
Chapter 5

Confidence Intervals and Hypothesis
Testing

Although Chapter 4 introduced the theoretical framework for estimating the parameters of a
model, it was very much situated in the context of prediction: the focus of statistical inference
is on inferring the kinds of additional data that are likely to be generated by a model, on the
basis of an existing set of observations. In much of scientific inquiry, however, we wish to
use data to make inferences about models themselves: what plausible range can be inferred
for a parameter or set of parameters within a model, or which of multiple models a given
set of data most strongly supports. These are the problems of confidence intervals and
hypothesis testing respectively. This chapter covers the fundamentals of Bayesian and
frequentist approaches to these problems.

5.1 Bayesian confidence intervals

Recall from Section 4.4 that Bayesian parameter estimation simply involves placing a pos-
terior probability distribution over the parameters θ of a model, on the basis of Bayes rule:

P (θ|y) = P (y|θ)P (θ)

P (y)
(5.1)

In Bayesian inference, a confidence interval over a single model parameter φ is simply
a contiguous interval [φ1, φ2] that contains a specified proportion of the posterior probability
mass over φ. The proportion of probability mass contained in the confidence interval can
be chosen depending on whether one wants a narrower or wider interval. The tightness
of the interval (in frequentist as well as Bayesian statistics) is denoted by a value α that
expresses the amount of probability mass excluded from the interval—so that (1 − α)% of
the probability mass is within the interval. The interpretation of a (1 − α)% confidence
interval [φ1, φ2] is that the probability that the model parameter φ resides in [φ1, φ2]
is (1− α).
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Figure 5.1: HPD and symmetric Bayesian confidence intervals for a posterior distributed as
Beta(5, 29)

Of course, there is always more than one way of choosing the bounds of the interval [φ1, φ2]
to enclose (1− α)% of the posterior mass. There are two main conventions for determining
how to choose interval boundaries:

• Choose the shortest possible interval enclosing (1−α)% of the posterior mass. This is
called a highest posterior density (HPD) confidence interval.

• Choose interval boundaries such that an equal amount of probability mass is contained
on either side of the interval. That is, choose [φ1, φ2] such that P (φ < φ1|y) = P (φ >
φ2|y) = α

2
. This is called a symmetric confidence interval.

Let us return, for example, to our American English speaker of Chapter 4, assuming
that she models speaker choice in passivization as a binomial random variable (with passive
voice being “success”) with parameter π over which she has a Beta prior distribution with
parameters (3, 24), and observes five active and two passive clauses. The posterior over π
has distribution Beta(5, 29). Figure 5.1 shows HPD and symmetric 95% confidence intervals
over π, shaded in gray, for this posterior distribution. The posterior is quite asymmetric,
and for the HPD interval there is more probability mass to the right of the interval than
there is to the left. The intervals themselves are, of course, qualitatively quite similar.

5.2 Bayesian hypothesis testing

In all types of statistics, hypothesis testing involves entertaining multiple candidate gen-
erative models of how observed data has been generated. The hypothesis test involves an
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assessment of which model is most strongly warranted by the data. Bayesian hypothesis
testing in particular works just like any other type of Bayesian inference. Suppose that we
have a collection of hypotheses H1, . . . , Hn. Informally, a hypothesis can range over diverse
ideas such as “this coin is fair”, “the animacy of the agent of a clause affects the tendency of
speakers to use the passive voice”, “females have higher average F1 vowel formants than males
regardless of the specific vowel”, or “a word’s frequency has no effect on naming latency”.
Formally, each hypothesis should specify a model that determines a probability distribution
over possible observations y. Furthermore, we need a prior probability over the collection of
hypotheses, P (Hi). Once we have observed some data y, we use Bayes’ rule (Section 2.4.1)
to calculate the posterior probability distribution over hypotheses:

P (Hi|y) =
P (y|Hi)P (Hi)

P (y)
(5.2)

where P (y) marginalizes (Section 3.2) over the hypotheses:

P (y) =
n∑

j=1

P (y|Hj)P (Hj) (5.3)

As an example, let us return once more to the case of English binomials, such as salt
and pepper. A number of constraints have been hypothesized to play a role in determining
binomial ordering preferences; as an example, one hypothesized constraint is that ordered
binomials of the form A and B should be disfavored when B has ultimate-syllable stress
(*Bstr; Bolinger, 1962; Müller, 1997). For example, pepper and salt violates this constraint
against ultimate-syllable stress, but its alternate salt and pepper does not. We can construct a
simple probabilistic model of the role of *Bstr in binomial ordering preferences by assuming
that every time an English binomial is produced that could potentially violate *Bstr, the
binomial is produced in the satisfying order B and A ordering with probability π, otherwise
it is produced in the violating ordering A and B.1 If we observe n such English binomials,
then the distribution over the number of satisfactions of *Bstr observed is (appropriately
enough) the binomial distribution with parameters π and n.

Let us now entertain two hypotheses about the possible role of *Bstr in determining
binomial ordering preferences. In the first hypothesis, H1, *Bstr plays no role, hence
orderings A and B and B and A are equally probable; we call this the “no-preference”
hypothesis. Therefore in H1 the binomial parameter π is 0.5. In Bayesian inference, we need
to assign probability distributions to choices for model parameters, so we state H1 as:

H1 : P (π|H1) =

{
1 π = 0.5
0 π 6= 0.5

1For now we ignore the role of multiple overlapping constraints in jointly determining ordering preferences,
as well as the fact that specific binomials may have idiosyncratic ordering preferences above and beyond their
constituent constraints. The tools to deal with these factors are introduced in Chapters 6 and 8 respectively.
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The probability above is a prior probability on the binomial parameter π.

In our second hypothesis H2, *Bstr does affect binomial ordering preferences (the “pref-
erence” hypothesis). For this hypothesis we must place a non-trivial probability distribution
on π. Keep in mind have arbitrarily associated the “success” outcome with satisfaction of
*Bstr. Suppose that we consider only two possibilities in H2: that the preference is either
2
3
for A and B or 2

3
for outcome B and A, and let these two preferences be equally likely in

H2. This gives us:

H2 : P (π|H2) =

{
0.5 π = 1

3

0.5 π = 2
3

(5.4)

In order to complete the Bayesian inference of Equation (5.2), we need prior probabilities
on the hypotheses themselves, P (H1) and P (H2). If we had strong beliefs one way or another
about the binomial’s ordering preference (e.g., from prior experience with other English
binomials, or with experience with a semantically equivalent binomial in other languages),
we might set one of these prior probabilities close to 1. For these purposes, we will use
P (H1) = P (H2) = 0.5.

Now suppose we collect a dataset y of six English binomials in which two orderings violate
*Bstr from a corpus:

Binomial Constraint status (S: *Bstr satisfied, V: *Bstr violated)
salt and pepper S

build and operate S

follow and understand V

harass and punish S

ungallant and untrue V

bold and entertaining S

Do these data favor H1 or H2?

