
Chapter 2

Univariate Probability

This chapter briefly introduces the fundamentals of univariate probability theory, density
estimation, and evaluation of estimated probability densities.

2.1 What are probabilities, and what do they have to

do with language?

We’ll begin by addressing a question which is both philosophical and practical, and may be
on the minds of many readers: What are probabilities, and what do they have to do with
language? We’ll start with the classic but non-linguistic example of coin-flipping, and then
look at an analogous example from the study of language.

Coin flipping

You and your friend meet at the park for a game of tennis. In order to determine who will
serve first, you jointly decide to flip a coin. Your friend produces a quarter and tells you that
it is a fair coin. What exactly does your friend mean by this?

A translation of your friend’s statement into the language of probability theory would
be that the tossing of the coin is an experiment—a repeatable procedure whose outcome
may be uncertain—in which the probability of the coin landing with heads face up is equal
to the probability of it landing with tails face up, at 1

2
. In mathematical notation we would

express this translation as P (Heads) = P (Tails) = 1
2
. This mathematical translation is a

partial answer to the question of what probabilities are. The translation is not, however,
a complete answer to the question of what your friend means, until we give a semantics to
statements of probability theory that allows them to be interpreted as pertaining to facts
about the world. This is the philosophical problem posed by probability theory.

Two major classes of answer have been given to this philosophical problem, corresponding
to two major schools of thought in the application of probability theory to real problems in
the world. One school of thought, the frequentist school, considers the probability of an event
to denote its limiting, or asymptotic, frequency over an arbitrarily large number of repeated
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trials. For a frequentist, to say that P (Heads) = 1
2
means that if you were to toss the coin

many, many times, the proportion of Heads outcomes would be guaranteed to eventually
approach 50%.

The second, Bayesian school of thought considers the probability of an event E to be a
principled measure of the strength of one’s belief that E will result. For a Bayesian, to say
that P (Heads) for a fair coin is 0.5 (and thus equal to P (Tails)) is to say that you believe that
Heads and Tails are equally likely outcomes if you flip the coin. A popular and slightly more
precise variant of Bayesian philosophy frames the interpretation of probabilities in terms of
rational betting behavior, defining the probability π that someone ascribes to an event as
the maximum amount of money they would be willing to pay for a bet that pays one unit
of money. For a fair coin, a rational better would be willing to pay no more than fifty cents
for a bet that pays $1 if the coin comes out heads.1

The debate between these interpretations of probability rages, and we’re not going to try
and resolve it here, but it is useful to know about it, in particular because the frequentist
and Bayesian schools of thought have developed approaches to inference that reflect these
philosophical foundations and, in some cases, are considerably different in approach. For-
tunately, for the cases in which it makes sense to talk about both reasonable belief and
asymptotic frequency, it’s been proven that the two schools of thought lead to the same rules
of probability. If you’re further interested in this, I encourage you to read Cox (1946), a
beautiful, short paper.

An example of probabilities in language: word ordering

There were two parts to formalizing the notion of probability in the coin-flipping example:
(1) delimiting the world of possible outcomes, and (2) assigning probabilities to each possible
outcome. Each of these steps involves a simplification. Step 1 ignores such details as the
angle between the “vertical” axis of the coin’s face and magnetic north which results from
the flip, and omits such possibilities as that the coin will land on its edge, that it will be
snatched up by an owl, and so forth. Step 2 omits contingent information such as the relative
orientation of the coin upon its being flipped, how hard it is flipped, the air currents, and
so forth. With these simplifications, however, comes a great deal of analytical traction and
power. Cases such as these, in which we can delimit a world of possible outcomes and express
probabilities over those outcomes on the basis of incomplete knowledge, are ubiquitous in
science, and are also ubiquitous in language. As a simple example analogous to coin flipping,
let us consider the choice of how to order the words in an English binomial (Malkiel, 1959;
Cooper and Ross, 1975; Benor and Levy, 2006, inter alia), such as principal and interest,
where both orders are observed in naturally occurring usage. For a linguist to claim that
this binomial has no ordering preference can be translated into the language of probability
theory as stating that we are equally likely to observe (in some set of contexts of English

1This definition in turn raises the question of what “rational betting behavior” is. The standard response
to this question defines rational betting as betting behavior that will never enter into a combination of bets
that is guaranteed to lose money, and will never fail to enter into a combination of bets that is guaranteed
to make money. The arguments involved are called “Dutch Book arguments” (Jeffrey, 2004).
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usage) the phrases principal and interest and interest and principal ; if we abbreviate these
two orderings as p and i (we might denote the union of the two orderings as {interest,
principal}) then mathematically our linguist is saying that P (p) = P (i) = 1

2
.

2.2 Sample Spaces

The underlying foundation of any probability distribution is the sample space—a set of
possible outcomes, conventionally denoted Ω. For example, the sample space for orderings
of the unordered binomial pair {principal, interest} is

Ω = {p, i} (2.1)

If we were to observe two tokens of the binomial, then the sample space would be

Ω = {pp, pi, ip, ii} (2.2)

In general, sample spaces can be finite (e.g., the set of all syntactic categories), countably
infinite (e.g., the set of integers, the set of all phrase-structure trees), or uncountably infinite
(e.g., the set of real numbers).

2.3 Events and probability spaces

An event is simply a subset of a sample space. In the interpretation of probability distri-
butions as beliefs, events are often interpreted as propositions.

What is the sample space corresponding to the roll of a single six-sided die? What
is the event that the die roll comes up even?

It follows that the negation of an event E (that is, E not happening) is simply Ω− E.
A probability space P on Ω is a function from events in Ω to real numbers such that

the following three axioms hold:

1. P (E) ≥ 0 for all E ⊂ Ω (non-negativity).

2. If E1 and E2 are disjoint, then P (E1 ∪ E2) = P (E1) + P (E2) (disjoint union).

3. P (Ω) = 1 (properness).

These axioms allow us to express the probabilities of some events in terms of others.
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2.4 Conditional Probability, Bayes’ rule, and Indepen-

dence

The conditional probability of event B given that A has occurred/is known is defined
as follows:

P (B|A) ≡ P (A ∩ B)

P (A)

We’ll use another type of word-ordering example to illustrate this concept. In Old English,
the object in a transitive sentence could appear either preverbally or postverbally. It is also
well-documented in many languages that the “weight” of a noun phrase (as measured, for
example, by number of words or syllables) can affect its preferred position in a clause, and
that pronouns are “light” (Hawkins, 1994; Wasow, 2002). Suppose that among transitive
sentences in a corpus of historical English, the frequency distribution of object position and
pronominality is as follows:

(1)
Pronoun Not Pronoun

Object Preverbal 0.224 0.655
Object Postverbal 0.014 0.107

For the moment, we will interpret these frequencies directly as probabilities. (We’ll see more
on this in Chapter 4.) What is the conditional probability of pronominality given that an
object is postverbal?

In our case, event A is Postverbal, and B is Pronoun. The quantity P (A ∩ B) is
already listed explicity in the lower-right cell of table I: 0.014. We now need the quantity
P (A). For this we need to calculate the Marginal Total of row 2 of Table I: 0.014 +
0.107 = 0.121. We can then calculate:

P (Pronoun|Postverbal) = P (Postverbal ∩Pronoun)

P (Postverbal)

=
0.014

0.014 + 0.107
= 0.116

The chain rule

If we have events E1, E2, . . . , En, then we can recursively apply the definition of conditional
independence to the probability of all these events occurring—P (E1 ∩ E2 ∩ · · · ∩ En)—to
obtain

P (E1 ∩ E2 ∩ · · · ∩ En) = P (En|E1 ∩ E2 ∩ · · · ∩ En−1) . . . P (E2|E1)P (E1) (2.3)

Equation 2.3 is known as the chain rule, and using it to decompose a complex probability
distribution is known as chain rule decomposition.
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2.4.1 Bayes’ rule

Bayes’ rule (also called Bayes’ theorem) is simply the expression of a conditional prob-
ability in terms of the converse conditional probability and the two relevant unconditional
probabilities:

P (A|B) =
P (B|A)P (A)

P (B)
(2.4)

Bayes’ rule can also be extended to more complex conjunctions of events/propositions:

P (A|B, I) =
P (B|A, I)P (A|I)

P (B|I) (2.5)

Although Bayes’ rule is a simple mathematical truth, it acquires profound conceptual
and practical power when viewed as a way of updating beliefs (encoded as probability dis-
tributions) in the face of new information. Specifically, suppose belief in A is of interest.
One’s initial, or prior, beliefs in A are quantified by P (A|I). Bayes’ rule then expresses how
beliefs should change when B is learned. In particular, the posterior belief P (A|B, I) in
A equals the prior belief times the ratio between (i) the likelihood P (B|A, I) of B under
A and I and (ii) the likelihood of B under I alone. This use of Bayes’ rule is often called
Bayesian inference, and it serves as the cornerstone of (fittingly) Bayesian statistics.

