
Chapter 4

Parameter Estimation

Thus far we have concerned ourselves primarily with probability theory : what events may
occur with what probabilities, given a model family and choices for the parameters. This is
useful only in the case where we know the precise model family and parameter values for the
situation of interest. But this is the exception, not the rule, for both scientific inquiry and
human learning & inference. Most of the time, we are in the situation of processing data
whose generative source we are uncertain about. In Chapter 2 we briefly covered elemen-
tary density estimation, using relative-frequency estimation, histograms and kernel density
estimation. In this chapter we delve more deeply into the theory of probability density es-
timation, focusing on inference within parametric families of probability distributions (see
discussion in Section 2.11.2). We start with some important properties of estimators, then
turn to basic frequentist parameter estimation (maximum-likelihood estimation and correc-
tions for bias), and finally basic Bayesian parameter estimation.

4.1 Introduction

Consider the situation of the first exposure of a native speaker of American English to
an English variety with which she has no experience (e.g., Singaporean English), and the
problem of inferring the probability of use of active versus passive voice in this variety with
a simple transitive verb such as hit :

(1) The ball hit the window. (Active)

(2) The window was hit by the ball. (Passive)

There is ample evidence that this probability is contingent on a number of features of the
utterance and discourse context (e.g., Weiner and Labov, 1983), and in Chapter 6 we cover
how to construct such richer models, but for the moment we simplify the problem by assuming
that active/passive variation can be modeled with a binomial distribution (Section 3.4) with
parameter π characterizing the probability that a given potentially transitive clause eligible
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for passivization will in fact be realized as a passive.1 The question faced by the native
American English speaker is thus, what inferences should we make about π on the basis of
limited exposure to the new variety? This is the problem of parameter estimation, and
it is a central part of statistical inference. There are many different techniques for parameter
estimation; any given technique is called an estimator, which is applied to a set of data to
construct an estimate. Let us briefly consider two simple estimators for our example.

Estimator 1. Suppose that our American English speaker has been exposed to n transi-
tive sentences of the variety, and m of them have been realized in the passive voice in eligible
clauses. A natural estimate of the binomial parameter π would be m/n. Because m/n is the
relative frequency of the passive voice, this is known as the relative frequency estimate

(RFE; see Section 2.11.1). In addition to being intuitive, we will see in Section 4.3.1 that the
RFE can be derived from deep and general principles of optimality in estimation procedures.
However, RFE also has weaknesses. For instance, it makes no use of the speaker’s knowledge
of her native English variety. In addition, when n is small, the RFE is unreliable: imagine,
for example, trying to estimate π from only two or three sentences from the new variety.

Estimator 2. Our speaker presumably knows the probability of a passive in American
English; call this probability q. An extremely simple estimate of π would be to ignore all new
evidence and set π = q, regardless of how much data she has on the new variety. Although
this option may not be as intuitive as Estimator 1, it has certain advantages: it is extremely
reliable and, if the new variety is not too different from American English, reasonably accu-
rate as well. On the other hand, once the speaker has had considerable exposure to the new
variety, this approach will almost certainly be inferior to relative frequency estimation. (See
Exercise to be included with this chapter.)

In light of this example, Section 4.2 describes how to assess the quality of an estimator
in conceptually intuitive yet mathematically precise terms. In Section 4.3, we cover fre-

quentist approaches to parameter estimation, which involve procedures for constructing
point estimates of parameters. In particular we focus on maximum-likelihood estimation
and close variants, which for multinomial data turns out to be equivalent to Estimator 1
above.In Section 4.4, we cover Bayesian approaches to parameter estimation, which involve
placing probability distributions over the range of possible parameter values. The Bayesian
estimation technique we will cover can be thought of as intermediate between Estimators 1
and 2.

4.2 Desirable properties for estimators

In this section we briefly cover three key properties of any estimator, and discuss the desir-
ability of these properties.

1By this probability we implicitly conditionalize on the use of a transitive verb that is eligible for pas-
sivization, excluding intransitives and also unpassivizable verbs such as weigh.
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4.2.1 Consistency

An estimator is consistent if the estimate θ̂ it constructs is guaranteed to converge to the
true parameter value θ as the quantity of data to which it is applied increases. Figure 4.1
demonstrates that Estimator 1 in our example is consistent: as the sample size increases, the
probability that the relative-frequency estimate π̂ falls into a narrow band around the true
parameter π grows asymptotically toward 1 (this behavior can also be proved rigorously; see
Section 4.3.1). Estimator 2, on the other hand, is not consistent (so long as the American
English parameter q differs from π), because it ignores the data completely. Consistency is
nearly always a desirable property for a statistical estimator.

4.2.2 Bias

If we view the collection (or sampling) of data from which to estimate a population pa-
rameter as a stochastic process, then the parameter estimate θ̂η resulting from applying a
pre-determined estimator η to the resulting data can be viewed as a continuous random
variable (Section 3.1). As with any random variable, we can take its expectation. In general,
it is intuitively desirable that the expected value of the estimate be equal (or at least close)
to the true parameter value θ, but this will not always be the case. The bias of an estimator
η is defined as the deviation of the expectation from the true value: E[θ̂η]− θ. All else being
equal, the smaller the bias in an estimator the more preferable. An estimator for which the
bias is zero—that is, E[θη] = θ—is called unbiased.

Is Estimator 1 in our passive-voice example biased? The relative-frequency estimate π̂ is
m
n
, so E[π̂ = E[m

n
]. Since n is fixed, we can move it outside of the expectation (see linearity

of the expectation in Section 3.3.1) to get

E[π̂] =
1

n
E[m]

But m is just the number of passive-voice utterances heard, and since m is binomially
distributed, E[m] = πn. This means that

E[π̂] =
1

n
πn

= π

So Estimator 1 is unbiased. Estimator 2, on the other hand, has bias q − π.

4.2.3 Variance (and efficiency)

Suppose that our speaker has decided to use Estimator 1 to estimate the probability π of a
passive, and has been exposed to n utterances. The intuition is extremely strong that she
should use all n utterances to form her relative-frequency estimate π̂, rather than, say, using
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only the first n/2. But why is this the case? Regardless of how many utterances she uses
with Estimator 1, her estimate will be unbiased (think about this carefully if you are not
immediately convinced). But our intuitions suggest that an estimate using less data is less
reliable: it is likely to vary more dramatically due to pure freaks of chance.