We answer this question by completing Equation (5.2). We have:

P (H1) = 0.5

P (y|H1) =

(
6

4

)
π4(1− π)2 =

(
6

4

) (
1

2

)4 (
1

2

)2

= 0.23

Now to complete the calculation of P (y) in Equation (5.3), we need P (y|H2). To get
this, we need to marginalize over the possible values of π, just as we are marginalizing over
H to get the probability of the data. We have:
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P (y|H2) =
∑

i

P (y|πi)P (πi|H2)

= P

(
y|π =

1

3

)
P

(
π =

1

3
|H2

)
+ P

(
y|π =

2

3

)
P

(
π =

2

3
|H2

)

=

(
6

4

)(
1

3

)4 (
2

3

)2

× 0.5 +

(
6

4

)(
2

3

)4 (
1

3

)2

× 0.5

= 0.21

thus

P (y) =

P (y|H1)︷︸︸︷
0.23 ×

P (H1)︷︸︸︷
0.5 +

P (y|H2)︷︸︸︷
0.21 ×

P (H2)︷︸︸︷
0.5 (5.5)

= 0.22 (5.6)

And we have

P (H1|y) =
0.23× 0.5

0.22
(5.7)

= 0.53 (5.8)

Note that even though the maximum-likelihood estimate of π̂ from the data we observed is
exactly one of the two possible values of π under H2, our data in fact support the“preference”
hypothesis H1 – it went from prior probability P (H1) = 0.5 up to posterior probability
P (H1|y) = 0.53. See also Exercise 5.3.

5.2.1 More complex hypotheses

We might also want to consider more complex hypotheses than H2 above as the “preference”
hypothesis. For example, we might think all possible values of π in [0, 1] are equally probable
a priori :

H3 : P (π|H3) = 1 0 ≤ π ≤ 1

(In Hypothesis 3, the probability distribution over π is continuous, not discrete, so H3 is still
a proper probability distribution.) Let us discard H2 and now compare H1 against H3.

Let us compare H3 against H1 for the same data. To do so, we need to calculate the
likelihood P (y|H3), and to do this, we need to marginalize over π:

Since π can take on a continuous range of values under H3, this marginalization takes
the form of an integral:
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P (y|H3) =

∫

π

P (y|π)P (π|H3) dπ =

∫ 1

0

P (y|π)︷ ︸︸ ︷(
6

4

)
π4(1− π)2

P (π|H3)︷︸︸︷
1 dπ

We use the critical trick of recognizing this integral as a beta function (Section 4.4.2), which
gives us:

=

(
6

4

)
B(5, 3) = 0.14

If we plug this result back in, we find that

P (H1|y) =

P (y|H1)︷︸︸︷
0.23 ×

P (H1)︷︸︸︷
0.5

0.23︸︷︷︸
P (y|H1)

× 0.5︸︷︷︸
P (H1)

+ 0.14︸︷︷︸
P (y|H3)

× 0.5︸︷︷︸
P (H3)

= 0.62

So H3 fares even worse than H2 against the no-preference hypothesis H1. Correspondingly,
we would find that H2 is favored over H3.

5.2.2 Bayes factor

Sometimes we do not have strong feelings about the prior probabilities P (Hi). Nevertheless,
we can quantify how much evidence a given dataset provides for one hypothesis over another.
We can express the relative preference between H and H ′ in the face of data y in terms of
the prior odds of H versus H ′ combined with the likelihood ratio between the two
hypotheses. This combination gives us the posterior odds:

Posterior odds︷ ︸︸ ︷
P (H|y)
P (H ′|y) =

Likelihood ratio︷ ︸︸ ︷
P (y|H)

P (y|H ′)

Prior odds︷ ︸︸ ︷
P (H)

P (H ′)

The contribution of the data y to the posterior odds is simply the likelihood ratio:

P (y|H)

P (y|H ′)
(5.9)

which is also called the Bayes factor between H and H ′. A Bayes factor above 1 indicates
support for H over H ′; a Bayes factor below 1 indicates support for H ′ over H. For example,
the Bayes factors for H1 versus H2 and H1 versus H3 in the preceding examples
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P (y|H1)

P (y|H2)
=

0.23

0.21

P (y|H1)

P (y|H3)
=

0.23

0.14

= 1.14 = 1.64

indicating weak support for H1 in both cases.

5.2.3 Example: Learning contextual contingencies in sequences

One of the key tasks of a language learner is to determine which cues to attend to in learning
distributional facts of the language in their environment (Saffran et al., 1996a; Aslin et al.,
1998; Swingley, 2005; Goldwater et al., 2007). In many cases, this problem of cue relevance
can be framed in terms of hypothesis testing or model selection.

As a simplified example, consider a length-21 sequence of syllables:

da ta da ta ta da da da da da ta ta ta da ta ta ta da da da da

Let us entertain two hypotheses. The first hypothesis H1, is that the probability of an
da is independent of the context. The second hypothesis, H2, is that the probability of
an da is dependent on the preceding token. The learner’s problem is to choose between
these hypotheses—that is, to decide whether immediately preceding context is relevant in
estimating the probability distribution over what the next phoneme will be. How should
the above data influence the learner’s choice? (Before proceeding, you might want to take
a moment to examine the sequence carefully and answer this question on the basis of your
own intuition.)

We can make these hypotheses precise in terms of the parameters that each entails. H1

involves only one binomial parameter P (da), which we will denote as π. H2 involves three
binomial parameters:

1. P (da|∅) (the probability that the sequence will start with da), which we will denote as
π∅;

2. P (da|da) (the probability that an da will appear after an da), which we will denote as
πda;

3. P (da|ta) (the probability that an da will appear after an ta), which we will denote as
πta.

(For expository purposes we will assume that the probability distribution over the number of
syllables in the utterance is the same under both H1 and H2 and hence plays no role in the
Bayes factor.) Let us assume that H1 and H2 are equally likely; we will be concerned with
the Bayes factor between the two hypotheses. We will put a uniform prior distribution on
all model parameters—recall that this can be expressed as a beta density with parameters
α1 = α2 = 1 (Section 4.4.2).
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There are 21 observations, 12 of which are da and 9 of which are ta. The likelihood of
H1 is therefore simply

∫ 1

0

π12(1− π)9 dπ = B(13, 10)

= 1.55× 10−7

once again recognizing the integral as a beta function (see Section 4.4.2).
To calculate the likelihood of H2 it helps to lay out the 21 events as a table of conditioning

contexts and outcomes:

Outcome
Context da ta

∅ 1 0
da 7 4
ta 4 5

The likelihood of H2 is therefore

∫ 1

0

π1
∅ dπ∅

∫ 1

0

π7
da
(1− πda)

4 dπda

∫ 1

0

π4
ta
(1− πta)

5 dπta = B(2, 1)B(8, 5)B(5, 6)

= 1× 10−7

This dataset provides some support for the simpler hypothesis of statistical independence—
the Bayes factor is 1.55 in favor of H1.