We will see many examples of Bayesian inference throughout this book, but let us work
through a simple example to illustrate its basic workings. We will return to the domain of
Old English word order, but now focus on the relationship between an object NP’s word
order and its animacy (assuming every object is either animate or inanimate) rather than
its pronominality. Suppose we have the following probabilities:

P (Object Animate) = 0.4 (2.6)

P (Object Postverbal|Object Animate) = 0.7

P (Object Postverbal|Object Inanimate) = 0.8

and that we want to compute how likely an object is to be animate given that it is expressed
postverbally—that is, P (Object Animate|Object Postverbal) (e.g., a comprehender may
know at some point in a sentence that the object will appear postverbally, but hasn’t yet
heard the object spoken). Although we aren’t given a probability table as in Example I, we
actually have all the information necessary to compute this probability using Bayes’ rule.
We go through the calculations step by step below, simplifying the notation by using Anim
and Inanim respectively to denote animacy and inanimacy of the object, and PreV and
PostV respectively to denote preverbal and postverbal positioning of the object.

P (Anim|PostV) =
P (PostV|Anim)P (Anim)

P (PostV)
(2.7)
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We have been given the value of the two terms in the numerator, but let us leave the
numerator alone for the moment and focus on the denominator, which we weren’t given in
the problem specification. At first, it may not be obvious how to compute the denominator.
However, we can Axiom 2 of probability theory (disjoint union) to express P (PostV) as the
sum of the probabilities P (PostV ∩Anim) and P (PostV ∩ Inanim):

P (PostV) = P (PostV ∩Anim) + P (PostV ∩ Inanim)

Although these probabilities were not specified directly either, we can use the definition of
conditional probability to turn them into forms that were specified:

P (PostV ∩Anim) = P (PostV|Anim)P (Anim) (2.8)

P (PostV ∩ Inanim) = P (PostV|Inanim)P (Inanim)

Now we can plug this result back into Equation (2.7):

P (Anim|PostV) =
P (PostV|Anim)P (Anim)

P (PostV|Anim)P (Anim) + P (PostV|Inanim)P (Inanim)
(2.9)

At this point, it is worth reflecting on the expanded form Bayes’ rule for this problem that we
see in Equation (2.9). First, note that we have rewritten the initial form of Bayes’ rule into
a formula all of whose terms we have immediate access to in the probability specifications
given in (2.6). (We were not given P (Inanim), but the axioms of probability theory—
disjoint union together with properness—allow us to easily determine that its value is 0.6.)
Hence we can immediately calculate the correct answer to our problem:

P (Anim|PostV) =
0.7× 0.4

0.7× 0.4 + 0.8× 0.6
= 0.3684 (2.10)

Second, note that in the right-hand side of Equation (2.9), the numerator appears as one
of the two terms being summed in the denominator. This is quite often the case in appli-
cations of Bayes’ rule. It was the fact that Anim and Inanim constitute an exhaustive
partition of our sample space that allowed us to break down P (PostV) in the way we did
in Equation (2.8). More generally, it is quite common for the most complex step of applying
Bayes’ rule to be breaking the sample space into an exhaustive partition A1, A2, . . . , An, and
re-expressing Equation (2.11) through a summation over the members of this exhaustive
partition:

P (A|B) =
P (B|A)P (A)∑n

j=1 P (B|Aj)P (Aj)
(2.11)

A closely related third point is that computation of the denominator is usually the most
complex and difficult part of applying Bayes’ rule. Fortunately, there are often tricks that
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one can apply either to avoid this computation or to drastically simplify it; you will see
several examples of these tricks later in the book.

Finally, it is worthwhile to compare the probabilities of the object being animate before
(Equation (2.6)) versus after (Equation (2.10)) obtaining the knowledge that the object
follows the verb. Inspection of these two probabilities reveals that the object is postverbal
reduces the probability by a small amount, from 0.4 to about 0.37. Inspection of the two
conditional probabilities in the problem specification also reveals that inanimate objects
are some more likely to be realized postverbally (probability 0.7) than animate objects are
(probability 0.8). In fact, the shift induced in probability of object animacy from learning
that the object is postverbal directly follows from the differential preference for postverbal
realization of inanimate versus animate objects. If the object were inanimate, it would
predict more strongly than if the object were animate that the object should be postverbal.
Hence, learning that the object is in fact postverbal goes some way toward disconfirming the
possibility that the object may turn out to be animate, while strengthening the possibility
that it may turn out to be inanimate.

2.4.2 (Conditional) Independence

Events A and B are said to be Conditionally Independent given information C if

P (A ∩B|C) = P (A|C)P (B|C) (2.12)

This form of conditional independence is often denoted symbolically as A ⊥ B | C.
A more philosophical way of interpreting conditional independence is that if we are in

the state of knowledge denoted by C, then conditional independence of A and B means that
knowing A tells us nothing more about the probability of B, and vice versa. The simple
statement that A and B are conditionally independent is often used; this should be
interpreted that A and B are conditionally independent given an implicit state C of “not
knowing anything at all” (C = ∅).

It’s crucial to keep in mind that if A and B are conditionally dependent given C, that does
not guarantee they will not be conditionally independent given some other set of knowledge
D. As an example, suppose that your friend gives you a pouch with three coins of identical
shape. One coin is two-headed, one coin is two-tailed, and one coin is a regular fair coin; this
information constitutes your state of knowledge C. You are to randomly select a coin from
the pouch and, without inspecting it, flip it twice; the outcomes of the flips correspond to
events A and B. Given this state of affairs, A and B are clearly not conditionally independent
given C. For example, P (B|A = Heads, C) > P (B|C): knowing that A = Heads rules out
the third coin and therefore makes it more likely that the second coin flip B will also come
out heads. Suppose, however, that you inspect the coin before flipping it twice; call the
new state of knowledge obtained after inspecting the coin D. We do have A ⊥ B | D: the
conditional dependence between A and B given C derived from the uncertainty as to which
of the three coins you selected, and once that uncertainty is removed, the dependency is
broken and independence is obtained.
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Likewise, it is also possible (though less common in real-world circumstances) for con-
ditional independence between events to be lost when new knowledge is gained—see Exer-
cise 2.2.

2.5 Discrete random variables and probability mass

functions

A discrete random variable X is literally a function from the sample space Ω of a
probability space to a finite, or countably infinite, set of real numbers (R).2 Together with
the function P mapping elements ω ∈ Ω to probabilities, a random variable determines a
probability mass function P (X(ω)), or P (X) for short, which maps real numbers to
probabilities. For any value x in the range of the random variable X, suppose that A is
the part of the sample space all of whose members X maps to x. The probability that X
will take on the value x is therefore simply the value that the original probability function
assigns to A:

P (X = x) = P (A)

Technically speaking, the two P ’s in this equation are different—the first applies to values
in the range of the random variable X, whereas the second applies to subsets of the sample
space.