It is useful to quantify this notion of reliability using a natural statistical metric: the
variance of the estimator, Var(θ̂) (Section 4.2.3). All else being equal, an estimator with
smaller variance is preferable to one with greater variance. This idea, combined with a
bit more simple algebra, quantitatively explains the intuition that more data is better for
Estimator 1:

Var(π̂) = Var
(m
n

)

=
1

n2
Var(m) (From scaling a random variable, Section 3.3.3)

Since m is binomially distributed, and the variance of the binomial distribution is nπ(1− π)
(Section 3.4), so we have

Var(π̂) =
π(1− π)

n
(4.1)

So variance is inversely proportional to the sample size n, which means that relative frequency
estimation is more reliable when used with larger samples, consistent with intuition.

It is almost always the case that each of bias and variance comes at the cost of the other.
This leads to what is sometimes called bias-variance tradeoff: one’s choice of estimator
may depend on the relative importance of expected accuracy versus reliability in the task
at hand. The bias-variance tradeoff is very clear in our example. Estimator 1 is unbiased,
but has variance that can be quite high when samples size n is small. Estimator 2 is biased,
but it has zero variance. Which of the two estimators is preferable is likely to depend on
the sample size. If our speaker anticipates that she will have very few examples of transitive
sentences in the new English variety to go on, and also anticipates that the new variety will
not be hugely different from American English, she may well prefer (and with good reason)
the small bias of Estimator 2 to the large variance of Estimator 1. The lower-variance of two
estimators is called the more efficient estimator, and the efficiency of one estimator η1
relative to another estimator η2 is the ratio of their variances, Var(θ̂η1)/Var(θ̂η2).

4.3 Frequentist parameter estimation and prediction

We have just covered a simple example of parameter estimation and discussed key proper-
ties of estimators, but the estimators we covered were (while intuitive) given no theoretical
underpinning. In the remainder of this chapter, we will cover a few major mathematically mo-
tivated estimation techniques of general utility. This section covers frequentist estimation
techniques. In frequentist statistics, an estimator gives a point estimate for the parameter(s)
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of interest, and estimators are preferred or dispreferred on the basis of their general behavior,
notably with respect to the properties of consistency, bias, and variance discussed in Sec-
tion 4.2. We start with the most widely-used estimation technique, maximum-likelihood
estimation.

4.3.1 Maximum Likelihood Estimation

We encountered the notion of the likelihood in Chapter 2, a basic measure of the quality
of a set of predictions with respect to observed data. In the context of parameter estimation,
the likelihood is naturally viewed as a function of the parameters θ to be estimated, and is
defined as in Equation (2.29)—the joint probability of a set of observations, conditioned on
a choice for θ—repeated here:

Lik(θ;y) ≡ P (y|θ) (4.2)

Since good predictions are better, a natural approach to parameter estimation is to choose
the set of parameter values that yields the best predictions—that is, the parameter that
maximizes the likelihood of the observed data. This value is called themaximum likelihood

estimate (MLE), defined formally as:2

θ̂MLE
def
= argmax

θ

Lik(θ;y) (4.3)

In nearly all cases, the MLE is consistent (Cramer, 1946), and gives intuitive results. In
many common cases, it is also unbiased. For estimation of multinomial probabilities, the
MLE also turns out to be the relative-frequency estimate. Figure 4.2 visualizes an example
of this. The MLE is also an intuitive and unbiased estimator for the means of normal and
Poisson distributions.

Likelihood as function of data or model parameters?

In Equation (4.2) I defined the likelihood as a function first and foremost of the parameters
of one’s model. I did so as

4.3.2 Limitations of the MLE: variance

As intuitive and general-purpose as it may be, the MLE has several important limitations,
hence there is more to statistics than maximum-likelihood. Although the MLE for multi-
nomial distributions is unbiased, its variance is problematic for estimating parameters that
determine probabilities of events with low expected counts. This can be a major problem

2The expression argmaxx f(x) is defined as “the value of x that yields the maximum value for the ex-
pression f(x).” It can be read as “arg-max over x of f(x).”
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even when the sample size is very large. For example, word n-gram probabilities—
the probability distribution over the next word in a text given the previous n − 1 words
of context—are of major interest today not only in applied settings such as speech recog-
nition but also in the context of theoretical questions regarding language production, com-
prehension, and acquisition (e.g., Gahl, 2008; Saffran et al., 1996b; 2-gram probabilities are
sometimes called transitional probabilities). N-gram probability models are simply
collections of large multinomial distributions (one distribution per context). Yet even for ex-
tremely high-frequency preceding contexts, such as the word sequence near the, there will be
many possible next words that are improbable yet not impossible (for example, reportedly).
Any word that does not appear in the observed data in that context will be assigned a con-
ditional probability of zero by the MLE. In a typical n-gram model there will be many, many
such words—the problem of data sparsity. This means that the MLE is a terrible means
of prediction for n-gram word models, because if any unseen word continuation appears in
a new dataset, the MLE will assign zero likelihood to the entire dataset. For this reason,
there is a substantial literature on learning high-quality n-gram models, all of which can in
a sense be viewed as managing the variance of estimators for these models while keeping the
bias reasonably low (see Chen and Goodman, 1998 for a classic survey).

4.3.3 Limitations of the MLE: bias

In addition to these problems with variance, the MLE is biased for some types of model
parameters. Imagine a linguist interested in inferring the original time of introduction of a
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novel linguistic expression currently in use today, such as the increasingly familiar phrase the
boss of me, as in:3

(3) “You’re too cheeky,” said Astor, sticking out his tongue. “You’re not the boss of me.”
(Tool, 1949, cited in Language Log by Benjamin Zimmer, 18 October 2007)

The only direct evidence for such expressions is, of course, attestations in written or recorded
spoken language. Suppose that the linguist had collected 60 attestations of the expression,
the oldest of which was recored 120 years ago.

From a probabilistic point of view, this problem involves choosing a probabilistic model
whose generated observations are n attestation dates y of the linguistic expression, and one
of whose parameters is the earliest time at which the expression is coined, or t0. When the
problem is framed this way, the linguist’s problem is to devise a procedure for constructing
a parameter estimate t̂0 from observations. For expository purposes, let us oversimplify and
use the uniform distribution as a model of how attestation dates are generated.4 Since the
innovation is still in use today (time tnow), the parameters of the uniform distribution are
[t0, tnow] and the only parameter that needs to be estimated is tnow. Let us arrange our
attestation dates in chronological order so that the earliest date is y1.