5.2.4 Phoneme discrimination as hypothesis testing

In order to distinguish spoken words such as bat and pat out of context, a listener must
rely on acoustic cues to discriminate the sequence of phonemes that is being uttered. One
particularly well-studied case of phoneme discrimination is of voicing in stop consonants. A
variety of cues are available to identify voicing; here we focus on the well-studied cue of voice
onset time (VOT)—the duration between the sound made by the burst of air when the stop
is released and the onset of voicing in the subsequent segment. In English, VOT is shorter
for so-called “voiced” stops (e.g., /b/,/d/,/g/) and longer for so-called “voiceless” stops (e.g.,
/p/,/t/,/k/), particularly word-initially, and native speakers have been shown to be sensitive
to VOT in phonemic and lexical judgments (Liberman et al., 1957).

Within a probabilistic framework, phoneme categorization is well-suited to analysis as a
Bayesian hypothesis test. For purposes of illustration, we dramatically simplify the problem
by focusing on two-way discrimination between the voiced/voiceless stop pair /b/ and /p/.
In order to determine the phoneme-discrimination inferences of a Bayesian listener, we must
specify the acoustic representations that describe spoken realizations x of any phoneme,
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Figure 5.2: Likelihood functions for /b/–
/p/ phoneme categorizations, with µb =
0, µp = 50, σb = σp = 12. For the input
x = 27, the likelihoods favor /p/.
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Figure 5.3: Posterior probability curve
for Bayesian phoneme discrimination as
a function of VOT

the conditional distributions over acoustic representations, Pb(x) and Pp(x) for /b/ and
/p/ respectively (the likelihood functions), and the prior distribution over /b/ versus /p/.
We further simplify the problem by characterizing any acoustic representation x as a single
real-valued number representing the VOT, and the likelihood functions for /b/ and /p/ as
normal density functions (Section 2.10) with means µb, µp and standard deviations σb, σp

respectively.

Figure 5.2 illustrates the likelihood functions for the choices µb = 0, µp = 50, σb = σp =
12. Intuitively, the phoneme that is more likely to be realized with VOT in the vicinity of a
given input is a better choice for the input, and the greater the discrepancy in the likelihoods
the stronger the categorization preference. An input with non-negligible likelihood for each
phoneme is close to the “categorization boundary”, but may still have a preference. These
intuitions are formally realized in Bayes’ Rule:

P (/b/|x) = P (x|/b/)P (/b/)

P (x)
(5.10)

and since we are considering only two alternatives, the marginal likelihood is simply the
weighted sum of the likelihoods under the two phonemes: P (x) = P (x|/b/)P (/b/) +
P (x|/p/)P (/p/). If we plug in the normal probability density function we get

P (/b/|x) =
1√
2πσ2

b

exp
[
− (x−µb)

2

2σ2
b

]
P (/b/)

1√
2πσ2

b

exp
[
− (x−µb)2

2σ2
b

]
P (/b/) + 1√

2πσ2
p

exp
[
− (x−µp)2

2σ2
p

]
P (/p/)

(5.11)

In the special case where σb = σp = σ we can simplify this considerably by cancelling the
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Figure 5.5: Ideal posterior
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wide variances
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Figure 5.6: Response rates
observed by Clayards et al.
(2008)

constants and multiplying through by exp
[
(x−µb)

2

2σ2
b

]
:

P (/b/|x) = P (/b/)

P (/b/) + exp
[
(x−µb)2−(x−µp)2

2σ2

]
P (/p/)

(5.12)

Since e0 = 1, when (x − µb)
2 = (x − µp)

2 the input is “on the category boundary” and the
posterior probabilities of each phoneme are unchanged from the prior. When x is closer to
µb, (x − µb)

2 − (x − µp)
2 > 0 and /b/ is favored; and vice versa when x is closer to µp.

Figure 5.3 illustrates the phoneme categorization curve for the likelihood parameters chosen
for this example and the prior P (/b/) = P (/p/) = 0.5.

This account makes clear, testable predictions about the dependence on the parame-
ters of the VOT distribution for each sound category on the response profile. Clayards et al.
(2008), for example, conducted an experiment in which native English speakers were exposed
repeatedly to words with initial stops on a /b/–/p/ continuum such that either sound cate-
gory would form a word (beach–peach, beak–peak, bes–peas). The distribution of the /b/–/p/
continuum used in the experiment was bimodal, approximating two overlapping Gaussian
distributions (Section 2.10); high-variance distributions (156ms2) were used for some exper-
imental participants and low-variance distribution (64ms2) for others (Figure 5.4). If these
speakers were to learn the true underlying distributions to which they were exposed and
use them to draw ideal Bayesian inferences about which word they heard on a given trial,
then the posterior distribution as a function of VOT would be as in Figure 5.5: note that
low-variance Gaussians would induce a steeper response curve than high-variance Gaussians.
The actual response rates are given in Figure 5.6; although the discrepancy between the low-
and high-variance conditions is smaller than predicted by ideal inference, suggesting that
learning may have been incomplete, the results of Clayards et al. confirm human response
curves are indeed steeper when category variances are lower, as predicted by principles of
Bayesian inference.
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5.3 Frequentist confidence intervals

We now move on to frequentist confidence intervals and hypothesis testing, which have been
developed from a different philosophical standpoint. To a frequentist, it does not make sense
to say that “the true parameter θ lies between these points x and y with probability p∗.” The
parameter θ is a real property of the population from which the sample was obtained and is
either in between x and y, or it is not. Remember, to a frequentist, the notion of probability
as reasonable belief is not admitted! Under this perspective, the Bayesian definition of a
confidence interval—while intuitively appealing to many—is incoherent.

Instead, the frequentist uses more indirect means of quantifying their certainty about the
estimate of θ. The issue is phrased thus: imagine that I were to repeat the same experiment—
drawing a sample from my population—many times, and each time I repeated the experiment
I constructed an interval I on the basis of my sample according to a fixed procedure Proc.
Suppose it were the case that 1 − p percent of the intervals I thus constructed actually
contained θ. Then for any given sample S, the interval I constructed by Proc is a (1− p)%
confidence interval for θ.

If you think that this seems like convoluted logic, well, you are not alone. Frequentist
confidence intervals are one of the most widely misunderstood constructs in
statistics. The Bayesian view is more intuitive to most people. Under some circumstances,
there is a happy coincidence where Bayesian and frequentist confidence intervals look the
same and you are free to misinterpret the latter as the former. In general, however, they do
not necessarily look the same, and you need to be careful to interpret each correctly.