The relationship between the sample space Ω, a probability space P on Ω, and a discrete
random variable X on Ω can be a bit subtle, so we’ll illustrate it by returning to our example
of collecting two tokens of {principal, interest}. Once again, the sample space is Ω =
{pp, pi, ip, ii}. Consider the functionX that maps every possible pair of observations—that
is, every point in the sample space—to the total number of p outcomes obtained. Suppose
further that there is no ordering preference for the binomial, so that for each point ω in the
sample space we have P ({ω}) = 1

2
× 1

2
= 1

4
. The total number of p outcomes is a random

variable X, and we can make a table of the relationship between ω ∈ Ω, X(ω), and P (X):

ω X(ω) P (X)
pp 2 1

4

pi 1 1
2ip 1

ii 0 1
4

Notice that the random variable X serves to partition the sample space into equivalence
classes: for each possible real number y mapped to by X, all elements of Ω mapped to y
are in that equivalence class. Intuitively, a random variable can be thought of as focusing

2A set S is countably infinite if a one-to-one mapping exists between the integers 0, 1, 2, . . . and S.
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attention on only the distinctions within the sample space that are of interest to us for a
particular application. In the example above, the sample space consisted of ordered pairs
of {principal,interest} binomials, but the random variable X restricts our attention to the
observed frequency of each of the two binomial forms, throwing out the information about
which binomial is observed first and which is observed second.

2.5.1 Bernoulli trials and the Bernoulli distribution

Perhaps the simplest interesting kind of event space is one that contains two outcomes, which
we will arbitrarily label “success” and “failure” and respectively associate the integers 1 and
0. A Bernoulli trial is an experiment (in the sense of Section 2.1) with these two possible
outcomes. This leads us to our first parametric family of probability distributions,
the Bernoulli distribution. A parametric family of probability distributions is an infi-
nite collection of probability distributions that vary only in the value of a fixed number of
parameters characterizing the family. The Bernoulli distribution is perhaps the simplest
of these families, being characterized by a single parameter, which we will denote by π. π
is the probability of achieving success on a single Bernoulli trial, and can take any value
between 0 and 1 (inclusive); π is sometimes called the “success parameter”. The Bernoulli
distribution thus has a probability mass function of the form

P (X = x) =





π if x = 1

1− π if x = 0

0 otherwise

A random variable that follows a Bernoulli distribution is often called a Bernoulli random

variable. For example, the flipping of a fair coin (with heads mapped to 1 and tails to 0)
or the ordering outcome of an English binomial with no ordering preference can be modeled
as a Bernoulli random variable with parameter π = 0.5.

2.5.2 Multinomial trials

We can also generalize the Bernoulli trial to the case where there are r ≥ 2 possible outcomes;
for convenience we can label the outcomes c1, . . . , cr. This is a multinomial trial, and
just as the Bernoulli distribution has 1 parameter, the distribution for multinomial trials has
r − 1 parameters π1, . . . , πr−1 determining the probability that a trial will fall into each of
the classes:
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P (X = x) =





π1 if x = c1

π2 if x = c2
...

...

πr−1 if x = cr−1

1−∑r−1
i=1 πi if x = cr

0 otherwise

(2.13)

We can make Equation (2.13) more symmetric by defining πr
def
= 1−∑r−1

i=1 πi, which allows
us to replace the second-to-last line of 2.13 with

P (X = x) = πr if x = cr

but you should keep in mind that πr is not an independent parameter, since it is fully
determined by the other parameters.

Example. You decide to pull Alice in Wonderland off your bookshelf, open to a random
page, put your finger down randomly on that page, and record the letter that your finger
is resting on (ignoring the outcome and trying again if your finger rests on punctuation or
a space). This procedure can be modeled as a multinomial trial with 26 possible outcomes,
and to a first approximation the parameters of the associated distribution can simply be the
relative frequencies of the different letters (ignoring the differing widths and heights of the
letters). In Alice in Wonderland, 12.6% of the letters are e, 9.9% are t, 8.2% are a, and so
forth; so we could write the parameters of our model as πe = 0.126, πt = 0.099, πa = 0.082,
and so forth.

The probability distribution for multinomial trials discussed here is a special case of the
more general multinomial distribution introduced in Section 3.4.1.

2.6 Cumulative distribution functions

A random variable X determines a probability mass function P (X) on the real numbers.
This probability mass function in turn determines a cumulative distribution function

F , defined as

F (x)
def
= P (X ≤ x)

We give a very simple illustration with the Bernoulli distribution. A Bernoulli random
variable with parameter π has the following (very simple!) cumulative distribution function:
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F
(x

)

0

1 − π

1

Figure 2.1: The cumulative distribution function for a Bernoulli random variable with pa-
rameter π

F (x) =





0 x < 0

π 0 ≤ x < 1

1 x ≥ 1

which is illustrated in Figure 2.1.

A probability mass function uniquely determines a cumulative distribution function, and
vice versa.

Note that the cumulative distribution function is monotonically increasing in the range of
the random variable. This means that the cumulative distribution function has an inverse,
the quantile function, which maps a probability 0 ≤ p ≤ 1 into the lowest possible
number x such that P (X ≤ x) ≥ p.

2.7 Continuous random variables and probability den-

sity functions

Limiting a random variable to take on at most a countably infinite set of values is often too
strong a constraint: in many cases, we want to allow outcomes to range along a continuum of
real values, which is uncountably infinite. This type of outcome requires different treatment,
with continuous random variables. Instead of a discrete random variable’s probability
mass function, a continuous random variable has a probability density function p(x)
that assigns non-negative density to every real number. For example, the amount of time
that an infant lives before it hears a parasitic gap in its native language would be naturally
modeled as a continuous random variable (with p(x) > 0 only for x > 0). If we plot the
probability density function (pdf) as a curve over the real number line, then the properness
requirement of probability theory ensures that the total area under the curve is equal to 1
(see example in Section 2.7.1):
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Figure 2.2: The probability density function and cumulative distribution function of the
uniform distribution with parameters a and b

∫ ∞

−∞
p(x) dx = 1

2.7.1 The uniform distribution

The simplest parametrized family of continuous probability distributions is the uniform

distribution, defined by parameters a and b bounding a continuous region [a, b] within
which the density function p(x) is constant, and outside of which p(x) = 0. Since the area
under the pdf curve must total 1, we must have the probability density function

P (x|a, b) =
{

1
b−a

a ≤ x ≤ b

0 otherwise
(2.14)

p(x) = 1
b−a

when x ∈ [a, b]. We sometimes denote that a random variable X is distributed
uniformly on the interval [a, b] with the following notation:

X ∼ U(a, b)

Figure 2.2 shows plots of the pdf and cdf of the uniform distribution.
Example: although the uniform distribution is the simplest example of a continuous

probability distribution, it is not the continuous distribution that has the most obvious or
widespread applications in linguistics. One area in which uniform distributions would be most
applicable, however, is historical applications, particularly as pertains to inferring event times
such as the dates of recovered documents or of divergence between related languages. The
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written language of Ancient Aramaic, for example, is known to have been in use from roughly
1000 B.C.E. to 500 B.C.E. (Beyer, 1986). With only this information, a crude estimate of the
distribution over Ancient Aramaic document dates might be a uniform distribution on the
interval [-1000,-500] (though this estimate would fail to incorporate additional information
likely available from the documents themselves). Suppose a scholar consults two documents
of Ancient Aramaic from unrelated sources, and finds that the date of the first document is
850 B.C.E. What is the probability that the other document dates to within fifty years of
the first? Anything in the range [-900,-800] qualifies, so the probability we want is:

P (X ∈ [−900,−800]) =

∫ −800

−900

1

−500− (−1000)
dx

=
−800− (−900)

−500− (−1000)
=

1

5

2.7.2 Change of variables for continuous probability densities

Typically, the range of a continuous random variables is some kind of metric space used
to quantify events in the real world. In many cases, there may be more than one possible
metric of interest. In phonetics, for example, pitch is sometimes expressed directly in units of
frequency, namely Hertz (cycles per second), but sometimes measured in log-Hertz instead.
The justifications for log-Hertz measurement include that in music relative changes in pitch
are constant in frequency ratio, so that adding a constant value c to a log-Hertz measurement
yields the same change in musical pitch regardless of starting frequency; and that in many
cases vowels tend to be constant in the ratios among their first three formats (e.g., Lloyd
(1890); Peterson (1961); Miller (1989); Hillenbrand et al. (1995)). 3 If one wants to convert
a probability density from one unit of measurement to another, one needs to make a change
of variables.