What is the maximum-likelihood estimate t̂0? For a given choice of t0, a given date
yi either falls in the interval [t0, tnow] or it does not. From the definition of the uniform
distribution (Section 2.7.1) we have:

P (yi|t0, tnow) =
{

1
tnow−t0

t0 ≤ yi ≤ tnow
0 otherwise

(4.4)

Due to independence, the likelihood for the interval boundaries is Lik(t0) =
∏

i P (yi|t0, tnow).
This means that for any choice of interval boundaries, if at least one date lies before t0,
the entire likelihood is zero! Hence the likelihood is non-zero only for interval boundaries
containing all dates. For such boundaries, the likelihood is

Lik(t0) =
n∏

i=1

1

tnow − t0
(4.5)

=
1

(tnow − t0)n
(4.6)

This likelihood grows larger as tnow − t0 grows smaller, so it will be maximized when the
interval length tnow− t0 is as short as possible—namely, when t0 is set to the earliest attested

3This phrase has been the topic of intermittent discussion on the Language Log blog since 2007.
4This is a dramatic oversimplification, as it is well known that linguistic innovations prominent

enough for us to notice today often followed an S-shaped trajectory of usage frequency (Bailey, 1973;
Cavall-Sforza and Feldman, 1981; Kroch, 1989; Wang and Minett, 2005). However, the general issue of bias
in maximum-likelihood estimation present in the oversimplified uniform-distribution model here also carries
over to more complex models of the diffusion of linguistic innovations.
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Figure 4.3: The bias of the MLE for uniform distributions
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Figure 4.4: Bias of the MLE (left) and the bias-corrected estimator (right), shown numerically
using 500 simulations for each value of n.

date y1. This fact is illustrated in Figure 4.3: the tighter the posited interval between t0 and
tnow, the greater the resulting likelihood.

You probably have the intuition that this estimate of the contact interval duration is
conservative: certainly the novel form appeared in English no later than t0, but it seems
rather unlikely that the first use in the language was also the first attested use!5 This
intuition is correct, and its mathematical realization is that the MLE for interval boundaries
of a uniform distribution is biased. Figure 4.4 visualizes this bias in terms of average interval
length (over a number of samples) as a function of sample size.

For any finite sample size, the MLE is biased to underestimate true interval length,
although this bias decreases as sample size increases (as well it should, because the MLE is a
consistent estimator). Fortunately, the size of the MLE’s bias can be quantified analytically:
the expected ML-estimated interval size is n

n+1
times the true interval size.Therefore, if we

adjust the MLE by multiplying it by n+1
n
, we arrive at an unbiased estimator for interval

length. The correctness of this adjustment is confirmed by the right-hand plot in Figure 4.4.
In the case of our historical linguist with three recovered documents, we achieve the estimate

5The intuition may be different if the first attested use was by an author who is known to have introduced
a large number of novel expressions into the language which subsequently gained in popularity. This type
of situation would point to a need for a more sophisticated probabilistic model of innovation, diffusion, and
attestation.
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Furthermore, there is a degree of intuitiveness about the behavior of the adjustment in
extreme cases: if N = 1, the adjustment would be infinite, which makes sense: one cannot
estimate the size of an unconstrained interval from a single observation.

Another famous example of bias in the MLE is in estimating the variance of a normal
distribution. The MLEs for mean and variance of a normal distribution as estimated from a
set of N observations y are as follows:

µ̂MLE =
1

N

∑

i

yi (i.e. the sample mean) (4.7)

σ̂2
MLE =

1

N

∑

i

(yi − µ̂)2 (i.e. the sample variance divided by N) (4.8)

While it turns out that µ̂MLE is unbiased, σ̂2
MLE is biased for reasons similar to those given for

interval size in the uniform distribution. You can see this graphically by imagining the MLE
for a single observation, as in Figure 4.5. As σ̂2 shrinks, the likelihood of the observation will
continue to rise, so that the MLE will push the estimated variance to be arbitrarily small.
This is a type of overfitting (see Section 2.11.5).

It turns out that the this bias can be eliminated by adjusting the MLE by the factor N
N−1

.
This adjusted estimate of σ2 is called S2:
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I θ Y

Figure 4.7: The structure of a simple Bayesian model. Observable data Y and prior beliefs
I are conditionally independent given the model parameters.

S2 =
N

N − 1
σ̂2
MLE (4.9)

=
1

N − 1

∑

i

(yi − µ̂)2 (4.10)

This is the most frequently used estimate of the underlying variance of a normal distribution
from a sample. In R, for example, the function var(), which is used to obtain sample
variance, computes S2 rather than σ̂MLE. An example of estimating normal densities is
shown in Figure 4.6, using F3 formants from 15 native English-speaking children on the
vowel [æ]. The MLE density estimate is a slightly narrower curve than the bias-adjusted
estimate.

4.4 Bayesian parameter estimation and density esti-

mation

In frequentist statistics as we have discussed thus far, one uses observed data to construct
a point estimate for each model parameter. The MLE and bias-adjusted version of the
MLE are examples of this. In Bayesian statistics, on the other hand, parameter estimation
involves placing a probability distribution over model parameters. In fact, there is no concep-
tual difference between parameter estimation (inferences about θ) and prediction or density
estimation (inferences about future y) in Bayesian statistics.

4.4.1 Anatomy of inference in a simple Bayesian model

A simple Bayesian model has three components. Observable data are generated as random
variables y in some model from a model family with parameters θ. Prior to observing
a particular set of data, however, we already have beliefs/expectations about the possible
model parameters θ; we call these beliefs I. These beliefs affect y only through the mediation
of the model parameters—that is, y and I are conditionally independent given θ (see Section
2.4.2). This situation is illustrated in Figure 6.1, which has a formal interpretation as a
graphical model (Appendix C).