Here’s an example, where we will explain the standard error of the mean. Suppose
that we obtain a sample of n observations from a normal distribution N(µ, σ2). It turns out
that the following quantity follows the tn−1 distribution (Section B.5):

µ̂− µ√
S2/n

∼ tn−1 (5.13)

where

µ̂ =
1

n

∑

i

Xi [maximum-likelihood estimate of the mean]

S2 =
1

n− 1

∑

i

(Xi − µ̂)2 [unbiased estimate of σ2; Section 4.3.3]

Let us denote the quantile function for the tn−1 distribution as Qtn−1 . We want to choose
a symmetric interval [−a, a] containing (1 − α) of the probability mass of tn−1. Since the t
distribution is symmetric around 0, if we set a =

√
S2/n Qtn−1(1− α/2), we will have
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P (µ̂− µ < −a) =
α

2
(5.14)

P (µ̂− µ > a) =
α

2

Figure 5.7 illustrates this for α = 0.05 (a 95% confidence interval). Most of the time, the
“standardized” difference between µ̂ and µ is small and falls in the unshaded area. But 5%
of the time, this standardized difference will fall in the shaded area—that is, the confidence
interval won’t contain µ.

Note that the quantity S/
√
n is called the the standard error of the mean or

simply the standard error. Note that this is different from the standard deviation of the
sample, but related! (How?) When the number of observations n is large, the t distribution
looks approximately normal, and as a rule of thumb, the symmetric 95% tail region of the
normal distribution is about 2 standard errors away from the mean.

Another example: let’s look at the data from a classic study of the English vowel space
(Peterson and Barney, 1952). The distribution of the F1 formant for the vowel E is roughly
normal (see Figure 5.8). The 95% confidence interval can be calculated by looking at the
quantity S/

√
n Qt151(0.975) = 15.6. This is half the length of the confidence interval; the

confidence interval should be centered around the sample mean µ̂ = 590.7. Therefore our
95% confidence interval for the mean F1 is [575.1, 606.3].

5.4 Frequentist hypothesis testing

In most of science, including areas such as psycholinguistics and phonetics, statistical in-
ference is most often seen in the form of hypothesis testing within the Neyman-Pearson

paradigm. This paradigm involves formulating two hypotheses, the null hypothesis H0
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and a more general alternative hypothesisHA (sometimes denoted H1). We then design
a decision procedure which involves collecting some data y and computing a statistic T (y),
or just T for short. Before collecting the data y, T (y) is a random variable, though we do
not know its distribution because we do not know whether H0 is true. At this point we divide
the range of possible values of T into an acceptance region and a rejection region.
Once we collect the data, we accept the null hypothesis H0 if T falls into the acceptance
region, and reject H0 if T falls into the rejection region.

Now, T is a random variable that will have one distribution under H0, and another
distribution under HA. Let us denote the probability mass in the rejection region under H0

as α, and the mass in the same region under HA as 1− β. There are four logically possible
combinations of the truth value of H0 and our decision once we have collected y:

(1)

Our decision
Accept H0 Reject H0

H0 is. . .
True Correct decision (prob. 1− α) Type I error (prob. α)
False Type II error (prob. β) Correct decision (prob. 1− β)

The probabilities in each row of I sum to 1, since they represent the conditional probability
of our decision given the truth/falsity of H0.

As you can see in I, there are two sets of circumstances under which we have done the
right thing:

1. The null hypothesis is true, and we accept it (probability 1− α).

2. The null hypothesis is false, and we reject it (probability 1− β).

This leaves us with two sets of circumstances under which we have made an error:

1. The null hypothesis is true, but we reject it (probability α). This by convention is
called a Type I error.

2. The null hypothesis is false, but we accept it (probability β). This by convention is
called a Type II error.

For example, suppose that a psycholinguist uses a simple visual world paradigm to ex-
amine the time course of word recognition. She presents to participants a display on which
a desk is depicted on the left, and a duck is depicted on the right. Participants start with
their gaze on the center of the screen, and their eye movements are recorded as they hear
the word “duck”. The question at issue is whether participants’ eye gaze fall reliably more
often on the duck than on the desk in the window 200− 250 milliseconds after the onset of
“duck”, and the researcher devises a simple rule of thumb that if there are more than twice
as many fixations on the duck than on the chair within this window, the null hypothesis will
be rejected. Her experimental results involve 21% fixations on the duck and 9% fixations on
the chair, so she rejects the null hypothesis. However, she later finds out that her computer
was miscalibrated by 300 milliseconds and the participants had not even heard the onset of
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the word by the end of the relevant window. The researcher had committed a Type I error.
(In this type of scenario, a Type I error is often called a false positive, and a Type II
error is often called a false negative.)

The probability α of Type I error is referred to as the significance level of the hypoth-
esis test. In the Neyman-Pearson paradigm, T is always chosen such that its (asymptotic)
distribution can be computed. The probability 1 − β of not committing Type II error is
called the power of the hypothesis test. There is always a trade-off between significance
level and power, but the goal is to use decision procedures that have the highest possible
power for a given significance level. To calculate β and thus the power, however, we need to
know the true model, so determining the optimality of a decision procedure with respect to
power can be tricky.

Now we’ll move on to a concrete example of hypothesis testing in which we deploy some
probability theory.

5.4.1 Hypothesis testing: binomial ordering preference

One of the simplest cases of hypothesis testing—and one that is often useful in the study of
language—is the binomial test, which we illustrate here.

You decide to investigate the role of ultimate-syllable stress avoidance in English binomial
ordering preferences by collecting from the British National Corpus 45 tokens of binomials
in which *Bstr could be violated. As the test statistic T you simply choose the number
of successes r in these 45 tokens. Therefore the distribution of T under the no-preference
null hypothesis H0 : π = 0.5 is simply the distribution on the number of successes r for a
binomial distribution with parameters n = 45, π = 0.5. The most general natural alternative
hypothesis HA of “preference” would be that the binomial has some arbitrary preference

HA : 0 ≤ π ≤ 1 (5.15)

Unlike the case with Bayesian hypothesis testing, we do not put a probability distribution
on π under HA. We complete our decision procedure by partitioning the possible values of
T into acceptance and rejection regions. To achieve a significance level α we must choose
a partitioning such that the rejection region contains probability mass of no more than α
under the null hypothesis. There are many such partitions that achieve this. For example,
the probability of achieving 18 successes in 45 trials is just under 5%; so is the probability of
achieving at least 27 successes but not more than 29 successes. The black line in Figure 5.9a
shows the probability density function for H0, and each of the gray areas corresponds to one
of these rejection regions.