In general, if some random variable X has the probability density p and the random
variable Y is defined such that X = g(Y ), then the probability density of Y is

p(Y = y) = p(X = g(y))
dg

dy
(g(y))

or, more succinctly, For example, suppose that one has a random variable X with a uniform
distribution over the Hertz frequency range [100,1000]. To convert this to a distribution over
log-frequencies, let us call the new random variable Y defined that Y = log10X, so that the
log-Hertz range of Y is [2,3]. This means that X = g(y) = 10Y and so dg

dy
= 10Y log 10

(see Section A.5). Figures ?? and ?? illustrate this probability density in the two units of
measurement.

This example illustrates an important point: that the pdf of a continuous random variable
does not need to be bounded above by 1; changing variables from Hertz to log-Hertz led to

3A formant is a peak of energy in the acoustic frequency spectrum of a vowel production.

Roger Levy – Probabilistic Models in the Study of Language draft, November 6, 2012 15



0 500 1000 1500 2000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Frequency (Hertz)

p(
X

=
x)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

log−Hertz

p(
Y

=
y)

a density as high as 2.5. Since the range in which the density exceeds 1 is small (in the
log-Hertz scale), this is not a problem as the total probability mass still integrates to 1. Note
that technically, since probability mass is unitless but continuous probability densities are
over variables that have units, probability densities have units—in the case of the uniform
distribution in the example above, the unit is “per cycle per second”. And in fact, for any
continuous probability function there will always be some change of variables based on a
new unit of measurement that will lead to density exceeding 1 somewhere on the range of
the new random variable! This is in contrast to the probability mass function of a discrete
random variable, which is unitless must be bounded above by 1.

2.7.3 Cumulative distribution functions for continuous random
variables

With a continuous random variable, the probability of any specific point in R is zero; the
primary interest is on the probability that the outcome of the random variable will fall into a
given region of R, which is more naturally expressed via the cumulative distribution function
(cdf) F (x), defined once again as P (X ≤ x), or

F (x) =

∫ x

−∞
p(x) dx

What is especially useful about the cumulative distribution function is that the proba-
bility that X will fall into a continuous region [x, y] of the real number line can be expressed
as the difference between the cdf at y and at x:
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P (x ≤ X ≤ y) =

∫ y

x

p(x) dx

=

∫ y

−∞
p(x) dx−

∫ x

−∞
p(x) dx

= F (y)− F (x)

Because of this property, and the fact that the probability of an outcome occurring at any
specific point x is 0 for a continuous random variable, the cumulative distribution is in many
cases more important than the density when working with continuous random variables.

2.8 Normalized and unnormalized probability distri-

butions

It is quite common to wind up defining a “probability”mass function F (or density function
f) that adheres to the first two axioms listed in Section 2.3—non-negativity and disjoint
union—but that does not adhere to the third axiom of properness. Such a function F is
called an unnormalized or improper probability distribution. In these cases, from
F a normalized, or proper, probability distribution P can be defined as

P (X = x) =
1

Z
F (x) (2.15)

where

Z
def
=

∑

x

F (x)

for discrete densities, and

Z
def
=

∫ ∞

−∞
f(x) dx

for continuous densities, when Z is finite. Here, Z is generally called the normalizing

constant or partition function.
When we have a function F (X) that we wish to use as an unnormalized probability

distribution, we will often write that

P (x) ∝ F (x) (2.16)

which is read as “P (x) is proportional to F (x)”.
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Example: suppose that we wanted to construct a probability distribution over total
orderings of three constituents S,O, V (e.g., the subject, object, and verb of a simple transi-
tive clause), and characterize the probability distribution purely on the basis of the relative
strengths of preference for linear precedence between every possible pair of constituents.
There are three possible pairs of these constituents—SO,SV , and OV—so we will introduce
one parameter for each of these pairs to indicate the relative strength of preference for one
linear ordering versus another. Thus we will have one parameter, γ1 indicating the preference
for S to precede O; we will denote this event as S ≺ O, with ≺ to be read as “precedes”. A
second parameter γ2 will indicating the preference for S to precede V , and a third parameter
γ3 indicating the preference for O to precede V . For simplicity, we’ll let each γi range be-
tween 0 and 1, and encourage the intuitive analogy between these three parameters and the
success parameters of three separate Bernoulli trials. That is, the word orders SOV , SV O,
and V SO could be thought of as “successes” for the Bernoulli trial, and we would want them
together to have something like probability γ1, whereas the word orders OSV , OV S, and
V OS could be thought of as “failures” for this Bernoulli trial, and we would want them to
have something like probability 1− γ1. So we’ll define a mass function F that assigns to any
word order the product of (i) all the “success” parameters for precedences that are satisfied,
and (ii) all the “failure”parameters for precedences that are violated. For example, we would
have:

F (SOV ) = γ1γ2γ3

since this word ordering satisfies all the three precedences,

F (SV O) = γ1γ2(1− γ3)

since this word ordering violates O ≺ V but satisfies the other two precedences, and so forth.
However, there is one crucial disanalogy between the present case and the case of three

separate Bernoulli trials. In three separate Bernoulli trials, there are eight logically pos-
sible outcomes, but in the case of ordering three constituents, there are only six logically
possible outcomes. There are two combinations of constituent-pair precedence which are
contradictory:

(1)S ≺ O, V ≺ S,O ≺ V (2)O ≺ S, S ≺ V, V ≺ O

As a result, the mass function F is improper: in general, it does not assign total mass of 1
to the six possible constituent orderings.

We can construct a proper probability distribution out of F , however, by computing
its normalizing constant and then defining a probability distribution as described in Equa-
tion 2.15. In Table 2.1 we make totally explicit the eight logically possible combinations of
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S O S V O V Outcome X F (X)
1 ≺ ≺ ≺ SOV γ1γ2γ3
2 ≺ ≺ ≻ SV O γ1γ2(1− γ3)
3 ≺ ≻ ≺ impossible γ1(1− γ2)γ3
4 ≺ ≻ ≻ V SO γ1(1− γ2)(1− γ3)
5 ≻ ≺ ≺ OSV (1− γ1)γ2γ3
6 ≻ ≺ ≻ impossible (1− γ1)γ2(1− γ3)
7 ≻ ≻ ≺ OV S (1− γ1)(1− γ2)γ3
8 ≻ ≻ ≻ V OS (1− γ1)(1− γ2)(1− γ3)

Table 2.1: The unnormalized distribution for {S,O,V} constituent-order model

Order SOV SVO VSO OSV OVS VOS
# Languages 566 488 95 25 11 4

Relative frequencies 0.476 0.410 0.080 0.021 0.009 0.003
Probabilities in constituent-order model 0.414 0.414 0.103 0.046 0.011 0.011

Table 2.2: Empirical frequencies of dominant constituent ordering among {S,O,V} for 1189
languages, taken from the World Atlas of Language Structures (Dryer, 2011; languages
reported as lacking dominant order omitted). Model probabilities are for γ1 = 0.9, γ2 =
0.8, γ3 = 0.5).

three pairwise precedences, the two that are contradictory, and the values assigned by F to
each of the eight.

Since the set of all eight together would give a proper distribution, a simple way of expressing
the normalizing constant is as 1− F (X3)− F (X6).

This is an interesting model: because it has only three parameters, it is not as expressive
as an arbitrary multinomial distribution over six classes (we would need five parameters for
that; see Section 2.5.2). It’s an empirical question whether it’s good for modeling the kind
of word-order frequencies across the languages of the world. The first two rows of Table 2.2
show the empirical frequencies of the six logically possible orderings of subject, object, and
verb; the two subject-initial orderings are by far the most common, with VSO a distant third
and the other orders all quite rare. If we wanted to produce a probability distribution that
looked like empirical frequencies, intuitively we might set γ1 close to 1, since S nearly always
precedes O; γ2 close to 1 as well, since S nearly always precedes V, but lower than γ1, since
the former generalization is stronger than the second; and γ3 around 1

2
, since V precedes

O about as often as it follows it. The third row of Table 2.2 shows the probabilities in the
constituent-order model obtained with such a setting, of γ1 = 0.9, γ2 = 0.8, γ3 = 0.5. It is a
pretty good qualitative fit: it fails to differentiate SOV from SVO probability but reproduces
the overall shape of the empirical relative frequency distribution reasonably well. In fact,
this three-parameter constituent-order model can achieve even better fits to word-order-
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frequency data than we see in Table 2.2; the principles according to which the optimal fit
can be determined will be introduced in Chapter 4, and the model is revisited in Exercise 4.6.