In the Bayesian framework, both parameter estimation and density estimation simply
involve the application of Bayes’ rule (Equation (2.5)). For example, parameter estimation
means calculating the probability distribution over θ given observed data y and our prior
beliefs I. We can use Bayes rule to write this distribution as follows:
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P (θ|y, I) = P (y|θ, I)P (θ|I)
P (y|I) (4.11)

=

Likelihood for θ︷ ︸︸ ︷
P (y|θ)

Prior over θ︷ ︸︸ ︷
P (θ|I)

P (y|I)︸ ︷︷ ︸
Likelihood marginalized over θ

(because y ⊥ I | θ) (4.12)

The numerator in Equation (4.12) is composed of two quantities. The first term, P (y|θ),
should be familiar from Section 2.11.5: it is the likelihood of the parameters θ for the data y.
As in much of frequentist statistics, the likelihood plays a central role in parameter estimation
in Bayesian statistics. However, there is also a second term, P (θ|I), the prior distribution

over θ given only I. The complete quantity (4.12) is the posterior distribution over θ.
It is important to realize that the terms“prior”and“posterior” in no way imply any temporal
ordering on the realization of different events. The only thing that P (θ|I) is “prior” to is
the incorporation of the particular dataset y into inferences about θ. I can in principle
incorporate all sorts of knowledge, including other data sources, scientific intuitions, or—in
the context of language acquisition—innate biases. Finally, the denominator is simply the
marginal likelihood P (y|I) =

∫
θ
P (y|θ)P (θ|I) dθ (it is the model parameters θ that are

being marginalized over; see Section 3.2). The data likelihood is often the most difficult term
to calculate, but in many cases its calculation can be ignored or circumvented because we
can accomplish everything we need by computing posterior distributions up to a normalizing
constant (Section 2.8; we will see an new example of this in the next section).

Since Bayesian inference involves placing probability distributions on model parameters,
it becomes useful to work with probability distributions that are specialized for this purpose.
Before we move on to our first simple example of Bayesian parameter and density estimation,
we’ll now introduce one of the simplest (and most easily interpretable) such probability
distributions: the beta distribution.

4.4.2 The beta distribution

The beta distribution is important in Bayesian statistics involving binomial distributions.
It has two parameters α1, α2 and is defined as follows:

P (π|α1, α2) =
1

B(α1, α2)
πα1−1(1− π)α2−1 (0 ≤ π ≤ 1, α1 > 0, α2 > 0) (4.13)

where the beta function B(α1, α2) (Section B.1) serves as a normalizing constant:

B(α1, α2) =

∫ 1

0

πα1−1(1− π)α2−1 dπ (4.14)
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Figure 4.8: Beta distributions

Figure 4.8 gives a few examples of beta densities for different parameter choices. The beta
distribution has a mean of α1

α1+α2
and mode (when both α1, α2 > 1) of α1−1

α1+α2−2
. Note that a

uniform distribution on [0, 1] results when α1 = α2 = 1.

Beta distributions and beta functions are very often useful when dealing with Bayesian
inference on binomially-distributed data. One often finds oneself in the situation of knowing
that some random variableX is distributed such that P (X) ∝ πa(1−π)b, but not knowing the
normalization constant. If and when you find yourself in this situation, recognize thatX must
be beta-distributed, which allows you to determine the normalization constant immediately.
Additionally, whenever one is confronted with an integral of the form

∫ 1

0
πa(1 − π)b dπ (as

in Section 5.2.1), recognize that it is a beta function, which will allow you to compute the
integral very easily.

4.4.3 Simple example of Bayesian estimation with the binomial
distribution

Historically, one of the major reasons that Bayesian inference has been avoided is that
it can be computationally intensive under many circumstances. The rapid improvements
in available computing power over the past few decades are, however, helping overcome
this obstacle, and Bayesian techniques are becoming more widespread both in practical
statistical applications and in theoretical approaches to modeling human cognition. We will
see examples of more computationally intensive techniques later in the book, but to give the
flavor of the Bayesian approach, let us revisit the example of our native American English
speaker and her quest for an estimator for π, the probability of the passive voice, which turns
out to be analyzable without much computation at all.

We have already established that transitive sentences in the new variety can be modeled
using a binomial distribution where the parameter π characterizes the probability that a

Roger Levy – Probabilistic Models in the Study of Language draft, November 6, 2012 62



given transitive sentence will be in the passive voice. For Bayesian statistics, we must first
specify the beliefs I that characterize the prior distribution P (θ|I) to be held before any
data from the new English variety is incorporated. In principle, we could use any proper
probability distribution on the interval [0, 1] for this purpose, but here we will use the beta
distribution (Section 4.4.2). In our case, specifying prior knowledge I amounts to choosing
beta distribution parameters α1 and α2.

Once we have determined the prior distribution, we are in a position to use a set of
observations y to do parameter estimation. Suppose that the observations y that our speaker
has observed are comprised of n total transitive sentences, m of which are passivized. Let
us simply instantiate Equation (4.12) for our particular problem:

P (π|y, α1, α2) =
P (y|π)P (π|α1, α2)

P (y|α1, α2)
(4.15)

The first thing to notice here is that the denominator, P (y|α1, α2), is not a function of π.
That means that it is a normalizing constant (Section 2.8). As noted in Section 4.4, we can
often do everything we need without computing the normalizing constant, here we ignore
the denominator by re-expressing Equation (4.15) in terms of proportionality:

P (π|y, α1, α2) ∝ P (y|π)P (π|α1, α2)

From what we know about the binomial distribution, the likelihood is P (y|π) =
(
n
m

)
πm(1−

π)n−m, and from what we know about the beta distribution, the prior is P (π|α1, α2) =
1

B(α1,α2)
πα1−1(1− π)α2−1. Neither

(
n
m

)
nor B(α1, α2) is a function of π, so we can also ignore

them, giving us

P (π|y, α1, α2) ∝
Likelihood︷ ︸︸ ︷

πm(1− π)n−m

Prior︷ ︸︸ ︷
πα1−1(1− π)α2−1

∝ πm+α1−1(1− π)n−m+α2−1 (4.16)

Now we can crucially notice that the posterior distribution on π itself has the form of
a beta distribution (Equation (4.13)), with parameters α1 + m and α2 + n − m. This fact
that the posterior has the same functional form as the prior is called conjugacy; the beta
distribution is said to be conjugate to the binomial distribution. Due to conjugacy, we can
circumvent the work of directly calculating the normalizing constant for Equation (4.16), and
recover it from what we know about beta distributions. This gives us a normalizing constant
of B(α1 +m,α2 + n−m).