However, the principle of maximizing statistical power helps us out here. Recall that
when HA is true, the power of the hypothesis test, 1−β, is the probability that T (y) will fall
in our rejection region. The significance level α that we want to achieve, however, constrains
how large our rejection region can be. To maximize the power, it therefore makes sense to
choose as the rejection region that part of the range of T assigned lowest probability by H0
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Figure 5.9: The trade-off between significance level and power

and highest probability by HA. Let us denote the probability mass functions for T under
H0 and HA as P0(T ) and PA(T ) respectively. Figure 5.9b illustrates the tradeoff by plotting

the log-ratio log PA(T )
P0(T )

under two example instantiations of HA: πA = 0.25 and πA = 0.75.
The larger this ratio for a given possible outcome t of T , the more power is obtained by
inclusion of t in the rejection region. When πA < 0.5, the most power is obtained by filling
the rejection region with the largest possible values of T . Likewise, when πA > 0.5, the
most power is obtained by filling the rejection region with the smallest possible values of T .2

Since our HA entertains all possible values of π, we obtain maximal power by splitting our
rejection region into two symmetric halves, one on the left periphery and the other on the
right periphery. In Figure 5.9c, the gray shaded area represents the largest such split region
that contains less than 5% of the probability mass under H0 (actually α = 0.0357). If our
45 tokens do not result in at least 16 and at most 29 successes, we will reject H0 in favor
of HA under this decision rule. This type of rule is called a two-tailed test because the
rejection region is split equally in the two tails of the distribution of T under H0.

Another common type of alternative hypothesis would be that is a tendency to satisfy
*Bstr. This alternative hypothesis would naturally be formulated as H ′

A : 0.5 < π ≤ 1.
This case corresponds to the green line in Figure 5.9b; in this case we get the most power by
putting our rejection region entirely on the left. The largest possible such rejection region
for our example consists of the lefthand gray region plus the black region in Figure 5.9c
(α = 0.0362). This is called a one-tailed test. The common principle which derived
the form of the one-tailed and two-tailed tests alike is the idea that one should choose the
rejection region that maximizes the power of the hypothesis test if HA is true.

Finally, a common approach in science is not simply to choose a significance level α

2Although it is beyond the scope of this text to demonstrate it, this principle of maximizing statistical
power leads to the same rule for constructing a rejection region regardless of the precise values entertained
for π under HA, so long as values both above and below 0.5 are entertained.
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in advance and then report whether H0 is accepted or rejected, but rather to report the
lowest value of α for which H0 would be rejected. This is what is known as the p-value
of the hypothesis test. For example, if our 45 tokens resulted in 14 successes and we con-
ducted a two-tailed test, we would compute twice the cumulative distribution function of
Binom(45,0.5) at 14, which would give us an outcome of p = 0.016.

5.4.2 Quantifying strength of association in categorical variables

There are many situations in quantitative linguistic analysis where you will be interested
in the possibility of association between two categorical variables. In this case, you will
often want to represent your data as a contingency table. A 2× 2 contingency table has the
following form:

Y
y1 y2

X x1 n11 n12 n1∗
x2 n21 n22 n2∗

n∗1 n∗2 n∗∗

(5.16)

where the ni∗ are the marginal totals for different values of xi across values of Y , the n∗j are
the marginal totals for different values of yj across values of X, and n∗∗ is the grand total
number of observations.

We’ll illustrate the use of contingency tables with an example of quantitative syntax: the
study of coordination. In traditional generative grammar, rules licensing coordination had
the general form

NP → NP Conj NP

or even

X → X Conj X

encoding the intuition that many things could be coordinated with each other, but at some
level every coordination should be a “combination of like categories”, a constraint referred
to as Conjoin Likes (Chomsky, 1965). However, this approach turned out to be of lim-
ited success in a categorical context, as demonstrated by clear violations of like-category
constraints such as II below (Sag et al., 1985; Peterson, 1986):

(2) Pat is a Republican and proud of it (coordination of noun phrase with adjective
phrase)

However, the preference for coordination to be between like categories is certainly strong as a
statistical tendency (Levy, 2002). This in turn raises the question of whether the preference
for coordinated constituents to be similar to one another extends to a level more fine grained
than gross category structure (Levy, 2002; Dubey et al., 2008). Consider, for example, the
following four coordinate noun phrases (NPs):
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Example NP1 NP2
1. The girl and the boy noPP noPP
2. [The girl from Quebec] and the boy hasPP noPP
3. The girl and [the boy from Ottawa] noPP hasPP
4. The girl from Quebec and the boy from Ottawa hasPP hasPP

Versions 1 and 4 are parallel in the sense that both NP conjuncts have prepositional-phrase
(PP) postmodifiers; versions 2 and 3 are non-parallel. If Conjoin Likes holds at the level of
NP-internal PP postmodification as a violable preference, then we might expect coordinate
NPs of types 1 and 4 to be more common than would “otherwise be expected”—a notion
that can be made precise through the use of contingency tables.

For example, here are patterns of PP modifications in two-NP coordinations of this type
from the parsed Brown and Switchboard corpora of English, expressed as 2× 2 contingency
tables:

(3)

NP2 NP2
Brown hasPP noPP Switchboard hasPP noPP

NP1 hasPP 95 52 147 NP1 hasPP 78 76 154
noPP 174 946 1120 noPP 325 1230 1555

269 998 1267 403 1306 1709

From the table you can see that in both corpora, NP1 is more likely to have a PP postmodifier
when NP2 has one, and NP2 is more likely to have a PP postmodifier when NP1 has one.
But we would like to go beyond that and quantify the strenght of the association between
PP presence in NP1 on NP2. We would also like to test for significance of the association.

Quantifying association: odds ratios

In Section 3.3 we already saw one method of quantifying the strength of association between
two binary categorical variables: covariance or correlation. Another popular way way
of quantifying the predictive power of a binary variable X on another binary variable Y is
with the odds ratio. To introduce this concept, we first introduce the overall odds ωY of
y1 versus y2:

ωY def
=

n∗1
n∗2

(5.17)

Likewise, the odds ωX of x1 versus x2 are n1∗

n2∗
. For example, in our Brown corpus examples

we have ωY = 147
1120

= 0.13 and ωX = 269
998

= 0.27.
We further define the odds for Y if X = x1 as ωY

1 and so forth, giving us:

ωY
1

def
=

n11

n12

ωY
2

def
=

n21

n22

ωX
1

def
=

n11

n21

ωX
2

def
=

n12

n22
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If the odds of Y for X = x2 are greater than the odds of Y for X = x1, then the outcome of
X = x2 increases the chances of Y = y1. We can express the effect of the outcome of X on
the odds of Y by the odds ratio (which turns out to be symmetric between X, Y ):

OR def
=

ωY
1

ωY
2

=
ωX
1

ωX
2

=
n11n22

n12n21

An odds ratio OR = 1 indicates no association between the variables. For the Brown and
Switchboard parallelism examples:

ORBrown = 95×946
52×174

= 9.93 ORSwbd = 78×1230
325×76

= 3.88

So the presence of PPs in left and right conjunct NPs seems more strongly interconnected
for the Brown (written) corpus than for the Switchboard (spoken). Intuitively, this differ-
ence might be interpreted as parallelism of PP presence/absence in NPs being an aspect of
stylization that is stronger in written than in spoken language.

5.4.3 Testing significance of association in categorical variables

In frequentist statistics there are several ways to test the significance of the association
between variables in a two-way contingency table. Although you may not be used to thinking
about these tests as the comparison of two hypotheses in form of statistical models, they
are!