Problem 2.6 in the end of this chapter revisits the question of whether the parame-
ters γi really turn out to be the probabilities of satisfaction or violation of each individual
constituent-pair precedence relation for the probability distribution resulting from our choice
of the unnormalized mass function F .

2.9 Expected values and variance

We now turn to two fundamental quantities of probability distributions: expected value

and variance.

2.9.1 Expected value

The expected value of a random variable X, which is denoted in many forms including
E(X), E[X], 〈X〉, and µ, is also known as the expectation or mean. For a discrete
random variable X under probability distribution P , it’s defined as

E(X) =
∑

i

xiP (X = xi) (2.17)

For a Bernoulli random variable X with parameter π, for example, the possible outcomes
are 0 and 1, so we have

E(X) = 0×
P (X=0)︷ ︸︸ ︷
(1− π) + 1×

P (X=1)︷︸︸︷
π

= π

For a continuous random variableX under cpd p, the expectation is defined using integrals
instead of sums, as

E(X) =

∫ ∞

−∞
x p(x)dx (2.18)

For example, a uniformly-distributed random variable X with parameters a and b has ex-
pectation right in the middle of the interval, at a+b

2
(see Exercise 2.8).

2.9.2 Variance

The variance is a measure of how broadly distributed the r.v. tends to be. It’s defined as the
expectation of the squared deviation from the mean:

Var(X) = E[(X − E(X))2] (2.19)
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or equivalently

Var(X) = E[X2]− E[X]2 (2.20)

(see Exercise 3.1). The variance is often denoted σ2 and its positive square root, σ, is known
as the standard deviation.

If you rescale a random variable by defining Y = a + bX, then Var(Y ) = b2X. This is
part of what is known as linearity of the expectation, which will be introduced in full
in Section 3.3.1.

Variance of Bernoulli and uniform distributions

The variance of a Bernoulli-distributed random variable needs to be calculated explicitly,
by using the definition in Equation (2.20) and summing over the possible outcomes as in
Equation (2.17) (recall that the expectation for a Bernoulli random variable is π):

Var(X) = E[((X)− E(X))2] =
∑

x∈{0,1}
(x− π)2 P (x)

= (π − 0)2
P (X=0)︷ ︸︸ ︷
(1− π) + (1− π)2 ×

P (X=1)︷︸︸︷
π

= π(1− π) [π + (1− π)]

Var(X) = π(1− π)

Note that the variance is largest at π = 0.5 and zero when π = 0 or π = 1.

The uniform distribution also needs its variance explicitly calculated; its variance is (b−a)2

12

(see Exercise 2.9).

2.10 The normal distribution

We’re now in a position to introduce the normal distribution, which is likely to be the
most common continuous distribution you’ll encounter. It is characterized by two parameters,
the expected value µ and the variance σ2. (Sometimes the standard deviation σ is used
instead of the variance to parameterize the normal distribution.) Its probability density
function is:

p(x) =
1√
2πσ2

exp

[
−(x− µ)2

2σ2

]
(2.21)

This expression seems intimidating at first glance, but it will become familiar with time.4

It can be divided into three components:

4exp[x] is another way of writing ex; it’s used when the expression in the exponent is complex enough to
warrant typesetting in normal-size font.
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• 1√
2πσ2

is a normalizing constant (see Section 2.8).

• The denominator within the exponential, 2σ2, can be thought of a scaling factor de-
termined by the variance of the normal distribution.

• The numerator within the exponential, (x − µ)2, is the square of the Euclidean dis-
tance of x from the mean. The exponent is negative, so the probability density is
exponentially decreasing in the square of the distance from the mean.

The normal distribution doesn’t have a closed-form cumulative density function, but the
approximate cumulative density can be calculated numerically and is available in most sta-
tistical software packages. Figure 2.3 shows probability density and cumulative distribution
functions for normal distributions with different means and variances.

Example: normal distributions are often used for modeling the variability in acoustic
dimensions for production and perception in phonetics. Suppose that you are about to
record an adult male native speaker of American English pronouncing the vowel [i]. Data
from Peterson and Barney (1952) indicate that the F1 formant frequency for this vowel as
pronounced by this group may reasonably be modeled as normally distributed with mean
267Hz and standard deviation 36.9Hz. What is the probability that the recording will have F1
frequency falling between 225Hz and 267Hz (lower than average but not egregiously low)?
We follow the logic of Section 2.7.3 in expressing the answer in terms of the cumulative
distribution function:

P (225Hz ≤ F1 ≤ 267Hz) =

∫ 267

225

p(x) dx (2.22)

=

∫ 267

−∞
p(x) dx−

∫ 225

−∞
p(x) dx (2.23)

= F (267)− F (225) (2.24)

With the use of standard statistical software we can find the values of the cumulative distri-
butions function at 267 and 225, which gives us our answer:

= 0.5− 0.12 = 0.38 (2.25)

(Note that because the normal distribution is symmetric around its mean, the cumulative
distribution function applied to the mean will always be equal to 0.5.)

2.10.1 Standard normal random variables

A normal distribution with mean 0 and variance 1 is called the standard normal dis-

tribution, and a random variable following this distribution is called a standard nor-

mal random variable. The density function for a standard normal random variable is

p(x) = 1√
2π
e[−x2/2].
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Figure 2.3: The normal distribution: density and cumulative distribution functions

2.11 Estimating probability densities

Thus far we have concerned ourselves with definitions in probability theory and a few im-
portant probability distributions. Most of the time, however, we are in the situation of not
knowing the precise distribution from which a set of data have arisen, but of having to infer
a probability distribution from the observed data. This is the topic of statistical infer-

ence. We conclude this chapter by briefly describing some simple techniques for estimating
probability densities and evaluating the quality of those estimated densities.

2.11.1 Discrete probability densities: relative-frequency estima-
tion

Suppose that we are interested in estimating the Bernoulli parameter π associated with the
ordering preference of the English binomial {interest,principal} on the basis of ten tokens
collected from a corpus, with “success” arbitrarily associated with the ordering principal and
interest. Seven of them are principal and interest and three are interest and principal. The
simplest way for us to estimate the underlying Bernoulli distribution is to equate relative
frequency of occurrence with probability. In this case, we have seven of ten success so we
estimate π̂ = 7

10
.5 This process is called Relative Frequency Estimation.

We can generalize relative frequency estimation for use with multinomial trials. Suppose
that we observe N outcomes of a categorical variable that can take on some finite number r

5The ˆ symbol above the π indicates that this is an estimate of the parameter π which may or not be the
true underlying parameter value.
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〈SB,DO〉 〈SB, IO〉 〈DO,SB〉 〈DO, IO〉 〈IO,SB〉 〈IO,DO〉 Total
Count 478 59 1 3 20 9 570
Relative Freq. 0.839 0.104 0.001 0.005 0.035 0.016

Table 2.3: Frequency of grammatical functions on ordered pairs of full NPs in German
newspaper text, drawn from the NEGRA-II corpus (Kempen and Harbusch, 2004). SB
denotes “subject”, DO denotes “direct object”, and IO denotes direct object.

of different values. Table 2.3, for example, shows the counts of full NP pairs (presented in
the order in which they appear in the clause) obtained in a sample of a corpus of German
newspaper text.

In terms of probability theory, this categorical variable can be viewed as a discrete
multinomial-trial random variable, for which we have observed N outcomes (570, in the
case of Table 2.3). Once again we simply divide the count of each outcome by the total
count, as shown in the bottom line of Table 2.3. We will see in Section 4.3.1 that, in addi-
tion to being highly intuitive, relative frequency estimation for multinomial outcomes has a
deep theoretical justification.