Now let us see how our American English speaker might apply Bayesian inference to
estimating the probability of passivization in the new English variety. A reasonable prior
distribution might involve assuming that the new variety could be somewhat like American
English. Approximately 8% of spoken American English sentences with simple transitive
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Figure 4.9: Prior, likelihood, and posterior distributions over π. Note that the likelihood
has been rescaled to the scale of the prior and posterior; the original scale of the likelihood
is shown on the axis on the right.

verbs are passives (Roland et al., 2007), hence our speaker might choose α1 and α2 such
that the mode of P (π|α1, α2) is near 0.08. A beta distribution has a mode if α1, α2 > 1,
in which case the mode is α1−1

α1+α2−2
, so a reasonable choice might be α1 = 3, α2 = 24, which

puts the mode of the prior distribution at 2
25

= 0.08.6 Now suppose that our speaker is
exposed to n = 7 transitive verbs in the new variety, and two are passivized (m = 2). The
posterior distribution will then be beta-distributed with α1 = 3 + 2 = 5, α2 = 24 + 5 = 29.
Figure 4.9 shows the prior distribution, likelihood, and posterior distribution for this case,
and also for the case where the speaker has been exposed to three times as much data in
similar proportions (n = 21,m = 6). In the n = 7, because the speaker has seen relatively
little data, the prior distribution is considerably more peaked than the likelihood, and the
posterior distribution is fairly close to the prior. However, as our speaker sees more and
more data, the likelihood becomes increasingly peaked, and will eventually dominate in the
behavior of the posterior (See Exercise to be included with this chapter).

In many cases it is useful to summarize the posterior distribution into a point estimate
of the model parameters. Two commonly used such point estimates are the mode (which

6Compare with Section 4.3.1—the binomial likelihood function has the same shape as a beta distribution!
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we covered a moment ago) and the mean. For our example, the posterior mode is 4
32
, or

0.125. Selecting the mode of the posterior distribution goes by the name of Maximum a

posteriori (MAP) estimation. The mean of a beta distribution is α1

α1+α2
, so our posterior

mean is 5
34
, or about 0.15. There are no particular deep mathematical principles motivating

the superiority of the mode over the mean or vice versa, although the mean should generally
be avoided in cases where the posterior distribution is multimodal. The most “principled”
approach to Bayesian parameter estimation is in fact not to choose a point estimate for model
parameters after observing data, but rather to make use of the entire posterior distribution
in further statistical inference.

Bayesian density estimation

The role played in density estimation by parameter estimation up to this point has been as
follows: an estimator is applied to observed data to obtain an estimate for model parameters
θ̂, and the resulting probabilistic model determines a set of predictions for future data,
namely the distribution P (Y |θ̂). If we use Bayesian inference to form a posterior distribution
on θ and then summarize that distribution into a point estimate, we can use that point
estimate in exactly the same way. In this sense, using a given prior distribution together with
the MAP or posterior mean can be thought of as simply one more estimator. In fact, this view
creates a deep connection between Bayesian inference and maximum-likelihood estimation:
maximum-likelihood estimation (Equation (4.3)) is simply Bayesian MAP estimation when
the prior distribution P (θ|I) (Equation (4.11)) is taken to be uniform over all values of θ.

However, in the purest Bayesian view, it is undesirable to summarize our beliefs about
model parameters into a point estimate, because this discards information. In Figure 4.9, for
example, the two likelihoods are peaked at the same place, but the n = 21 likelihood is more
peaked than the n = 7 likelihood. This translates into more peakedness and therefore more
certainty in the posterior; this certainty is not reflected in the MLE or even in the MAP
estimate. Pure Bayesian density estimation involves marginalization (Section 3.2) over the
model parameters, a process which automatically incorporates this degree of certainty. That
is, we estimate a density over new observations ynew as:

P (ynew|y, I) =
∫

θ

P (ynew|θ)P (θ|y, I) dθ (4.17)

where P (θ|y, I) is familiar from Equation (4.12).
Suppose, for example, that after hearing her n examples from the new English dialect,

our speaker wanted to predict the number of passives r she would hear after the next k trials.
We would have:

P (r|k, I,y) =
∫ 1

0

P (r|k, π)P (π|y, I) dπ
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This expression can be reduced to

P (r|k, I,y) =
(
k

r

)∏r−1
i=0 (α1 +m+ i)

∏k−r−1
i=0 (α2 + n−m+ i)∏k−1

i=0 (α1 + α2 + n+ i)
(4.18)

=

(
k

r

)
B(α1 +m+ r, α2 + n−m+ k − r)

B(α1 +m,α2 + n−m)
(4.19)

which is an instance of what is known as the beta-binomial model. The expression
may seem formidable, but experimenting with specific values for k and r reveals that it is
simpler than it may seem. For a single trial (k = 1), for example, this expression reduces to
P (r = 1|k, I,y) = α1+m

α1+α2+n
, which is exactly what would be obtained by using the posterior

mean. For two trials (k = 2), we would have P (r = 1|k, I,y) = 2 (α1+m)(α2+n−m)
(α1+α2+n)(α1+α2+n+1)

, which

is slightly less than what would be obtained by using the posterior mean.7 This probability
mass lost from the r = 1 outcome is redistributed into the more extreme r = 0 and r = 2
outcomes. For k > 1 trials in general, the beta-binomial model leads to density estimates
of greater variance—also called dispersion in the modeling context—than for the binomial
model using posterior mean. This is illustrated in Figure 4.10. The reason for this greater
dispersion is that different future trials are only conditionally independent given a fixed choice
of the binomial parameter π. Because there is residual uncertainty about this parameter,
successes on different future trials are positively correlated in the Bayesian prediction despite
the fact that they are conditionally independent given the underlying model parameter (see
also Section 2.4.2 and Exercise 2.2). This is an important property of a wide variety of
models which involve marginalization over intermediate variables (in this case the binomial
parameter); we will return to this in Chapter 8 and later in the book.