Fisher’s exact test

Fisher’s exact test applies to 2 × 2 contingency tables such as (5.16). It takes as H0 the
model in which all marginal totals are fixed, but that the individual cell totals are not—
alternatively stated, that the individual outcomes of X and Y are independent. This means
that under H0, the true underlying odds ratio OR is 1. HA is the model that the
individual outcomes of X and Y are not independent. With Fisher’s exact test, the test
statistic T is the odds ratio OR, which follows the hypergeometric distribution under
the null hypothesis (Section B.3).

An advantage of this test is that it computes the exact p-value (that is, the smallest α for
which H0 would be rejected). Because of this, Fisher’s exact test can be used even for very
small datasets. In contrast, many of the tests we cover elsewhere in this book (including the
chi-squared and likelihood-ratio tests later in this section) compute p-values that are only
asymptotically correct, and are unreliable for small datasets. As an example, consider the
small hypothetical parallelism dataset given in IV below:

Roger Levy – Probabilistic Models in the Study of Language draft, November 6, 2012 94



(4)

NP2
hasPP noPP

NP1
hasPP 3 14 26
noPP 22 61 83

34 75 109

The odds ratio is 2.36, and Fisher’s exact test gives a p-value of 0.07. If we were to see
twice the data in the exact same proportions, the odds ratio would stay the same, but the
significance of Fisher’s exact test for non-independence would increase.

Chi-squared test

This is probably the best-known contingency-table test. It is very general and can be applied
to arbitrary N -cell tables, if you have a model with k parameters that predicts expected
values Eij for all cells. For the chi-squared test, the test statistic is Pearson’s X2:

X2 =
∑

ij

[nij − Eij]
2

Eij

(5.18)

In the chi-squared test, HA is the model that each cell in the table has its own parameter pi
in one big multinomial distribution. When the expected counts in each cell are large enough
(the generally agreed lower bound is ≥ 5), the X2 statistic is approximately distributed as a
chi-squared (χ2) random variable with N − k − 1 degrees of freedom (Section B.4). The χ2

distribution is asymmetric and the rejection region is always placed in the right tail of the
distribution (see Section B.4), so we can calculate the p-value by subtracting from one the
value of the cumulative distribution function for the observed X2 test statistic.

The most common way of using Pearson’s chi-squared test is to test for the independence
of two factors in a two-way contingency table. Take a k × l two-way table of the form:

y1 y2 · · · yl
x1 n11 n12 · · · n1l n1∗
x2 n21 n22 · · · n2l n2∗

...
...

. . .
...

...
xl nk1 nk2 · · · nkl nk∗

n∗1 n∗2 · · · n∗l n

Our null hypothesis is that the xi and yi are independently distributed from one another.
By the definition of probabilistic independence, that means that H0 is:

P (xi, yj) = P (xi)P (yj)

In the chi-squared test we use the relative-frequency (and hence maximum-likelihood; Sec-
tion 4.3.1) estimates of the marginal probability that an observation will fall in each row or

Roger Levy – Probabilistic Models in the Study of Language draft, November 6, 2012 95



column: P̂ (xi) =
ni∗

n
and P̂ (yj) =

n∗j

n
. This gives us the formula for the expected counts in

Equation (5.18):

Eij = nP (xi)P (yj)

Example: For the Brown corpus data in III, we have

P (x1) =
147

1267
= 0.1160 P (y1) =

269

1267
= 0.2123 (5.19)

P (x2) =
1120

1267
= 0.8840 P (y2) =

998

1267
= 0.7877 (5.20)

giving us

E11 = 31.2 E12 = 115.8 E21 = 237.8 E21 = 882.2 (5.21)

Comparing with III, we get

X2 =
(95− 31.2)2

31.2
+

(52− 115.8)2

115.8
+

(174− 237.8)2

237.8
+

(946− 882.2)2

882.2
(5.22)

= 187.3445 (5.23)

We had 2 parameters in our model of independence, and there are 4 cells, so X2 is distributed
as χ2

1 (since 4−2−1 = 1). The cumulative distribution function of χ2
1 at 187.3 is essentially 1,

so the p-value is vanishingly small; by any standards, the null hypothesis can be confidently
rejected.

Example with larger data table:

NP PP NP NP NP other
gave 17 79 34
paid 14 4 9
passed 4 1 16

It is worth emphasizing, however, that the chi-squared test is not reliable when expected
counts in some cells are very small. For the low-count table in IV, for example, the chi-
squared test yields a significance level of p = 0.038. Fisher’s exact test is the gold standard
here, revealing that the chi-squared test is too aggressive in this case.

5.4.4 Likelihood ratio test

With this test, the statistic you calculate for your data y is the likelihood ratio

Λ∗ =
maxLikH0(y)

maxLikHA
(y)

(5.24)
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—that is, the ratio of the data likelihood under the MLE in H0 to the data likelihood under
the MLE in HA. This requires that you explicitly formulate H0 and HA, since you need to
find the MLEs and the corresponding likelihoods. The quantity

G2 def
= −2 log Λ∗ (5.25)

is sometimes called the deviance, and it is approximately chi-squared distributed (Sec-
tion B.4) with degrees of freedom equal to the difference in the number of free parameters
in HA and H0. (This test is also unreliable when expected cell counts are low, as in < 5.)

The likelihood-ratio test gives similar results to the chi-squared for contingency tables,
but is more flexible because it allows the comparison of arbitrary nested models. We will see
the likelihood-ratio test used repeatedly in later chapters.

Example: For the Brown corpus data above, let H0 be the model of independence
between NP1 and NP2 with respective success parameters π1 and π2, and HA be the model of
full non-independence, in which each complete outcome 〈xi, yj〉 can have its own probability
πij (this is sometimes called the saturated model). We use maximum likelihood to fit
each model, giving us for H0:

π1 = 0.116 π2 = 0.212

and for HA:

π11 = 0.075 π12 = 0.041 π21 = 0.137 π22 = 0.747

We calculate G2 as follows:

−2 log Λ∗ = −2 log
(π1π2)

95(π1(1− π2))
52((1− π1)π2)

174((1− π1)(1− π2))
946

π95
11π

52
12π

174
21 π946

22

= −2 [95 log(π1π2) + 52 log(π1(1− π2)) + 174 log((1− π1)π2) + 946 log((1− π1)(1− π2))

−95π11 − 52π12 − 174π21 − 946π22]

= 151.6

H0 has two free parameters, and HA has three free parameters, so G2 should be approxi-
mately distributed as χ2

1. Once again, the cumulative distribution function of χ2
1 at 151.6 is

essentially 1, so the p-value of our hypothesis test is vanishingly small.

5.5 Exercises

Exercise 5.1
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Would the Bayesian hypothesis-testing results of Section 5.2 be changed at all if we did
not consider the data as summarized by the number of successes and failures, and instead
used the likelihood of the specific sequence HHTHTH instead? Why?