2.11.2 Estimating continuous densities: histograms and kernel
density estimation

What about for continuous variables? Figure 2.4a plots the frequency of occurrence of F0 for-
mant frequency of the vowel A by adult male speakers in the classic study of Peterson and Barney
(1952).6 It is immediately apparent that relative frequency estimation is not suitable for
continuous densities; and if we were to treat the distribution over F0 formants as a discrete
distribution, we would run into the problem of data sparsity. For example, we would estimate
that P (F0 = 119Hz) = 0 even though there are many observations close to 119Hz.

One common technique for continuous density estimation is the use of histograms.
Constructing a histogram involves dividing the range of the random variable into K equally-
spaced bins and counting the number of observations that fall into each bin; K can be
chosen as seems appropriate to the dataset. These counts can then be normalized by the
total number of observations to achieve an estimate of the probability density. Figures 2.4b
and 2.4c show histograms of adult male speaker F0 frequency for 38-bin histograms of width
5Hz, starting at 95Hz and 94Hz respectively. Although the histogram determines a valid
continuous density, it has two weakness. First, it assigns zero probability to a number of
intervals for which the data seem to suggest possible outcomes (e.g., the 150–155Hz interval in
Figure 2.4b, and the 245–250Hz interval in Figure 2.4c). Second, the shape of the histogram
is quite sensitive to the exact positioning of the bins—this is apparent in the substantially
different shape of the two histograms in the 100–150Hz range.

A generally preferable approach is kernel density estimation. A kernel is simply

6The measurements reported in this dataset are rounded off to the nearest Hertz, so in Figure 2.4a they
are jittered to break ties.
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a weighting function that serves as a measure of the relevance of each observation to any
given point of interest on the range of a random variable. Technically, a kernel K simply
takes an observation xi and returns a non-negative function K(xi, ·) which distributes a total
probability mass of 1 over the range of the random variable.7 Hence we have

∑

x

K(xi, x) = 1 (2.26)

in the discrete case, or

∫

x

K(xi, x) dx = 1 (2.27)

in the continuous case. If one has only a single observation x1 of the outcome of a random
variable X, then the kernel density estimate of the probability density over X is simply
P (X = x) = K(x1, x). In general, if one has n observations x1, . . . , xn, then the kernel
density estimate for a point x is the average of the densities assigned to x by the kernel
function obtained from each observation:

p̂(x) =
1

n

n∑

i=1

K(xi, x) (2.28)

It is up to the researcher to choose the particular kernel function. Here, we give an example
for a continuous random variable; in the next section we give an example for discrete kernel
density estimation.

For continuous random variables, the normal kernel is perhaps the most popular
kernel; for an observation xi it simply allocates its probability mass according to a normal
density function with mean xi and standard deviation σ. The standard deviation is some-
times called the bandwidth of the kernel and denoted as b. The kernel density estimate
from a set of observations x1, . . . , xn using bandwidth b would be:

p̂(X = x) =
1

n
√
2πb2

n∑

i=1

exp

[
−(x− xi)

2

2b2

]

Figure 2.4d shows the kernel density estimate of adult male-speaker F0 frequency distri-
bution for b = 5, with the observations themselves superimposed on the F0-axis (just like
Figure 2.4a). Note that the kernel density estimate gives non-zero probability density to
the entire number line, and it is visibly non-zero for the entire span between the lowest
and highest observations; yet much of the nuance of the data’s empirical distribution is still
retained.

7Although a kernel serves as a type of distance metric, it is not necessarily a true distance; in particular,
it need not observe the triangle inequality.
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Figure 2.4: Adult male native English speaker F0 measurements for the vowel A from
Peterson and Barney (1952), together with histograms and a kernel density estimate of the
underlying distribution

Of course, there are many other possible kernel functions for continuous data than the
normal kernel. Another simple example is the rectangular kernel, which for an obser-
vation xi distributes a probability mass of 1 through a uniform distribution centered on xi

with width b. Figure 2.4e shows the result of applying this kernel with bandwidth b = 3 to
the same F0 data.8

One of the difficulties in kernel density estimation is the choice of bandwidth. This choice
is ultimately up to the researcher, but in the next section we will introduce some principles
that can help determine how good a given choice of bandwidth may be. Exercise 2.11 also
addresses this issue.

Histogram- and kernel-based density estimation is often called non-parametric esti-

mation. The term“non-parametric”turns up in many places in probability and statistics. In
density estimation, a non-parametric method is one whose estimated densities can grow arbi-
trarily complex as the amount of data used for estimation continues to grow. This contrasts
with parametric estimation, in which estimation is limited to a pre-specified parametric
family of models (covered in Chapter 4).

2.11.3 Kernel estimation for discrete densities

Kernel density estimation can also be useful for estimating discrete probability distributions
in which the number of possible outcomes is large in comparison to the number of observa-
tions, or even countably infinite. This is a common situation in the study of language. For
example, there has been considerable recent interest in estimating probability densities over
possible phonological forms for lexical items (e.g., Hayes and Wilson, 2007), to account for
phenomena such as gradience in speaker judgments of nonce word well-formedness. One way
of placing a density over the set of possible phonological forms is to define a kernel over pairs
of phoneme sequences.

8In case you try using the density() function in R to do rectangular kernel density estimation, the
bandwidth is defined differently—as the standard deviation of the kernel’s density function—and you need
to adjust the chosen bandwidth accordingly.
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As a simple example, let us consider the space of possible consonant-vowel-consonant
(CVC) lexical forms composed of the six phonemes /t/,/p/,/k/,/æ/,/2/, and/U/. There
are 27 possible such forms, and 18 of them occur in the English lexicon. Let us base our
kernel on the string-edit distance D(x, x′) between forms x and x′, which for these three-
phoneme sequences is simply the number of positions at which two strings differ—for exam-
ple, D(/pæt/, /tUt/) = 2. Less similar phoneme sequences should have a lower score in our
kernel, so let us define our kernel as

K(x, x′) ∝ 1

(1 +D(x, x′))3

We have used proportionality rather than equality here because of the requirement (Equa-
tion (2.26)) that the kernel sum to 1 over the complete space of possible outcomes {xj}.
We can renormalize the kernel just as we renormalize a probability distribution (see Sec-
tion 2.8), by defining for each observation xi a normalizing coefficient Zi =

∑
xj

1
(1+D(xi,xj))3

,

and dividing in this normalizing coefficient:

K(xi, x
′) =

1

Zi

1

(1 +D(x, x′))3

For our example, it turns out that Zi = 2.32 for all sequences xi.
Figure 2.5 shows the relative-frequency and kernel-density estimates for our toy problem.

Figure 2.5a shows the 18 forms in the English lexicon, and a relative-frequency estimate of
the distribution over possible forms if each such entry from the English lexicon is counted as
a single observation. Figure 2.5b shows the kernel density estimate. The unattested lexical
forms now have non-zero probability, and furthermore the probability of both attested and
unattested forms depends on how densely their neighborhoods in phonological space are
occupied.

2.11.4 Kernel density estimation and exemplar models

As is made explicit in Equation (2.28), computing the probability of an outcome using kernel
density estimation (KDE) involves iterating explicitly over the entire set of observations y.
From a computational point of view, a distinctive property of KDE is that it requires the
storage and access of complete datasets. In theoretical linguistics, psycholinguistics, and
computational linguistics, models with this requirement are often called exemplar models.
Exemplar models have received considerable attention in these fields as candidate models of
language acquisition and use. For example, Bailey and Hahn (2001) adapted the exemplar
model of Nosofsky (1986) to the problem of inducing probability distributions over possible
lexical forms (Section 2.11.3). In syntax, the Data-Oriented Parsing model (Scha, 1990;
Bod, 1992, 1998, 2006) is perhaps the best known formalized exemplar model. A point
that cannot be over-emphasized is that the core substance of an exemplar model consists of
(a) the representation of the space of possible exemplars, and (b) the metric of similarity
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Figure 2.5: Kernel density estimation for lexical forms

between points in the exemplar representation space. In kernel density estimation, the choice
of kernel constitutes the metric of similarity.

