyzed. How, if at all, does outlier removal change the results?
Why do you think this is the case?

Exercise 6.10: The t-test versus Bayesian model comparison

Consider data that is generated from two normal distributions, with means µ1 = 1 and
µ2 = 2.5, and with common noise σǫ = 5. Let’s look at the power of the frequentist t-test
versus a Bayesian model comparison in choosing between hypotheses H0 in which the two
distributions have the same mean, versus H1 in which the two distributions have different
means. Assume that our observations Y consist of 250 points from each distribution. For
the Bayesian model comparison, use the specifications

µ1 ∼ N (0, σµ)

µ2 − µ1 ∼ N (0, σµ)

σǫ ∼ U(1, 100)
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and the prior distribution P (H0) = P (H1) = 1/2. Using JAGS or similar sampling-based
Bayesian inference software, plot the proportion of trials in which the posterior proability of
H0 is less then 0.05: P (H0|Y ) < 0.05, as a function of σµ. Explain the pattern you see in
intuitive terms.

Exercise 6.11: Logistic regression

In analyzing the dative dataset [Section 6.7] we found in a logit model with linear
predictor

RealizationOfRecipient ~ PronomOfRec + PronomOfTheme

that pronominality of recipient and theme had similar-sized but opposite effects (in logit
space) on the probability of use of the prepositional-object construction. We tentatively
interpreted this result as consistent with the idea that there is a general “pronouns like to
be shifted left” constraint that operates with equal strength on recipients and themes.

1. The model above (call itM1) has three free parameters. Define a new predictor variable
that (a) is a function of the two variables PronomOfRec and PronomOfTheme; and (b)
allows us to simplify the model above into a new model with only two free parameters.

2. Fit the model (call it M2) to the dative dataset. How do the resulting parameter
estimates compare to those of M1?

3. Your new model M2 should be nested inside M1 (that is, it should be a special case
of M1). Explain this nesting—specifically, explain what special conditions imposed on
M1 result in equivalence to M2. This nesting makes it possible to conduct a likelihood-
ratio test between M1 and M2. Do this and report the p-value for the test. Does M2

oversimplify the data compared with M1?

Exercise 6.12

Use your knowledge of the English lexicon to explain why, in Table 6.4, [ts] and [sr] are
so much more probable in the unigram model than in the other models, [st] is so much more
probable in the bigram model than in the other models, and [tr] is so much less probable in
the positional unigram model than in the other models.

Exercise 6.13

In Section ??, the log-linear model of English onsets didn’t include any conditioning
information X. What conditioning information X might you include in a richer model of
English onset phonotactics?

Exercise 6.14

Of the phonotactic models introduced in Section 6.10, which is the best predictive model
with respect to the distribution of English onsets (as opposed to prediction of native speaker
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non-word acceptability judgments)? Assess the cross-validated log-likelihood achieved by
each model using ten-fold cross-validation.

Exercise 6.15

Consider the following frequency counts for the part of speech of the first word in each
sentence of the parsed Brown corpus:

(Pro)noun 9192
Verb 904
Coordinator 1199
Number 237
(Pre-)Determiner 3427
Adverb 1846
Preposition or Complementizer 2418
wh-word 658
Adjective 433
Using a log-linear model with exactly one indicator feature function for each part of

speech, demonstrate for yourself that the maximum-likelihood predictive distribution is sim-
ply the relative frequency estimate. Then introduce a Gaussian prior to your model. Plot the
KL divergence from the MAP-estimated predictive distribution to the maximum-likelihood
distribution as a function of the standard deviation of the prior.

Exercise 6.16

How would you obtain confidence regions for parameter estimates in a Bayesian log-
linear model? After reading Appendix ??, define and implement a Metropolis algorithm
for sampling from the posterior distribution of a log-linear model with a Gaussian prior on
the parameter estimates. Use this algorithm to generate confidence intervals for the feature
weights in the models of Section 6.10.1. Which feature weights does the model have the
most certainty about, and how should these features be interpreted? [HINT: you will save a
lot of time if you use standard gradient-descent software to find the MAP-estimated feature
weights and use these weights to initialize your sampling algorithm.]

Exercise 6.17

The file word_suffixes contains frequency counts from CELEX (Baayen et al., 1995)
for all suffixes of English word lemmas constructible from 17 English phonemes which are of
length 2 or less.

• Define a small set of feature functions (no more than in the neighborhood of 20) on the
basis of generalizations you see in the data and write a script to automatically extract
the outputs of these feature functions for each form in the frequency database.

• Fit a maximum-likelihood log-linear model from this output. Inspect the feature
weights and the predictive distribution. What conclusions can you draw from the
results?
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• Introduce a Gaussian prior and fit a new log-linear model using MAP estimation. How
do the feature weighs and the predictive distribution change?

• Based on any limitations you may see from the results of your first model, add new
feature functions, refit the model, and discuss the changes you see between the simpler
and more complex models.

Exercise 6.18
Use Bayes’ Rule to show that when a fitted Poisson distribution with parameters λ is

used to compute the probability distribution over counts in each response class subject to the
constraint that the total count over all response classes is equal to 1, the resulting distribution
is equivalent to that obtained by an unconditional log-linear model with the same parameters
(see Figure 6.16).

Exercise 6.19: Symmetric versus baseline-class log-linear models and priors on
the weights

Consider a simple model of the dative alternation, where the response variable Y is
whether the recipient precedes or follows the theme, and the only predictor variable X is
whether the recipient is pronominal. If we treat this as a symmetric, two-class problem we
define the classes y1 as recipient-first and y2 as theme-first;

> ### part 3: no prior penalty on intercept, but penalty on all else

> library(rms)

> dat <- data.frame(x=rep(c("pro","pro","notPro","notPro"),c(8,2,2,8)),y=rep(c("NP","PP

> m <- lrm(y~x,dat,penalty=1)

> predict(m,dat,type="fitted")

1 2 3 4 5 6 7 8

0.2896893 0.2896893 0.2896893 0.2896893 0.2896893 0.2896893 0.2896893 0.2896893

9 10 11 12 13 14 15 16

0.2896893 0.2896893 0.7103107 0.7103107 0.7103107 0.7103107 0.7103107 0.7103107

17 18 19 20

0.7103107 0.7103107 0.7103107 0.7103107

Exercise 6.20: Interactions in a linear model
In the English Lexicon Project, data were collected from both younger participants (22.6±

5 y.o.) and older participants (73.4± 3 y.o.). For the word naming data you have availalbe
from this project, analyze the effect of subject age (as a categorical variable: young vs. old)
and its possible interaction with age of acquisition. Do younger participants name words
faster or slower overall than older participants do? What is the effect of a word’s age of
acquisition on its naming latency? Is this effect any different for younger participants than
for older participants? If so, how? If you see a significant difference, speculate on why the
difference you see might exist.
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