Exercise 5.2
For Section 5.2, compute the posterior probabilities ofH1, H2, andH3 in a situation where

all three hypotheses are entertained with prior probabilities P (H1) = P (H2) = P (H3) =
1
3
.

Exercise 5.3
Recompute the Bayesian hypothesis tests, computing both posterior probabilities and

Bayes Factors, of Section 5.2 (H1 vs. H2 and H1 vs. H3) for the same data replicated twice
– that is, the observations SSVSVSSSVSVS. Are the preferred hypotheses the same as for the
original computations in Section 5.2? What about for the data replicated three times?

Exercise 5.4: Phoneme discrimination for Gaussians of unequal variance and
prior probabilities.

1. Plot the optimal-response phoneme discrimination curve for the /b/–/p/ VOT contrast
when the VOT of each category is realized as a Gaussian and the Gaussians have equal
variances σb = 12, different means µb = 0, µp = 50, and different prior probabilities:
P (/b/) = 0.25, P (/p/) = 0.75. How does this curve look compared with that in
Figure ???

2. Plot the optimal-response phoneme discrimination curve for the /b/–/p/ VOT contrast
when the Gaussians have equal prior probabilities but both unequal means and unequal
variances: µb = 0, µp = 50, σb = 8, σp = 14.

3. Propose an experiment along the lines of Clayards et al. (2008) testing the ability of
listeners to learn category-specific variances and prior probabilities and use them in
phoneme discrimination.

4. It is in fact the case that naturalistic VOTs in English have larger variance /p/ than
for /b/ [TODO: get reference for this]. For part 2 of this question, check what the
model predicts as VOT extends to very large negative values (e.g., -200ms). There is
some counter-intuitive behavior: what is it? What does this counter-intuitive behavior
tell us about the limitations of the model we’ve been using?

Exercise 5.5
Use simulation to check that the theoretical confidence interval based on the t distribution
for normally distributed data in Section 5.3 really works.

Exercise 5.6
For a given choice of α, is the procedure denoted in Equation (5.14) the only frequentist

confidence interval that can be constructed for µ for normally distributed data?

Exercise 5.7: Hypothesis testing: philosophy.
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You surreptitiously observe an obsessed linguist compulsively searching a corpus for bi-
nomials of the form pepper and salt (P) or salt and pepper (S). He collects twenty examples,
obtaining the sequence

SPSSSPSPSSSSPPSSSSSP

1. The linguist’s research assistant tells you that the experiment was to obtain twenty
examples and record the number of P’s obtained. Can you reject the no-preference null
hypothesis H0 at the α = 0.05 level?

2. The next day, the linguist tells you in class that she purposely misled the research
assistant, and the actual experiment was to collect tokens from the corpus until six P

examples were obtained and then stop. Does this new information affect the p-value
with which you can reject the null hypothesis?

3. The linguist writes up her research results and sends them to a prestigious journal.
The editor sends this article to two Bayesian reviewers. Both reviewers argue that this
mode of hypothesis testing is ridiculous, and that a Bayesian hypothesis test should be
made. Reviewer A suggests that the null hypothesis H0 of π = 0.5 should be compared
with the alternative hypothesis H1 of π = 0.25, and the two hypotheses should be given
equal prior probability.

(a) What is the posterior probability of H0 given the binomials data? Does the
criteria by which the scientist decided how many binomials to collect affect the
conclusions of a Bayesian hypothesis test? Hint: if P (H0|~x)

P (H1|~x) = a, then

P (H0|~x) =
a

1 + a

because P (H0|~x) = 1− P (H1|~x).
(b) Reviewer B suggests that H1 should be π = 0.4 instead. What is the posterior

probability of H0 under this Bayesian comparison?

Exercise 5.8: Bayesian confidence intervals.

The binom.bayes() function in the binom package permits the calculation of Bayesian
confidence intervals over π for various numbers of successes x, total trials n, and a and b
(specified as prior.shape1 and prior.shape2 respectively—but prior.shape1=a− 1 and
prior.shape2=b− 1). Install the binom package with the command

install.packages("binom")
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and then use the binom.bayes() function to plot the size of a 95% confidence interval on
π as a function of the total number of trials n, ranging from 10 to 10000 (in multiples of
10), where 70% of the trials are always successes. (Hold a and b constant, as values of your
choice.)

Exercise 5.9: Contextual dependency in phoneme sequences.

1. Reproduce the Bayesian hypothesis test of Section 5.2.3 for uniform priors with the
following sequences, computing P (H1|y) for each sequence. One of the three sequences
was generated from a context-independent distribution, whereas the other two were
generated from context-dependent distributions. Which one is most strongly indicated
by the Bayesian hypothesis test to be generated from the context-independent distri-
bution?

(a) A B A B B B B B A B B B A A A B B B B B B

(b) B A B B A B A B A A B A B A B B A A B A B

(c) B B B B A A A A B B B B B A A A A B B B B

2. Although we put uniform priors on all success parameters in Section 5.2.3, in the
contextual-dependence model it makes more sense to have a sparse prior—that is,
one that favors strong preferences for some phonemes over others after each type of
context. A sparse beta prior is one for which at least one αi parameter is low (< 1).
Revise the model so that the prior on π∅ remains uniform, but that πA and πB have
symmetric 〈α, α〉 priors (and give both πA and πB the same prior). Plot the posterior
probabilities P (H1|y) for sequences (i-iii) as a function of α for 0 < α ≤ 1. What is the
value of α for which the context-independent sequence is most strongly differentiated
from the context-dependent sequences (i.e. the differences in P (H1|y) between sequence
pairs are greatest)?

Exercise 5.10: Phoneme categorization.

1. Plot the Bayesian phoneme discrimination curve for /b/–/p/ discrimination with µb =
0, µp = 50, σb = 5, σp = 10.

2. Write out the general formula for Bayesian phoneme discrimination when VOTs in the
two categories are normally distributed with unequal variances. Use algebra to simplify
it into the form P (/b/|x) = 1

1+...
. Interpret the formula you obtained.

Exercise 5.11
Frequentist confidence intervals.
In this problem you’ll be calculating some frequentist confidence intervals to get a firmer

sense of exactly what they are.
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1. The english dataset in languageR has lexical-decision and naming reaction times
(RTlexdec and RTnaming respectively) for 2197 English words. Plot histograms of
the mean RT of each item. Calculate 95% frequentist confidence intervals for lexical-
decision and naming times respectively, as described in Lecture 7, Section 2. Which
experimental method gives tighter confidence intervals on mean RT?

2. The t.test() function, when applied to a set of data, returns a list whose component
conf.int is the upper and lower bounds of a 95% confidence interval:

> x <- rnorm(100,2)

> t.test(x)$conf.int

[1] 1.850809 2.241884

attr(,"conf.level")

[1] 0.95

Show that the procedure used in Section 5.3 gives the same results as using t.test()

for the confidence intervals for the English lexical decision and naming datasets.