One of the common criticisms of exemplar-based models is on the grounds that it is
psychologically implausible to imagine that all the exemplars in a language user’s experience
are retained, and are exhaustively accessed whenever the probability of a given point in the
exemplar representation space is needed. We won’t take sides on this issue here. However,
in future chapters we do consider methods that do not have the requirement of exhaustive
storage and recall of the dataset.

2.11.5 Evaluating estimated probability densities

You now have basic tools for estimating probability densities from data. Even after this
brief introduction to density estimation it should be painfully obvious that there are many
ways to estimate a density from a given dataset. From the standpoint of modeling linguistic
cognition, this is in fact advantageous because different approaches to estimation encode
different learning biases. This means that density estimation procedures as models of human
language learning can be evaluated in terms of how closely they reflect the inferences made
by language learners from exposure to finite data.

There are many times, however, when you will also be interested in evaluating how well
a particular density estimate intrinsically encodes the data from which it is derived. Here we
cover two approaches to this type of evaluation that enjoy wide currency: classification
accuracy and likelihood.
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Classification accuracy

For discrete random variables, the simplest method of evaluating the performance of a den-
sity estimate is classification accuracy. Prerequisite to this notion is the notion of
prediction: for a given context (i.e. conditioning on some known information), what value
of a discrete random variable X do I expect? Suppose that I have a probability density
estimate based on some observations y and I expect to see n new observations. My predic-
tions for the observed outcomes in these new observations (before I actually see them) can
be labeled ŷ1, . . . , ŷn. My classification accuracy is simply the proportion of these predic-
tions that turn out to be correct. For example, suppose that for the German grammatical
function ordering data of Section 2.11.1 I expect to see three new observations. Without any
further information, the most sensible thing for me to do is simply to predict 〈SB,DO〉 all
three times, since I estimated it to be the most likely outcome. If the actual outcomes are
〈SB,DO〉, 〈SB, IO〉, 〈SB,DO〉, then my classification accuracy is 2

3
.

When we obtain a dataset all at once, then a common practice for evaluating the clas-
sification accuracy of a density estimation technique for making predictions from that data
is to remove a small part of the dataset and use the rest to construct the density estimate.
We then evaluate the classification accuracy of the density estimate on the small part of the
dataset that was removed. For example, in the German word order data we might draw 10%
of the data (57 observations)—say 45 of 〈SB,DO〉, 7 of 〈SB, IO〉, 3 of 〈IO,SB〉, and two of
〈IO,DO〉. In the remaining 90% of the data, 〈SB,DO〉 remains the most likely outcome,
so we predict that for all 57 of the removed observations. Our classification accuracy is thus
45
57

≈ 0.79. This approach is called held-out evaluation.

Of course, held-out evaluation has some disadvantages as well, notably that the evaluation
is based on only a small fraction of available data and hence will be noisy. Another widely
used technique is cross-validation, in which we split our dataset into k equally sized
portions. We then produce k different held-out evaluations of classification accuracy, each
portion in turn serving as the held-out portion of the dataset, and average the classification
accuracy across the folds. As a simple example, suppose we collected a corpus of {night,
day} binomials, with 160 examples of day and night (d) and 140 examples of night and day
(n). On 4-fold cross-validation, we might obtain the following outcomes:

Fold # d held out # n held out Prediction Accuracy
1 34 41 n 0.45
2 40 35 d 0.53
3 48 27 d 0.36
4 38 37 d 0.51
Total 0.46

If computing the predictions from observed data is fast, then the best kind of cross-validation
is generally leave-one-out cross-validation, where there are as many folds as there are
observations.
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Likelihood-based evaluation

Classification accuracy is“brittle”in the sense that it discards a great deal of information from
a density estimate. As a simple example, for the binomial {night,day} the best classification
decision is d if P̂ (d) > 0.5; but P̂ (d) = 0.51 and P̂ (d) = 0.99 are very different distributions,
and we’d like to distinguish the types of predictions they make. Furthermore, classification
accuracy doesn’t even make sense in the continuous random variable setting. We can address
both these problems, however, via the concept of likelihood, which we briefly encountered
in Section 2.4.1. The likelihood under a density estimate P̂ of a set of data y is simply

P (y|P̂ ) (2.29)

The likelihood is sometimes viewed as a function of a set of observations y, and sometimes
(see Chapter 4) viewed as a property of the estimate itself P̂ . If the observations yi are
assumed to be independent of one another, then we can rewrite the likelihood as

P (y|P̂ ) =
n∏

i=1

P (yi|P̂ ) (2.30)

Since likelihoods can be very small, and datasets can be very large, explicitly computing the
product in Equation (2.30) can lead to problems with computational underflow. This can
be avoided by computing the log-likelihood; in log-space you are extremely unlikely to
have computational underflow or overflow problems. Since the log of a product is the sum
of a log, you’ll usually see log-likelihood computed as in Equation (2.31) below:

logP (y|P̂ ) =
n∑

i=1

logP (yi|P̂ ) (2.31)

Likelihood can be evaluated with respect to the data used to estimate the density, with re-
spect to held-out data, or using cross-validation. Evaluating log-likelihood from the data used
to estimate the model is, however, a dangerous enterprise. This is illustrated in Figures 2.6
through 2.8, for the example from Section 2.11.2 of estimating F0 formant frequency through
normal-kernel density estimation. Figure 2.6 illustrates the change in estimated probabil-
ity density as a result of choosing different bandwidths. The narrower the bandwidth, the
more of the probability mass is focused around the observations themselves. As a result,
the log-likelihood of the data used to estimate the density increases monotonically as the
bandwidth decreases (Figure 2.7). The likelihood as evaluated with six-fold cross-validation,
on the other hand reaches a maximum at bandwidth b ≈ 10Hz (Figure 2.8). The discrepancy
between the shapes of the curves in Figures 2.7 and 2.8 for b < 10—and also of the generally
much higher log-likelihoods in the former figure—reveals that the narrow-bandwidth density
estimates are overfitting—intuitively, they mimic the observed data too closely and gen-
eralize too little. The cross-validated likelihood reveals that the assessment of The ability
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Figure 2.9: The relative frequency distributions of the first and second words of sentences of
the parsed Brown corpus

of the narrow-bandwidth density estimate to closely mimic observed data is a kind of com-
plexity of the estimation process. Finding a balance between complexity and generalization
is a hallmark issue of statistical inference, and we will see this issue arise again in numerous
contexts throughout the book.

2.12 Surprisal, entropy, and relative entropy

One of the most fundamental views of probability is as quantifying our degree of uncertainty
about events whose outcomes are unknown. Intuitively, the more uncertain we are as to
an event’s outcome, the more broadly distributed will be the probability mass over the
event’s possible outcomes. Likewise, we can say that learning the event’s outcome gives us
information about the world that we did not previously have. The quantity of information
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Figure 2.10: The relative frequency distributions of the parts of speech of the first and second
words of sentences of the parsed Brown corpus

conveyed by the outcome x of a discrete random variable is often measured by the surprisal,
alternatively called the Shannon information content or self-information, of the
outcome, defined as 1

log2 P (x)
or equivalently − log2 P (x); the unit of surprisal is the bit, which

is the amount of information conveyed by the flip of a fair coin. The surprisal of an event is
the minimum number of bits required to convey the event’s occurrence given knowledge of
the underlying probability distribution from which the event was generated.

As an example, Figure ?? shows the relative frequencies (in descending order) of all words
observed as the first word of at least one sentence in the parsed Brown corpus, excluding
punctuation (Marcus et al., 1994). The ten most common of these words are labeled in the
graph. If we oversimplify slightly and take these relative frequencies to be the true underlying
word probabilities, we can compute the surprisal value that each word would have if it is
seen as the first word in a new sentence drawn at random from the same corpus. These
surprisal values appear above each of the ten labeled words. We can see that although there
are thousands of different words attested to start sentences in this corpus, none of the ten
most common conveys more than six bits of information (for reference, 26 = 64).