4.5 Computing approximate Bayesian inferences with

sampling techniques

In the example of Bayesian inference given in Section 4.4.3, we were able to express both
(i) the posterior probability over the binomial parameter π, and (ii) the probability distri-
bution over new observations as the closed-form expressions8 shown in Equations (4.16)

7With the posterior mean, the term (α1 + α2 + n+ 1) in the denominator would be replaced by another
instance of (α1 + α2 + n), giving us

P (r = 1|k, π̂) = (α1 +m)(α2 + n−m)

(α1 + α2 + n)2
(4.20)

8A closed-form expression is one that can be written exactly as a combination of a finite number of
“well-known” functions (such as polynomials, logarithms, exponentials, and so forth).
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Figure 4.10: The beta-binomial model has greater dispersion than the binomial model. Re-
sults shown for α1 +m = 5, α2 + n−m = 29.

and (4.20) respectively. We were able to do this due to the conjugacy of the beta distri-
bution to the binomial distribution. However, it will sometimes be the case that we want
to perform Bayesian inferences but don’t have conjugate distributions to work with. As a
simple example, let us turn back to a case of inferring the ordering preference of an English
binomial, such as {radio, television}. The words in this particular binomial differ in length
(quantified as, for example, number of syllables), and numerous authors have suggested that
a short-before-long metrical constraint is one determinant of ordering preferences for En-
glish binomials (Cooper and Ross, 1975; Pinker and Birdsong, 1979, inter alia). Our prior
knowledge therefore inclines us to expect a preference for the ordering radio and television
(abbreviated as r) more strongly than a preference for the ordering television and radio (t),
but we may be relatively agnostic as to the particular strength of the ordering preference. A
natural probabilistic model here would be the binomial distribution with success parameter
π, and a natural prior might be one which is uniform within each of the ranges 0 ≤ π ≤ 0.5
and 0.5 < π < 1, but twice as large in the latter range as in the former range. This would
be the following prior:

p(π = x) =





2
3

0 ≤ x ≤ 0.5
4
3

0.5 < x ≤ 1

0 otherwise

(4.21)

which is a step function, illustrated in Figure 4.11a.
In such cases, there are typically no closed-form expressions for the posterior or predic-

tive distributions given arbitrary observed data y. However, these distributions can very
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often be approximated using general-purpose sampling-based approaches. Under these
approaches, samples (in principle independent of one another) can be drawn over quantities
that are unknown in the model. These samples can then be used in combination with density
estimation techniques such as those from Chapter ?? to approximate any probability density
of interest. Chapter ?? provides a brief theoretical and practical introduction to sampling
techniques; here, we introduce the steps involved in sampling-based approaches as needed.

For example, suppose we obtain data y consisting of ten binomial tokens—five of r and
five of t—and are interested in approximating the following distributions:

1. The posterior distribution over the success parameter π;

2. The posterior predictive distribution over the observed ordering of an eleventh token;

3. The posterior predictive distribution over the number of r orderings seen in ten more
tokens.

We can use BUGS, a highly flexible language for describing and sampling from structured
probabilistic models, to sample from these distributions. BUGS uses Gibbs sampling, a
Markov-chain Monte Carlo technique (Chapter ??), to produce samples from the posterior
distributions of interest to us (such as P (π|y, I) or P (ynew|y, I)). Here is one way to describe
our model in BUGS:

model {

/* the model */

for(i in 1:length(response)) { response[i] ~ dbern(p) }

/* the prior */

pA ~ dunif(0,0.5)

pB ~ dunif(0.5,1)

i ~ dbern(2/3)

p <- (1 - i) * pA + i * pB

/* predictions */

prediction1 ~ dbern(p)

prediction2 ~ dbin(p, 10) /* dbin() is for binomial distribution */

}

The first line,

for(i in 1:length(response)) { response[i] ~ dbern(p) }

says that each observation is the outcome of a Bernoulli random variable with success pa-
rameter p.

The next part,
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pA ~ dunif(0,0.5)

pB ~ dunif(0.5,1)

i ~ dbern(2/3)

p <- (1 - i) * pA + i * pB

is a way of encoding the step-function prior of Equation (4.21). The first two lines say that
there are two random variables, pA and pB, drawn from uniform distributions on [0, 0.5] and
[0.5, 1] respectively. The next two lines say that the success parameter p is equal to pA 2

3
of

the time, and is equal to pB otherwise. These four lines together encode the prior of Equation
(4.21).

Finally, the last two lines say that there are two more random variables parameterized
by p: a single token (prediction1) and the number of r outcomes in ten more tokens
(prediction2).

There are several incarnations of BUGS, but here we focus on a newer incarnation, JAGS,
that is open-source and cross-platform. JAGS can interface with R through the R library
rjags.9 Below is a demonstration of how we can use BUGS through R to estimate the
posteriors above with samples.

> ls()

> rm(i,p)

> set.seed(45)

> # first, set up observed data

> response <- c(rep(1,5),rep(0,5))

> # now compile the BUGS model

> m <- jags.model("../jags_examples/asymm_binomial_prior/asymm_binomial_prior.bug",data

> # initial period of running the model to get it converged

> update(m,1000)

> # Now get samples

> res <- coda.samples(m, c("p","prediction1","prediction2"), thin = 20, n.iter=5000)

> # posterior predictions not completely consistent due to sampling noise

> print(apply(res[[1]],2,mean))

> posterior.mean <- apply(res[[1]],2,mean)

> plot(density(res[[1]][,1]),xlab=expression(pi),ylab=expression(paste("p(",pi,")")))

> # plot posterior predictive distribution 2

> preds2 <- table(res[[1]][,3])

> plot(preds2/sum(preds2),type='h',xlab="r",ylab="P(r|y)",lwd=4,ylim=c(0,0.25))

> posterior.mean.predicted.freqs <- dbinom(0:10,10,posterior.mean[1])

> x <- 0:10 + 0.1

> arrows(x, 0, x, posterior.mean.predicted.freqs,length=0,lty=2,lwd=4,col="magenta")

> legend(0,0.25,c(expression(paste("Marginizing over ",pi)),"With posterior mean"),lty=c(1,2),col=c("black

9JAGS can be obtained freely at http://calvin.iarc.fr/~martyn/software/jags/, and rjags at
http://cran.r-project.org/web/packages/rjags/index.html.