3. Not all confidence intervals generated from an “experiment” are the same size. For
“experiments”consisting of 10 observations drawn from a standard normal distribution,
use R to calculate a histogram of lengths of 95% confidence intervals on the mean. What
is the shape of the distribution of confidence interval lengths? For this problem, feel
free to use t.test() to calculate confidence intervals.

Exercise 5.12: Comparing two samples.
In class we covered confidence intervals and the one-sample t-test. This approach allows

us to test whether a dataset drawn from a(n approximately) normally distributed population
departs significantly from has a particular mean. More frequently, however, we are interested
in comparing two datasets x and y of sizes nx and ny respectively, and inferring whether or
not they are drawn from the same population. For this purpose, the two-sample t-test
is appropriate.3

1. Statistical power. Suppose you have two populations and you can collect n total
observations from the two populations. Intuitively, how should you distribute your
observations among the two populations to achieve the greatest statistical power

in a test that the two populations follow the same distribution?

3For completeness, the statistic that is t-distributed for the two-sample test is:

ȳ − x̄√
σ2

(
1
nx

+ 1
ny

)

where x̄ and ȳ are the sample means; in general, the variance σ2 is unknown and is estimated as σ̂2 =
∑

i
(xi−x̄)2+

∑
i
(yi−ȳ)2

N−2 where N = nx + ny.
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2. Check your intuitions. Let n = 40 and consider all possible values of nx and ny (note
that ny = n − nx). For each possible value, run 1000 experiments where the two
populations are X ∼ N (0, 1) and Y ∼ N (1, 1). Plot the power of the two-sample
t-test at the α = 0.05 level as a function of nx.

3. Paired t-tests. Sometimes a dataset can be naturally thought of as consisting of
pairs of measurements. For example, if a phonetician measured voice onset time for
the syllables [ba] and [bo] for many different speakers, the data could be grouped into
a matrix of the form

Syllable
Speaker [ba] [bo]
1 x11 x12

2 x21 x22
...

If we wanted to test whether the voice onset times for [ba] and [bo] came from the
same distribution, we could simply perform a two-sample t-test on the data in column
1 versus the data in column 2.

On the other hand, this doesn’t take into account the systematic differences in voice-
onset time that may hold across speakers. What we might really want to do is test
whether the differences between xi1 and xi2 are clustered around zero—which would
indicate that the two data vectors probably do come from the same population—or
around some non-zero number. This comparison is called a paired t-test.

The file spillover_word_rts contains the average reading time (in milliseconds) of the
second “spillover” word after a critical manipulation in self-paced reading experiment,
for 52 sentence pairs of the form:

The children went outside to play early in the afternoon. (Expected)
The children went outside to chat early in the afternoon. (Unexpected)

In a separate sentence completion study, 90% of participants completed the sentence

The children went outside to

with the word play, making this the Expected condition. In these examples, the word
whose reading time (RT) is measured would be in, as it appears two words after the
critical word (in bold).

(a) Use paired and unpaired t-tests to test the hypothesis that mean reading times
at the second spillover word differ significantly in the Expected and Unexpected
conditions. Which test leads to a higher significance value?
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Figure 5.10: A bar plot with non-overlapping standard error bars

(b) Calculate the correlation between the RTs for the unexpected and expected con-
ditions of each item. Intuitively, should higher correlations lead to an increase or
drop in statistical power for the paired test over the unpaired test? Why?

Exercise 5.13: Non-overlapping standard errors.♥

You and your colleague measure the F1 formant frequency in pronunciation of the vowel
[a] for two groups of 50 native speakers of English, one measurement for each speaker. The
means and standard errors of these measurements are shown in Figure 5.10. Your colleague
states, “we can be fairly confident in inferring that the two groups have significantly different
mean F1 formant frequencies. As a rule of thumb, when you have a reasonably large number
of measurements in each group and the standard error bars between the two groups are
non-overlapping, we can reject the null hypothesis that the group means are the same at the
p < 0.05 level.” Is your colleague’s rule of thumb correct?

Exercise 5.14: Log odds ratio versus correlation.

Are (log) odds ratios any different from correlation coefficients? Plot the relationship
between log odds ratio and correlation coefficient for a number of different 2× 2 contingency
tables. (If you want to take a sampling-based approach to exploring the space of possible
contingency tables, you might use the Dirichlet distribution—see Section B.8—to randomly
generate sets of cell probabilities).

Exercise 5.15: Contingency tables.
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1. Bresnan et al. (2007) conducted a detailed analysis of the dative alternation, as in the
example below:

The actress gave the toys to the children. (Prepositional Object, PO)
The actress gave the children the toys. (Double Object, DO)

The analysis was based on data obtained from the parsed Switchboard corpus (Godfrey et al.,
1992).4 Irrespective of which alternate was used, it turns out that there are correlations
among the properties of the theme (the toys) and the recipient (the children).

Definiteness and animacy are often found to be correlated. Look at the relationship
between animacy and definiteness of (1) the theme, and (2) the recipient within this
dataset, constructing contingency tables and calculating the odds ratios in each case.
For which semantic role are definiteness and animacy more strongly associated? Why
do you think this might be the case? (Note that organizations, animals, intelligent
machines, and vehicles were considered animate for this coding scheme (Zaenen et al.,
2004)).

2. The language Warlpiri, one of the best-studied Australian Aboriginal languages, is
characterized by extremely free word order and heavy use of morphological cues as
to the grammatical function played by each word in the clause (i.e. case marking).
Below, for example, the ergative case marking (erg) on the first word of the sentence
identifies it as the subject of the sentence:

Ngarrka-
man

ngku
erg

ka
aux

wawirri
kangaroo

panti-
spear

rni.
nonpast

(Hale, 1983)

“The man is spearing the kangaroo”.

In some dialects of Warlpiri, however, using the ergative case is not obligatory. Note
that there would be a semantic ambiguity if the case marking were eliminated from
the first word, because neither man nor kangaroo would have case marking to indicate
its grammatical relationship to the verb spear. O’Shannessy (2009) carried out a study
of word order and case marking variation in sentences with transitive main clauses
and overt subjects (“A” arguments in the terminology of Dixon, 1979) in elicited story
descriptions by Warlpiri speakers. Her dataset includes annotation of speaker age,
whether the transitive subject was animate, whether the transitive subject had ergative
case marking, whether the sentence had an animate object (Dixon’s “O” argument),
whether that object was realized overtly, and whether the word order of the sentence
was subject-initial.5

4The dataset can be found in R’s languageR package; there it is a data frame named dative.
5O’Shannessy’s dataset can be found in R’s languageR package under the name warlpiri.
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(a) Does subject animacy have a significant association (at the α = 0.05 level)
with ergative case marking? What about word order (whether the subject was
sentence-initial)?

(b) Which of the following variables have an effect on whether subject animacy and
word order have a significant association with use of ergative case marking? (For
each of the below variables, split the dataset in two and do a statistical test of
association on each half.)

overtness of object
age group
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