The expected surprisal of a discrete random variable X, or the average information that
an outcome of X conveys, is known as its entropy H(X), defined as:

H(X) =
∑

x

P (x) log2
1

P (x)
(2.32)

or equivalently

= −
∑

x

P (x) log2 P (x) (2.33)

Applying this definition we find that the entropy of the distribution over first words in the
sentence is 7.21, considerably higher than the entropy for second words, which is 9.51. The
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precise values of these figures should be taken with a considerable grain of salt, because the
data are quite sparse (most words only occur a handful of times, and many possible words
don’t appear at all), but they suggest that there is considerably more uncertainty about
the second word in a sentence than about the first word of the sentence (recall, of course,
that these probabilities do not at this point take into account any information about the
context in which the word appears other than how many words preceded it in the sentence).
Figure 2.10 shows relative frequency plots for the parts of speech of these first and second
words (note, interestingly, that while PRP, or preposition, is the most frequent part of speech
for first words, the most frequent word is a determiner). Repeating the calculation for parts
of speech yields entropies of 3.33 and 3.8 for the first and second words respectively. Once
again the entropy for the second word is greater than the first word, though by a smaller
amount than in the word-level calculation (perhaps due to the fact that second words are
likelier than first words to be open-class parts of speech, which are much easier to predict at
the part-of-speech level than at the word-specific level).

Finally, consider the case where one has two different probability distributions P and Q
over the same event space. Note that in the definition of entropy in Equation (2.32) the
same probability function is used twice; one could imagine carrying out a similar calculation
using each of P and Q once:

∑

x

P (x) log2
1

Q(x)
(2.34)

(2.35)

This is known as cross entropy. It is useful to think of the distribution Q appearing inside
the logarithm as a guess distribution and the other distribution P as the true, or reference,
distribution. Cross entropy quantifies how many bits are required on average to convey an
event drawn from P when one does not know P and one’s best guess of the distribution is
Q. To determine how much worse this is than using the true distribution (and it is never
better!), we can subtract out the entropy of P ; this gives us what is called the relative

entropy or Kullback-Leibler Divergence (or KL divergence) from Q to P :

D(P ||Q) =
∑

x

P (x) log2
P (x)

Q(x)
(2.36)

The KL divergence can be thought of as the penalty, in bits, incurred by coding outcomes
from P using Q. It is never negative and is zero only when P = Q. In our most recent
example, if we call the two distributions over part-of-speech tags P1 for first words and P2

for second words, we find that the KL divergence D(P1||P2) = 0.92. (there are some parts of
speech appearing in the second-word position which do not appear in the first-word position,
such as the possessive clitic ’s, which is represented as a separate word in the Penn Treebank,
so that we cannot take the KL divergence from P1 to P2; it would be infinite.) This KL
divergence is well over a third the size of the entropy of the true distributions, indicating
that the part of speech distributions are very different for first and second words.
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Surprisal, entropy, and relative entropy are essential conceptual building blocks in infor-

mation theory (Shannon, 1948), which among many other important ideas and results
includes the source coding theorem, which gives theoretical bounds on the compress-
ibility of any information source, and the noisy channel theorem, which gives theoretical
bounds on the possible rate of error-free information transfer in noisy communication sys-
tems. Cover and Thomas (1991) is an authoritative text on many key areas of information
theory; MacKay (2003) is another accessible text covering these two theorems.

> roundN <- function(x,decimals=2,fore=5) sprintf(paste("%",fore,".",decimals,"f",sep="

2.13 Exercises

Exercise 2.1: Conditional independence and set intersection†

Show that if A and B are conditionally independent given C and P (A|C) > 0, then
P (B|A ∩C) = P (B|C). Hint: one natural solution involves making use of the definition of
conditional independence in two different ways.

Exercise 2.2: Loss of conditional independence∗∗

Give an example in words where two events A and B are conditionally independent given
some state of knowledge C, but when another piece of knowledge D is learned, A and B lose
conditional independence.

Exercise 2.3: tea in Wonderland
♣

1. You obtain infinitely many copies of the text Alice in Wonderland and decide to play
a word game with it. You cut apart each page of each copy into individual letters,
throw all the letters in a bag, shake the bag, and draw three letters at random from
the bag. What is the probability that you will be able to spell tea? What about tee?
[Hint: see Section 2.5.2; perhaps peek at Section A.8 as well.]

2. Why did the problem specify that you obtained infinitely many copies of the text? Sup-
pose that you obtained only one copy of the text? Would you have enough information
to compute the probability of being able to spell tea? Why?

Exercise 2.4: Bounds on probability density functions∗

• Discrete random variables are governed by probability mass functions, which are bounded
below by zero and above by 1 (that is, every value a probability mass function must be
at least zero and no more than 1). Why must a probability mass function be bounded
above by 1?

• Continuous random variables are governed by probability density functions, which are
bounded below by zero. What are probability density functions bounded above by?
Why?
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Exercise 2.5: Probabilities in the constituent-order model♣

For the constituent-order example given in 2.8, let γ1 = 0.6, γ2 = 0.4, and γ3 = 0.3.
Compute the probabilities of all six possible word orders.

Exercise 2.6: Parameters of the constituent-order model∗∗

In the constituent-order example given in 2.8, I mentioned that we would like to interpret
the probability of each parameter γi analogously to the success parameter of a single Bernoulli
trial, so that the probability that S ≺ O is γ1, the probability that S ≺ V is γ2, and the
probability that O ≺ V is γ3. Given the mass function F actually used in the example, is
the probability that S ≺ O actually γ1? Show your work.

Exercise 2.7: More on the constituent-order model

Play around with specific parameter values for the constituent-order model to get a feel
for it. We know that it is more constrained than a general six-class multinomial distribution,
since it has only three parameters instead of five. Qualitatively speaking, what kinds of
distributions over the six logically possible word orders is it incapable of modeling?

Exercise 2.8: Expectation of a uniform random variable∗

Prove mathematically that the expectation of a uniform random variable X on [a, b] is
E(X) = a+b

2
. (This involves a simple integration; consult A.6 if you need a refresher.)

Exercise 2.9: Variance of a uniform random variable∗∗

Prove that the variance of a continuous, uniformly distributed random variable X on

[a, b] is (b−a)2

12
. [Sections 2.7.1 and 2.9.2]

Exercise 2.10: Normal distributions♣

For adult female native speakers of American English, the distribution of first-formant
frequencies for the vowel [E] is reasonably well modeled as a normal distribution with mean
608Hz and standard deviation 77.5Hz. What is the probability that the first-formant fre-
quency of an utterance of [E] for a randomly selected adult female native speaker of American
English will be between 555Hz and 697Hz?

Exercise 2.11: Assessing optimal kernel bandwidth through cross-validation†,Ï

Use leave-one-out cross-validation to calculate the cross-validated likelihood of kernel
density estimates (using a normal kernel) of adult male speaker [A] and [i] F2 formants from
the Peterson and Barney dataset. Plot the cross-validated likelihood as a function of kernel
bandwidth. Are the bandwidths that work best for [A] and [i] similar to each other? Explain
your results.

Exercise 2.12: Kernel density estimation and change of variables

Complete Exercise 2.11, but this time change the formant frequency measurements from
Hertz to log-Hertz before carrying out bandwidth selection. Once you’re done, compare
the optimal bandwidths and the corresponding density estimates obtained using log-Hertz
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measurements with that obtained using Hertz measurements. How different are they?

Exercise 2.13: Kernels in discrete linguistic spaces‡

Construct your own kernel over the space of 27 CVC lexical forms used in Section 2.11.3.
With the 18 attested forms listed in that section, use leave-one-out cross-validation to com-
pute the cross-validated likelihood of your kernel. Does it do better or worse than the original
kernel?

Exercise 2.14: Exemplar-based model of phonotactic knowledge‡

The file syllCounts contains phonetic representations of attested word-initial syllables
in disyllabic words of English, based on the CELEX lexical database, together with their
frequencies of occurrence. Find a partner in your class. Each of you should independently
construct a kernel over the phonetic representations of these word-initial syllables. Using ten-
fold cross-validation, compute the cross-validated likelihood of kernel density estimtes using
each of your kernels. Compare the results, noting which syllables each kernel did better on.
Now join forces and try to construct a third kernel which combines the best qualities of your
two kernels, and (hopefully) has a higher cross-validated likelihood than either one.

Roger Levy – Probabilistic Models in the Study of Language draft, November 6, 2012 36