Roger Levy – Probabilistic Models in the Study of Language draft, November 6, 2012 69

http://calvin.iarc.fr/~martyn/software/jags/
http://cran.r-project.org/web/packages/rjags/index.html


0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

π

P
(π

)

(a) Prior over π

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

density.default(x = res[[1]][, 1])

π

p(
π)

(b) Posterior over π

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

r

P
(r

|y
)

0 1 2 3 4 5 6 7 8 9 10

Marginizing over π
With posterior mean

(c) Posterior predictive dis-
tribution for N = 10,
marginalizing over π versus
using posterior mean

Figure 4.11: A non-conjugate prior for the binomial distribution: prior distribution, posterior
over π, and predictive distribution for next 10 outcomes

Two important notes on the use of sampling: first, immediately after compiling we specify
a “burn-in” period of 1000 iterations to bring the Markov chain to a “steady state” with:10

update(m,1000)

Second, there can be autocorrelation in the Markov chain: samples near to one
another in time are non-independent of one another.11 In order to minimize the bias in the
estimated probability density, we’d like to minimize this autocorrelation. We can do this
by sub-sampling or “thinning” the Markov chain, in this case taking only one out of every
20 samples from the chain as specified by the argument thin = 20 to coda.samples().
This reduces the autocorrelation to a minimal level. We can get a sense of how bad the
autocorrelation is by taking an unthinned sample and computing the autocorrelation at a
number of time lags:

> m <- jags.model("../jags_examples/asymm_binomial_prior/asymm_binomial_prior.bug",data

> # initial period of running the model to get it converged

> update(m,1000)

> res <- coda.samples(m, c("p","prediction1","prediction2"), thin = 1, n.iter=5000)

> autocorr(res,lags=c(1,5,10,20,50))

We see that the autocorrelation is quite problematic for an unthinned chain (lag 1), but it
is much better at higher lags. Thinning the chain by taking every twentieth sample is more
than sufficient to bring the autocorrelation down

10For any given model there is no guarantee how many iterations are needed, but most of the models
covered in this book are simple enough that on the order of thousands of iterations is enough.

11The autocorrelation of a sequence ~x for a time lag τ is simply the covariance between elements in the
sequence that are τ steps apart, or Cov(xi, xi+τ ).
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Notably, the posterior distribution shown in Figure 4.11a looks quite different from a beta
distribution. Once again the greater dispersion of Bayesian prediction marginalizing over π,
as compared with the predictions derived from the posterior mean, is evident in Figure 4.11c.

Finally, we’ll illustrate one more example of simple Bayesian estimation, this time of a
normal distribution for the F3 formant of the vowel [æ], based on speaker means of 15 child
native speakers of English from Peterson and Barney (1952). Since the normal distribution
has two parameters—the mean µ and variance σ2—we must use a slightly more complex prior
of the form P (µ, σ2). We will assume that these parameters are independent of one another
in the prior—that is, P (µ, σ2) = P (µ)P (σ2). For our prior, we choose non-informative

distributions (ones that give similar probability to broad ranges of the model parameters).
In particular, we choose uniform distributions over µ and log σ over the ranges [0, 105] and
[−100, 100] respectively.:12 This gives us the model:

y ∼ N (µ, σ2)

µ ∼ U(0, 105)
log σ ∼ U(−100, 100)

where ∼ means “is distributed as”.
Here is the model in BUGS:

var predictions[M]

model {

/* the model */

for(i in 1:length(response)) { response[i] ~ dnorm(mu,tau) }

/* the prior */

mu ~ dunif(0,100000) # based on F3 means for other vowels

log.sigma ~ dunif(-100,100)

sigma <- exp(log.sigma)

tau <- 1/(sigma^2)

/* predictions */

for(i in 1:M) { predictions[i] ~ dnorm(mu,tau) }

}

The first line,

var predictions[M]

states that the predictions variable will be a numeric array of length M (with M to be
specified from R). BUGS parameterizes the normal distribution differently than we have, using

a precision parameter τ
def
= 1

σ2 . The next line,

12See Gelman et al. (2004, Appendix C) for the relative merits of different choices of how to place a prior
on σ2.
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for(i in 1:length(response)) { response[i] ~ dnorm(mu,tau) }

simply expresses that observations y are drawn from a normal distribution parameterized by
µ and τ . The mean µ is straightforwardly parameterized with a uniform distribution over a
wide range. When we set the prior over τ we do so in three stages, first saying that log σ is
uniformly distributed:

log.sigma ~ dunif(-100,100)

and transforming from log σ to σ and then to τ :

sigma <- exp(log.sigma)

tau <- 1/(sigma^2)

From R, we can compile the model and draw samples as before:

> pb <- read.table("../data/peterson_barney_data/pb.txt",header=T)

> pb.means <- with(pb,aggregate(data.frame(F0,F1,F2,F3), by=list(Type,Sex,Speaker,Vowel

> names(pb.means) <- c("Type","Sex","Speaker","Vowel","IPA",names(pb.means)[6:9])

> set.seed(18)

> response <- subset(pb.means,Vowel=="ae" & Type=="c")[["F3"]]

> M <- 10 # number of predictions to make

> m <- jags.model("../jags_examples/child_f3_formant/child_f3_formant.bug",data=list("r

> update(m,1000)

> res <- coda.samples(m, c("mu","sigma","predictions"),n.iter=20000,thin=1)

and extract the relevant statistics and plot the outcome as follows:

> # compute posterior mean and standard deviation

> mu.mean <- mean(res[[1]][,1])

> sigma.mean <- mean(res[[1]][,12])

> # plot Bayesian density estimate

> from <- 1800

> to <- 4800

> x <- seq(from,to,by=1)

> plot(x,dnorm(x,mu.mean,sigma.mean),col="magenta",lwd=3,lty=2,type="l",xlim=c(from,to)

> lines(density(res[[1]][,2],from=from,to=to),lwd=3)

> rug(response)

> legend(from,0.0011,c("marginal density","density from\nposterior mean"),lty=c(1,2),lwd=2,col=c(

> # plot density estimate over mean observed in 10 more observations

> from <- 2500

> to <- 4100

> plot(x,dnorm(x,mu.mean,sigma.mean/sqrt(M)),type="l",lty=2,col="magenta",lwd=3,xlim=c(

> lines(density(apply(res[[1]][,2:11],1,mean,from=from,to=to)),lwd=3) # using samples to

> rug(response)

> legend(from,0.0035,c("marginal density","density from\nposterior mean"),lty=c(1,2),lwd=2,col=c(
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Figure 4.12: Bayesian inference for normal distribution

The resulting density estimate for a single future observation is shown in Figure 4.12a. This
is almost the same as the result obtained from using the posterior mean. However, the
density estimate for the mean obtained in ten future observations, shown in Figure 4.12b, is
rather different: once again it has greater dispersion than the estimate obtained using the
posterior mean.13

The ability to specify model structures like this, drawing from a variety of distributions,
and to compute approximate posterior densities with general-purpose tools, gives tremen-
dous modeling flexibility. The only real limits are conceptual—coming up with probabilistic
models that are appropriate for a given type of data—and computational—time and memory.

4.6 Further reading

Gelman et al. (2004) is probably the best reference for practical details and advice in Bayesian
parameter estimation and prediction.

4.7 Exercises

Exercise 4.1

13The density on the mean of ten future observations under the posterior mean µ and σ2 is given by
expressing the mean as a linear combination of ten independent identically distributed normal random
variables (Section 3.3).
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Confirm using simulations that the variance of relative-frequency estimation of π for bino-
mially distributed data really is π(1−π)

n
: for all possible combinations of π ∈ {0.1, 0.2, 0.5}, n ∈

{10, 100, 1000}, randomly generate 1000 datasets and estimate π̂ using relative frequency es-
timation. Plot the observed variance against the variance predicted in Equation 4.1.

Exercise 4.2: Maximum-likelihood estimation for the geometric distribution

You encountered the geometric distribution in Chapter 3, which models the generation of
sequence lengths as the repeated flipping of a weighted coin until a single success is achieved.
Its lone parameter is the success parameter π. Suppose that you have a set of observed
sequence lengths y = y1, . . . , yn. Since a sequence of length k corresponds to k− 1 “failures”
and one “success”, the total number of “failures” in y is

∑
i(yi − 1) and the total number of

“successes” is n.

1. From analogy to the binomial distribution, guess the maximum-likelihood estimate of
π.

2. Is your guess of the maximum-likelihood estimate biased? You’re welcome to answer
this question either through mathematical analysis or through computational simu-
lation (i.e. choose a value of π, repeatedly generate sets of geometrically-distributed
sequences using your choice of π, and quantify the discrepancy between the average
estimate π̂ and the true value).

3. Use your estimator to find best-fit distributions for token-frequency and type-frequency
distributions of word length in syllables as found in the file brown-counts-lengths-nsyll
(parsed Brown corpus; see Exercise 3.7).

Exercise 4.3

We covered Bayesian parameter estimation for the binomial distribution where the prior
distribution on the binomial success parameter π was of the form

P (π) ∝ πa(1− π)b

Plot the shape of this prior for a variety of choices of a and b. What determines the mode
of the distribution (i.e., the value of π where the curve’s maximum lies) and its degree of
peakedness? What do a and b together represent?

Exercise 4.4: “Ignorance” priors

A uniform prior distribution on the binomial parameter, P (π) = 1, is often called the
“ignorance” distribution. But what is the ignorance of? Suppose we have

X ∼ Binom(n, π).
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The beta-binomial distribution overX (i.e., marginalizing over π) is P (X = k) =
∫ 1

0

(
n
k

)
πn(1−

π)n−k dπ. What does this integral evaluate to (as a function of n and k) when the prior dis-
tribution on π is uniform? (Bayes, 1763; Stigler, 1986)

Exercise 4.5: Binomial and beta-binomial predictive distributions
Three native English speakers start studying a new language together. This language

has flexible word order, so that sometimes the subject of the sentence can precede the verb
(SV), and sometimes it can follow the verb (VS). Of the first three utterances of the new
language they are taught, one is VS and the other two are SV.

Speaker A abandons her English-language preconceptions and uses the method of max-
imum likelihood to estimate the probability that an utterance will be SV. Speakers B and
C carry over some preconceptions from English; they draw inferences regarding the SV/VS
word order frequency in the language according to a beta-distributed prior, with α1 = 8
and α2 = 1 (here, SV word order counts as a “success”), which is then combined with the
three utterances they’ve been exposed to thus far. Speaker B uses maximum a-posterior
(MAP) probability to estimate the probability that an utterance will be SV. Speaker C is
fully Bayesian and retains a full posterior distribution on the probability that an utterance
will be SV.

It turns out that the first three utterances of the new language were uncharacteristic;
of the next twenty-four utterances our speakers hear, sixteen of them are VS. Which of our
three speakers was best prepared for this eventuality, as judged by the predictive distribution
placed by the speaker on the word order outcomes of these twenty-four utterances? Which
of our speakers was worst prepared? Why?

Exercise 4.6: Fitting the constituent-order model.Ï

Review the constituent-order model of Section 2.8 and the word-order-frequency data of
Table 2.2.

• Consider a heuristic method for choosing the model’s parameters: set γ1 to the relative
frequency with which S precedes O, γ2 to the relative frequency with which S precedes
V, and γ3 to the relative frequency with which V precedes O. Compute the probability
distribution it places over word orders.

• Implement the likelihood function for the constituent-order model and use convex op-
timization software of your choice to find the maximum-likelihood estimate of γ1, γ2, γ3
for Table 2.2. (In R, for example, the optim() function, using the default Nelder-Mead
algorithm, will do fine.) What category probabilities does the ML-estimated model
predict? How does the heuristic-method fit compare? Explain what you see.

Exercise 4.7: What level of autocorrelation is acceptable in a Markov chain?
How do you know when a given level of autocorrelation in a thinned Markov chain is

acceptably low? One way of thinking about this problem is to realize that a sequence
of independent samples is generally going to have some non-zero autocorrelation, by pure
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chance. The longer such a sequence, however, the lower the autocorrelation is likely to be.
(Why?) Simulate a number of such sequences of length N = 100, drawn from a uniform
distribution, and compute the 97.5% quantile autocorrelation coefficient—that is, the value
r such that 97.5% of the generated sequences have correlation coefficient smaller than this
value. Now repeat this process for a number of different lengths N , and plot this threshold
r as a function of N .

Exercise 4.8: Autocorrelation of Markov-chain samples from BUGS.
Explore the autocorrelation of the samples obtained in the two models of Section 4.5, vary-

ing how densely you subsample the Markov chain by varying the thinning interval (specified
by the thin argument of coda.samples()). Plot the average (over 20 runs) autocorrela-
tion on each model parameter as a function of the thinning interval. For each model, how
sparsely do you need to subsample the chain in order to effectively eliminate the autocorre-
lation? Hint: in R, you can compute the autocorrelation of a vector x with:

> cor(x[-1],x[-length(x)])
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